Generation of Synthetic Images of Trabecular Bone Based on Micro-CT Scans
Abstract
:1. Introduction
2. Materials and Methods
2.1. Small-World Model
2.2. Closing Operation
2.3. Binary Template Model
2.4. Projection Model
- P is the 2D image selected from the volume.
- is the pixel value at the () coordinates within the grayscale.
- S is the 3D image with binary values.
- is the binary value ( inter-trabecular space, trabecular bone) of the pixel in the coordinates () at S.
- is the projection thickness (size of S following the z-axis).
- is the bone attenuation coefficient (cm).
- is the X-ray energy of the photons in kilo-electron volt (KeV).
2.5. Adding Noise
3. Experimental Results
- Bone volume fraction/density (BV/TV) is the volume of mineralized bone per unit volume of the sample. BV/TV is simply the number of foreground (bone) voxels divided by the total number of voxels in the image. The measurement unit is %.
- Trabecular Thickness (Tb.Th) is the trabeculae’s average thickness. The measurement unit is mm or m.
- Trabecular Separation (Tb.Sp) is the main diameter of the bone marrow cavities. The measurement unit is mm or m.
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Whittier, D.E.; Boyd, S.K.; Burghardt, A.J.; Paccou, J.; Ghasem-Zadeh, A.; Chapurlat, R.; Engelke, K.; Bouxsein, M.L. Guidelines for the assessment of bone density and microarchitecture in vivo using high-resolution peripheral quantitative computed tomography. Osteoporos. Int. 2020, 31, 1607–1627. [Google Scholar] [CrossRef] [PubMed]
- Nour, M.A.; Burt, L.A.; Perry, R.J.; Stephure, D.K.; Hanley, D.A.; Boyd, S.K. Impact of growth hormone on adult bone quality in Turner syndrome: A HR-pQCT study. Calcif. Tissue Int. 2016, 98, 49–59. [Google Scholar] [CrossRef]
- Braun, C.; Bacchetta, J.; Braillon, P.; Chapurlat, R.; Drai, J.; Reix, P. Children and adolescents with cystic fibrosis display moderate bone microarchitecture abnormalities: Data from high-resolution peripheral quantitative computed tomography. Osteoporos. Int. 2017, 28, 3179–3188. [Google Scholar] [CrossRef] [PubMed]
- Samelson, E.J.; Demissie, S.; Cupples, L.A.; Zhang, X.; Xu, H.; Liu, C.T.; Boyd, S.K.; McLean, R.R.; Broe, K.E.; Kiel, D.P.; et al. Diabetes and deficits in cortical bone density, microarchitecture, and bone size: Framingham HR-pQCT study. J. Bone Miner. Res. 2018, 33, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Burt, L.A.; Billington, E.O.; Rose, M.S.; Raymond, D.A.; Hanley, D.A.; Boyd, S.K. Effect of high-dose vitamin D supplementation on volumetric bone density and bone strength: A randomized clinical trial. JAMA 2019, 322, 736–745. [Google Scholar] [CrossRef]
- Burt, L.A.; Schipilow, J.D.; Boyd, S.K. Competitive trampolining influences trabecular bone structure, bone size, and bone strength. J. Sport Health Sci. 2016, 5, 469–475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mikolajewicz, N.; Bishop, N.; Burghardt, A.J.; Folkestad, L.; Hall, A.; Kozloff, K.M.; Lukey, P.T.; Molloy-Bland, M.; Morin, S.N.; Offiah, A.C.; et al. HR-pQCT measures of bone microarchitecture predict fracture: Systematic review and meta-analysis. J. Bone Miner. Res. 2020, 35, 446–459. [Google Scholar] [CrossRef] [PubMed]
- Abid Fourati, W.; Bouhlel, M.S. Trabecular bone image segmentation using wavelet and marker-controlled watershed transformation. Chin. J. Eng. 2014, 2014. [Google Scholar] [CrossRef] [Green Version]
- Engelkes, K. Accuracy of bone segmentation and surface generation strategies analyzed by using synthetic CT volumes. J. Anat. 2021, 238, 1456–1471. [Google Scholar] [CrossRef]
- Euler, A.; Nowak, T.; Bucher, B.; Eberhard, M.; Schmidt, B.; Flohr, T.G.; Frey, D.; Distler, O.; Alkadhi, H. Assessment of bone mineral density from a computed tomography topogram of photon-counting detector computed tomography—Effect of phantom size and tube voltage. Investig. Radiol. 2021, 56, 614–620. [Google Scholar] [CrossRef]
- Caron, R.; Londono, I.; Seoud, L.; Villemure, I. Segmentation of trabecular bone microdamage in Xray microCT images using a two-step deep learning method. J. Mech. Behav. Biomed. Mater. 2023, 137, 105540. [Google Scholar] [CrossRef] [PubMed]
- Diwakar, M.; Kumar, M. A review on CT image noise and its denoising. Biomed. Signal Process. Control. 2018, 42, 73–88. [Google Scholar] [CrossRef]
- Xiao, P.; Zhang, T.; Dong, X.N.; Han, Y.; Huang, Y.; Wang, X. Prediction of trabecular bone architectural features by deep learning models using simulated DXA images. Bone Rep. 2020, 13, 100295. [Google Scholar] [CrossRef] [PubMed]
- Stauber, M.; Müller, R. Micro-computed tomography: A method for the non-destructive evaluation of the three-dimensional structure of biological specimens. In Osteoporosis; Springer: Berlin/Heidelberg, Germany, 2008; pp. 273–292. [Google Scholar]
- Bouxsein, M.L.; Boyd, S.K.; Christiansen, B.A.; Guldberg, R.E.; Jepsen, K.J.; Müller, R. Guidelines for assessment of bone microstructure in rodents using micro–computed tomography. J. Bone Miner. Res. 2010, 25, 1468–1486. [Google Scholar] [CrossRef] [PubMed]
- Christiansen, B.A. Effect of micro-computed tomography voxel size and segmentation method on trabecular bone microstructure measures in mice. Bone Rep. 2016, 5, 136–140. [Google Scholar] [CrossRef] [Green Version]
- Ryan, M.; Barnett, L.; Rochester, J.; Wilkinson, J.; Dall’Ara, E. A new approach to comprehensively evaluate the morphological properties of the human femoral head: Example of application to osteoarthritic joint. Sci. Rep. 2020, 10, 5538. [Google Scholar] [CrossRef] [Green Version]
- Hsu, S.H.; Cao, Y.; Huang, K.; Feng, M.; Balter, J.M. Investigation of a method for generating synthetic CT models from MRI scans of the head and neck for radiation therapy. Phys. Med. Biol. 2013, 58, 8419. [Google Scholar] [CrossRef] [Green Version]
- Sjölund, J.; Forsberg, D.; Andersson, M.; Knutsson, H. Generating patient specific pseudo-CT of the head from MR using atlas-based regression. Phys. Med. Biol. 2015, 60, 825. [Google Scholar] [CrossRef] [Green Version]
- Mézière, F.; Juskova, P.; Woittequand, J.; Muller, M.; Bossy, E.; Boistel, R.; Malaquin, L.; Derode, A. Experimental observation of ultrasound fast and slow waves through three-dimensional printed trabecular bone phantoms. J. Acoust. Soc. Am. 2016, 139, EL13–EL18. [Google Scholar] [CrossRef] [Green Version]
- Grzeszczak, A.; Lewin, S.; Eriksson, O.; Kreuger, J.; Persson, C. The Potential of Stereolithography for 3D Printing of Synthetic Trabecular Bone Structures. Materials 2021, 14, 3712. [Google Scholar] [CrossRef]
- Peña-Solórzano, C.A.; Albrecht, D.W.; Paganin, D.M.; Harris, P.C.; Hall, C.J.; Bassed, R.B.; Dimmock, M.R. Development of a simple numerical model for trabecular bone structures. Med. Phys. 2019, 46, 1766–1776. [Google Scholar] [CrossRef]
- Watts, D.J.; Strogatz, S.H. Collective dynamics of ‘small-world’networks. Nature 1998, 393, 440–442. [Google Scholar] [CrossRef]
- Serra, J.; Soille, P. Mathematical Morphology and Its Applications To Image Processing; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 2. [Google Scholar]
- Haralick, R.M.; Sternberg, S.R.; Zhuang, X. Image analysis using mathematical morphology. IEEE Trans. Pattern Anal. Mach. Intell. 1987, PAMI-9, 532–550. [Google Scholar] [CrossRef]
- Arnaboldi, V.; Passarella, A.; Conti, M.; Dunbar, R.I. Online Social Networks: Human Cognitive Constraints in Facebook And Twitter Personal Graphs; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Ho, J.T.; Wu, J.; Huang, H.L.; Chen, M.Y.; Fuh, L.J.; Hsu, J.T. Trabecular bone structural parameters evaluated using dental cone-beam computed tomography: Cellular synthetic bones. Biomed. Eng. Online 2013, 12, 115. [Google Scholar] [CrossRef] [Green Version]
- Narayan, R. Encyclopedia of Biomedical Engineering; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Winzenrieth, R.; Michelet, F.; Hans, D. Three-Dimensional (3D) Microarchitecture Correlations with 2D Projection Image Gray-Level Variations Assessed by Trabecular Bone Score Using High-Resolution Computed Tomographic Acquisitions: Effects of Resolution and Noise. J. Clin. Densitom. 2013, 16, 287–296. [Google Scholar] [CrossRef]
- Jiang, H. Computed Tomography: Principles, Design, Artifacts, and Recent Advances; SPIE and John Wiley & Sons, Inc.: Bellingham, WA, USA, 2009. [Google Scholar]
- da Silva, A.M.H.; Alves, J.M.; da Silva, O.L.; da Silva Junior, N.F. Two and three-dimensional morphometric analysis of trabecular bone using X-ray microtomography (μCT). Rev. Bras. Eng. Biomed 2014, 30, 93–101. [Google Scholar] [CrossRef] [Green Version]
- Doube, M.; Kłosowski, M.M.; Arganda-Carreras, I.; Cordelières, F.P.; Dougherty, R.P.; Jackson, J.S.; Schmid, B.; Hutchinson, J.R.; Shefelbine, S.J. BoneJ: Free and extensible bone image analysis in ImageJ. Bone 2010, 47, 1076–1079. [Google Scholar] [CrossRef] [Green Version]
- Chegeni, N.; Birgani, M.J.T.; Birgani, F.F.; Fatehi, D.; Akbarizadeh, G.; Tahmasbi, M. Introduction of a simple algorithm to create synthetic-Computed tomography of the head from magnetic resonance imaging. J. Med. Signals Sens. 2019, 9, 123. [Google Scholar] [PubMed]
- Onnela, J.P.; Saramäki, J.; Hyvönen, J.; Szabó, G.; Lazer, D.; Kaski, K.; Kertész, J.; Barabási, A.L. Structure and tie strengths in mobile communication networks. Proc. Natl. Acad. Sci. USA 2007, 104, 7332–7336. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Huang, S.; Wang, S.; Muhammad, K.; Bellavista, P.; Del Ser, J. Visual tracking in complex scenes: A location fusion mechanism based on the combination of multiple visual cognition flows. Inf. Fusion 2023, 96, 281–296. [Google Scholar] [CrossRef]
Parameter | Value | Description |
---|---|---|
Binary template model | ||
[X Y Z] | [256 256 150] | Dimension of the synthetic image |
[0.35, 0.38] | Controls the pixel template density | |
[5 5 10] | Size of the sliding window | |
Projection model | ||
0.39 | Bone attenuation coefficient | |
120 | X-ray energy | |
[3 3 3] | Projection thickness | |
Voxel size | ||
Isotropic voxel: 1000 m |
Author | Required Information | Anatomical Reference | Metric | ||
---|---|---|---|---|---|
Biological | Dataset | Template | |||
Ho et al. [27] | No | No | Yes | Human dental | BV/TV = Tb.Th = m Tb.Sp = m |
Winzenrieth et al. [29] | Yes | Yes | No | Human vertebrae | BV/TV = Tb.Th = m Tb.Sp = m |
Pena et al. [22] | Yes | No | Yes | Human ulna | Tb.Th = m |
Human vertebrae | Tb.Th = m | ||||
Xiao et al. [13] | No | No | Yes | Human femur | BV/TV = Tb.Th = m |
Human femur | BV/TV = Tb.Th = m | ||||
Proposed | No | No | No | Generic () | BV/TV = Tb.Th = m Tb.Sp = m |
Generic () | BV/TV = Tb.Th = m Tb.Sp = m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grande-Barreto, J.; Polanco-Castro, E.; Peregrina-Barreto, H.; Rosas-Mialma, E.; Puig-Mar, C. Generation of Synthetic Images of Trabecular Bone Based on Micro-CT Scans. Information 2023, 14, 375. https://doi.org/10.3390/info14070375
Grande-Barreto J, Polanco-Castro E, Peregrina-Barreto H, Rosas-Mialma E, Puig-Mar C. Generation of Synthetic Images of Trabecular Bone Based on Micro-CT Scans. Information. 2023; 14(7):375. https://doi.org/10.3390/info14070375
Chicago/Turabian StyleGrande-Barreto, Jonas, Eduardo Polanco-Castro, Hayde Peregrina-Barreto, Eduardo Rosas-Mialma, and Carmina Puig-Mar. 2023. "Generation of Synthetic Images of Trabecular Bone Based on Micro-CT Scans" Information 14, no. 7: 375. https://doi.org/10.3390/info14070375
APA StyleGrande-Barreto, J., Polanco-Castro, E., Peregrina-Barreto, H., Rosas-Mialma, E., & Puig-Mar, C. (2023). Generation of Synthetic Images of Trabecular Bone Based on Micro-CT Scans. Information, 14(7), 375. https://doi.org/10.3390/info14070375