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Abstract: Biometrics has become an important research issue in recent years, and the use of deep
learning neural networks has made it possible to develop more reliable and efficient recognition
systems. Palms have been identified as one of the most promising candidates among various
biometrics due to their unique features and easy accessibility. However, traditional palm recognition
methods involve 3D point clouds, which can be complex and difficult to work with. To mitigate
this challenge, this paper proposes two methods which are Multi-View Projection (MVP) and Light
Inverted Residual Block (LIRB).The MVP simulates different angles that observers use to observe
palms in reality. It transforms 3D point clouds into multiple 2D images and effectively reduces the
loss of mapping 3D data to 2D data. Therefore, the MVP can greatly reduce the complexity of the
system. In experiments, MVP demonstrated remarkable performance on various famous models,
such as VGG or MobileNetv2, with a particular improvement in the performance of smaller models.
To further improve the performance of small models, this paper applies LIRB to build a lightweight
2D CNN called Tiny-MobileNet (TMBNet).The TMBNet has only a few convolutional layers but
outperforms the 3D baselines PointNet and PointNet++ in FLOPs and accuracy. The experimental
results show that the proposed method can effectively mitigate the challenges of recognizing palms
through 3D point clouds of palms. The proposed method not only reduces the complexity of the
system but also extends the use of lightweight CNN. These findings have significant implications for
developing biometrics and could lead to improvements in various fields, such as access control and
security control.

Keywords: palms recognition; multi-view projection; lightweight convolutional neural network

1. Introduction

With the rapid development of the information age, awareness of biometrics has
become increasingly common in recent years. Many daily activities require the verifica-
tion of personal identities, such as access control systems in sensitive places or epidemic
control systems during the ravages of COVID-19. Therefore, it is necessary to build an ID
recognition model based on a reliable token, such as the inherent component of human
beings—the palm. Everyone has two palms which are unique components of the human
body. The palms have rich features such as texture, finger length, and shape. Based on this
simple intuition, the palm, represented in 3D point clouds, can best preserve biological
characteristics and be used as a token for the ID recognition system. In addition to choosing
a reliable token, a robust model is a cornerstone of the ID recognition system. Today, many
cnn-based models, such as Vgg [1], ResNet [2], DenseNet [3], EfficientNet [4], and more,
show extraordinary performance. While 3D point clouds are a better form of data, they also
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introduce additional complexity. For example, the 3D cloud point has complex properties
such as disorder and lack of structure. In addition, the input of the 3D CNN is a sequence,
and there are many possible combinations of the elements contained in the sequence, the
sequence’s length, and the sequence’s order. It is far more complicated than a 2D image. To
address this complexity, we propose the Multi-View Projection (MVP) method to project
3D palm data onto 2D images from several different views, just like humans observe their
palms. Then, we propose Tiny-MobileNet(TMBNet), which combines advanced feature
fusion and extraction methods. Finally, our experiments show a significant performance
gap compared to the 3D CNN baselines, such as PointNet [5] and PointNet++ [6]. Overall,
our proposed method TMBNet with MVP efficiently addresses the challenges of using
3D palms as a reliable token for an ID recognition system; It achieves better performance
by projecting the 3D palms onto 2D images and combining advanced feature fusion and
extraction methods than the classic 3D models.

2. Related Work
2.1. Overview for Palm Recognition

Previously, using Principal Component Analysis (PCA) to select critical features and
then classify them by Support Vector Machine (SVM) was the common method; There are
works of literature proposing the variants of PCA; For example, ref. [7] proposed the Gabor
Wavelet with PCA to represent the 2D palms images; ref. [8] proposed the QPCA that is
a multispectral version of PCA. Later, with the rapid development of deep learning, the
literature [9] first used AlexNet to identify palms; some researchers focus on proposed new
loss function [10,11], and they improve the performance of CNN at their time; there are
some studies [12,13] presents the synthesized algorithm that combines palms data with
other prior knowledge.

2.2. Overview of 3D Convolution Neural Networks

Today, some benchmark [14] for palm recognition is the form of point clouds, and in
recent years, there has been much work to build a 3D CNN for 3D point clouds [5,15–17].
PointNet [5], and its derivative [6] are essential baselines in these 3D models. PointNet
uses the symmetric function to solve the disorder caused by 3D point clouds and uses
Multilayer Perceptrons (MLP) to extract high-level features; They propose a matrix network
T-Net to attach at the beginning of the model for realignment features. When the input
point clouds are aligned, sorted, and extracted, it goes through a Global Average Pooling
(GAP) layer to get the final prediction. PointNet is a cornerstone for 3D point clouds, and
after that, many studies have proposed novel methods based on it. Pointnet++ [6] has
improved considerable performance through their designed local neighborhood sampling
representation method and multi-level encoder-decoder combined network structure based
on PointNet. Although these 3D CNNs have considerable performance, they are naturally
more complex than 2D CNNs because of the negative properties of 3D point clouds, such
as disorder and etc. In practice, the 3D CNNs hard to converge when training data is
too few, so applying 3D data augmentation has become an often idea [18–20]. However,
there is some trouble because these methods usually rely on point matching, which causes
much computation.

2.3. Overview of 2D Convolution Neural Networks

The literature [21] uses AlexNet, VGG-16, GoogLeNet, and ResNet-50 to reach more
impressive results than traditional methods in palm recognition tasks. In other words,
they have been proven these classic 2D CNNs can achieve robust performance, such as
VGG, ResNet, DenseNet, MobileNet, EffencienNet, and others. VGG [1] opened the era
of widespread use of convolution layer with kernel size three by three. ResNet [2] pro-
poses a skip connection to solve the problem, which is a nonlinear function to fit the
identity function. DenseNet [3] chooses another way to achieve this purpose. They gen-
erate a few channels through a single convolution layer and then continue concatenating
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them to increase the channel gradually. They believe that they can pass features directly
than skip connection. MobileNet [22] proposes the separable convolution to approximate
convolution-3 × 3. They used it to build a lightweight CNN backbone with fewer parame-
ters and low FLOPs than the other CNN backbone. MobileNetv2 [23] found that when the
channel size is too small, adequate information will be lost because of dead cells due to
ReLU [24]. To address it, they propose the Inverted Residual Block (IRB), which consists
of a pointwise convolution (equal to convolution-1 × 1) and a separable convolution. The
first pointwise convolution of IRB is designed to expand the channel for more redundancy
to overcome the information lost. EfficienNet [4] built from NAS [25] technique proposes a
comprehensive scale model from B0 to B7, no matter which scale is the leader at that time.

2.4. Projection Methods

As we just talked about, because of the harmful properties of 3D point clouds, there
are studies proposing the projection method to project the 3D point clouds to the 2D
data for reducing complexity. Some of them directly project the 3D point clouds into an
image [15,26,27], and some methods convert it to Volume Pixel format [28]. The litera-
ture [26] has a conclusion that the collection of 2D images with different views can be
highly informative for 3D shape recognition; the literature [27] hand over multiple groups
of 2D images with different views to the learnable CNN to further strengthen the extracted
features. Overall, in addition to directly processing the 3D point clouds as input of the
model, it is also possible to project 3D point clouds to 2D format. However, dimensionality
reduction will inevitably bring information loss. How to reduce the loss and maintain the
richness of data is the main problem in this field.

3. Proposed Approaches

Preprocessing the 3D palm point clouds is difficult as they come with negative at-
tributes such as disorder, scattered, and inconsistent data points. These attributes make it
challenging to extract meaningful features for classification purposes. To address this issue,
we propose a solution that involves projecting 3D plam to 2D images, simplifying the 3D
point clouds by reducing their dimensionality. However, reducing the dimensionality of
the 3D data may result in the loss of information that is essential for accurate classification.
To address this issue, we propose a novel approach called Multi-View Projection (MVP).
MVP aims to project the 3D palms into 2D images by imitating humans on how to view
their palms. MVP enhances CNN’s performance by generating robust augmented data
from multiple views. We then propose a lightweight 2D CNN called TMBNet to reduce
complexity further. TMBNet combines various advanced lightweight concepts based on
MobileNetv2 [23], GhostNet [29], and Res2Net [30]. It has fewer layers and FLOPs than
other models, making it more efficient and effective for processing large amounts of data.
In summary, by employing MVP and TMBNet, our proposed method can achieve superior
classification performance compared to existing 3D CNN.

3.1. Basic Projection (BP)

The Basic Projection method provides a simple and intuitive way to project 3D data
onto a 2D plane for easy visualization and comparison during the experiment phase. This
method involves a series of steps, starting with the min-max normalization of every point
along the Z-axis to ensure that all values are within the same range. Next, the normalized
Z-values are averaged to obtain an XY plane with a single representative value. This process
is illustrated in Equation (1). Using the Basic Projection method, we can obtain a gray-scale
image that comprehensively represents the 3D data. The BP method serves as a baseline
in our research and allows us to compare the performance of our proposed Multi-View
Projection (MVP) method with a straightforward and intuitive approach. In Figure 1, we
provide two projected images by BP to show the effectiveness of this method. However,
the BP method suffers from some drawbacks, such as the loss of valuable information and
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the inability to capture the object’s depth. This motivates us to propose the MVP method to
address these issues.

NZi =
Zi −Min(Z)

Max(Z)−Min(Z)
, Zc =

∑k
i=1 NZc

i
k

(1)

Figure 1. The above images are original 3D point clouds on PolyU-CHFD, and the bottom images are
projected by Basic Projection (BP).

3.2. Multi-View Projection (MVP)

Multi-View Projection (MVP) is a powerful approach that simulates how humans
view their palms from different angles to generate a wide range of images. The goal of
MVP is to capture a comprehensive range of views and perspectives of the palm, which
is difficult to achieve with other projection methods. By generating a large number of
images from 3D point clouds of the palm, MVP enhances the robustness of 2D CNNs
by introducing a greater degree of image diversity. To achieve this, the MVP process is
broken down into three key steps: rotation, affine, and shear. Rotation involves rotating the
palm around the y-axis at different angles, which simulates the human’s natural viewing
behavior. Affine transformation is applied to adjust the scale, orientation, and shape of the
projected image to match the human palm’s characteristics. Finally, shear transformation is
used to correct the distortion of the image due to rotation and affine transformation. The
MVP approach not only provides a more robust and accurate method for extracting various
palm features but also offers a more intuitive and realistic method for simulating human
vision. By incorporating multiple views and perspectives, MVP improves the classification
performance, as demonstrated in our experiments. Figure 2 showcases three projected
images by MVP, demonstrating the diversity and richness of the generated images.
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Figure 2. The above images are projected by Basic Projection (BP), and bottom images are projected
by Multi-View Projection (MVP).

3.2.1. Rotation and Affine on XY Plane

To achieve a more efficient and structured approach for exploring the possible views of
the palm, we utilize rotation and affine on the XY plane in our MVP process. The approach
is aimed at converting the exhaustive view process into a spatial shift on the XY plane,
thereby reducing the computational time and storage space required for the MVP process.
To achieve this, we first set a range of plus or minus ten percent for affine and a range of
plus or minus ten degrees for rotation. We then randomly apply affine and rotation to the
image within the set range. This ensures that we can explore a comprehensive range of
views while still keeping the process manageable and efficient. The use of affine in the
MVP process is particularly effective in accounting for the varying distances between the
palm and the camera in real-life scenarios. It allows for adjustments to be made to the size
and orientation of the palm image, ensuring that the model can capture a wide range of
perspectives and variations in the palm’s appearance. Furthermore, the use of rotation
in the MVP process enables us to capture different orientations of the palm, including
rotations along the X, Y, and Z axes. This allows the model to capture variations in the
palm’s shape, texture, and features from different angles, providing a more comprehensive
and robust dataset for training CNN. Overall, the use of rotation and affine on the XY
plane is a critical component of our MVP approach, as it allows us to efficiently explore
a comprehensive range of views while still capturing a wide range of variations in the
palm’s appearance.

3.2.2. Shear on X Axis and Y Axis

After applying spatial shift through random affine and rotation, the next step in the
MVP process is shearing to mimic the angle of view of a human observer. Shearing involves
distorting the 2D image along the X and Y axes to create the illusion of viewing the palm
from a different angle. To shear the image along the X-axis, a random shear matrix Tx(θ) is
generated as shown in Equation (2).

Tx(θ) =

[
1 tan(θ) 0
0 1 0

]
(2)

Once the matrix Tx(θ) is generated, it is multiplied with the transformed image to
create a distorted image that simulates the effect of viewing the palm from a different angle.
The degree of distortion along the X-axis is controlled by the θ parameter, which specifies
the degree of shearing to be applied. Similarly, a shear matrix Ty(φ) is generated along the



Information 2023, 14, 381 6 of 13

Y axis as shown in Equation (3), and is multiplied with the transformed image by Tx(θ).
The degree of distortion along the Y-axis is controlled by the φ parameter, which specifies
the degree of shearing to be applied. The degree of distortion along both the X and Y axes
is randomly selected within a set range. Through these steps, MVP can generate a diverse
and comprehensive set of images that accurately capture the palm’s many different angles
and perspectives. By using shearing to mimic the angle of view of a human observer, MVP
can produce images that are more realistic and useful for various applications.

Ty(φ) =

[
1 0 0

tan(φ) 1 0

]
(3)

3.2.3. Primary Experiment for MVP

The experiment conducted to explore the capability of MVP involved training two
classic 2D CNNs, VGG-16 and MobileNetv2, with both Basic Projection and MVP tech-
niques. VGG-16 and MobileNetv2 represent the heavy but powerful type and the light but
moderate type, respectively. The experiment results, as shown in Table 1, demonstrate that
both VGG-16 and MobileNetv2 models achieve considerable gains by using MVP. Note that
the accuracy indicates the correct rate of the prediction of the model in the PolyU-CHFD
test set of 114 palm images compared with the ground truth. Interestingly, the gap between
the two models based on Basic Projection is larger than between those based on MVP. This
suggests that the effectiveness of MVP is remarkable and can significantly improve the
performance of both heavy and light models. Furthermore, the experiment shows that with
MVP, it is possible to build a lighter CNN than MobileNetv2 while still achieving similar
performance. This indicates that MVP improves the performance of existing models and
enables the development of more lightweight models that can save computation resources.
Overall, the experiment provides strong evidence to support the effectiveness of MVP in
enhancing the performance of 2D CNN CNNs and highlights its potential for enabling the
development of more efficient and lightweight models in the future.

Table 1. The Comparison of Basic Projection and MVP on two classic 2D CNNs.

Accuracy MFLOPs

VGG-16 w/BP 74.85 15,670
VGG-16 w/MVP 98.82 15,670

MobileNetv2 w/BP 64.89 290
MobileNetv2 w/MVP 97.95 290

3.3. Tiny-MobileNet (TMBNet)

TMBNet is a newly proposed lightweight 2D CNN that is designed to be simpler
and lighter in architecture, the overview as shown in Figure 3. It consists of a single layer
of convolution-3 × 3 as the stem, five Light Inverted Residual Blocks (LIRB) to extract
high-level features, and five pooling layers to downsample the image. Finally, the extracted
features go through a fully connected layer to obtain the prediction. The LIRBs used in
TMBNet are inspired by the inverted residual structure proposed in MobileNetv2. Each
LIRB consists of a 1 × 1 convolution layer, a depthwise separable convolution layer, and
another 1 × 1 convolution layer. Batch normalization and ReLU activation functions are
also applied after each layer. The output of the first 1 × 1 convolution layer is channel-
expanded before being fed into the depthwise separable convolution layer to enhance the
network’s representation ability. TMBNet’s architecture is simpler and lighter compared to
other 2D CNNs. The number of layers is reduced, and the size of each layer is optimized for
efficient computation. The downsampling operation is also performed by pooling layers,
which further reduces the computational cost. The smaller architecture of TMBNet results
in a significant reduction in FLOPs (Floating Point Operations) compared to other models,
which means it can achieve similar accuracy with much fewer computations. Table 2 shows
the details of shape and channel. TMBNet’s simplicity and efficiency make it an excellent
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candidate for applications with limited computational resources, such as edge devices and
mobile devices. In the following sections, we will discuss the details of LIRB and analyze
the FLOPs of TMBNet and other methods for objective comparison.

Figure 3. The architecture of Tiny-MobilNet (TMBNet). LIRB represents the proposed Light Inverted
Residual Block, GAP means Global Average Pooling.

Table 2. The detail of TMBNet. Down Sampling indicates the downsampling rate of the input shape.

Input Shape Layer Output Channel Down Sampling

224 × 224 Input 3 1

224 × 224 Conv-3 × 3 16 2

112 × 112 LIRB 32 1

112 × 112 Max Pool 32 2

64 × 64 LIRB 64 1

64 × 64 Max Pool 64 2

32 × 32 LIRB 128 1

32 × 32 Max Pool 128 2

16 × 16 LIRB 256 1

16 × 16 Max Pool 256 2

8 × 8 LIRB 512 1

8 × 8 Global Average Pool 512 global

1 × 1 FC 114 1

1 × 1 Output 114 1

3.3.1. Light Inverted Residual Block (LIRB)

The proposed Light Inverted Residual Block (LIRB) is a novel concept introduced
in TMBNet. It is designed based on the Inverted Residual Block (IRB) proposed in Mo-
bileNetv2 and utilizes the Res2Net concept for channel expansion. LIRB is designed to be
even more lightweight and faster than MobileNetv2 by stacking three layers of depthwise
convolutions for channel expansion instead of using pointwise convolution. One unique
feature of LIRB is the concept of Ghost mimics. This technique splits the required output
channels into two halves. One half is generated by the Expansion Block and Separable
Convolution, and the other half is generated by a simple linear transformation. These two
halves are then concatenated together to form the final output channels. This technique
helps to reduce computation while maintaining accuracy. Figure 4 illustrates the architec-
ture of LIRB, which consists of a depthwise convolution layer, an Expansion Block, and a
Separable Convolution layer. The Expansion Block expands the number of input channels,
and the Separable Convolution layer performs a depthwise convolution followed by a
pointwise convolution to produce the final output channels. The depthwise convolution
layer is composed of three layers of depthwise convolutions for channel expansion, as
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mentioned earlier. To summarize, LIRB is a lightweight block that uses Res2Net for channel
expansion and Ghost mimic for reducing computation while maintaining accuracy.

FLOPslirb = 3× (H′ ×W ′ × 9× C) + (H′ ×W ′ × 9× 3C)

+ (H′ ×W ′ × 3C× 0.5C′) + (H′ ×W ′ × 9× 0.5C′)

+ (H′ ×W ′ × C× 0.5C′)

FLOPsinvrtrb = (H′ ×W ′ × C× 2C) + (H′ ×W ′ × 9× 2C)

+ (H′ ×W ′ × 2C× C′)

Let C =C′, then
FLOPsinvrtrb

FLOPslirb
=

4C2 + 18C
1.5C2 + 58.5C

' 2.66667

(4)

Figure 4. The architecture of Light Inverted Residual Block (LIRB). PWConv represents the pointwise
convolution (or convolution-1 × 1), DWConv represents depthwise convolution, and Ghost Mimic
means the cheap operation for linear mapping.

3.3.2. Analysis of FLOPs

Floating-point operations (FLOPs) is an important metric for measuring the compu-
tational complexity of a neural network. In this section, we will analyze the FLOPs of
TMBNet. First, we analyzed the FLOPs of IRB the building blocks of MobileNetv2, and
FLOPs of LIRB the building blocks of TMBNet. The results, shown in Equation (4), indicate
that the FLOPs of LIRB are significantly lower than those of IRB, especially when the
input and output channels are the same. This suggests that LIRB is more computationally
efficient than IRB. Next, we compared the FLOPs of TMBNet with those of MobileNetv2
and VGG-16, as shown in Table 1. The results clearly demonstrate that TMBNet has signifi-
cantly fewer FLOPs than both MobileNetv2 and VGG-16. For instance, when compared to
MobileNetv2, TMBNet has 5.5 times fewer FLOPs. This means that TMBNet can perform
the same amount of computation with much fewer operations, making it a much faster
and more efficient model. In short, our FLOPs analysis shows that TMBNet is a highly
efficient and lightweight model, with significantly fewer computational requirements than
other popular models. This makes it an ideal choice for applications where computational
resources are limited or speed is critical.
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4. Experiments
4.1. PolyU-3D Contact-Free Hand Dataset (PolyU-CFHD)

The PolyU-3D Contact-Free Hand Dataset (PolyU-CFHD), proposed by the Hong Kong
Polytechnic University [14], is a valuable resource for evaluating hand pose estimation
algorithms. This dataset contains 570 hand data samples from 114 individuals, each with
five palm images. Each hand data sample contains tens of thousands of points, with each
point’s X, Y, and Z coordinates representing its position in 3D space. As shown in Figure 5,
the dataset’s hand data samples have complex shapes and varied hand poses. To ensure a
balanced distribution of data, we randomly selected 80% and 20% of the five images per
single person for the training and testing sets, respectively. This resulted in a training set
of 456 images and a testing set of 114 images. All accuracy measurements in this paper
were computed using the test set of PolyU-CFHD. The visualization of 3D point clouds on
PolyU-CFHD shown in Figure 5 highlights the complexity and diversity of the hand poses
in this dataset.

Figure 5. The original point clouds data in PolyU-CFHD. It contains 114 people, and each has five 3D
point clouds palm data. We randomly split it into four for training and one for testing.

4.2. Classic 2D CNNs with MVP

In this section, we present the results of our experiments using MVP to improve the
performance of several classic 2D CNN CNNs. To establish a baseline, we trained these
CNNs using 2D images projected by Basic Projection. The purpose of this experiment
was to compare the underlying capabilities of these CNNs with different computational
complexities. As shown in the upper half of Table 3, we used heavy models like VGG-
16 and ResNet-50 and lighter models like EfficienNet-B0 and MobileNetv2. The results
indicate that the more complex and larger networks tend to perform better on PolyU-
CFHD. For instance, VGG-16 and ResNet-50 achieved higher accuracy than EfficientNet-B0
and MobileNetv2, with accuracy gaps as high as 17% in some cases. To evaluate the
effectiveness of MVP, we retrained these four CNNs using MVP. The lower half of Table 3
shows the performance improvement achieved by MVP. As we can see, the CNNs using
MVP outperformed their counterparts without MVP by a significant margin, demonstrating
that MVP is effective in reducing the feature loss caused by 3D point clouds to the 2D
image. Note that accuracy refers to how correct the model’s predictions are to the ground
truth on the 114 test images. It also means that how powerful of model can predict the
correct one from 114 possible individuals for the input of a palm data.
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Table 3. The Comparison of PolyU-CFHD using BP and MVP, including four classical 2D CNN
models and our TMBNet. The above part of the models are the results using BP, and the bottom part
of the models are the results using MVP.

Accuracy MFLOPs

VGG-16 74.85 15,670
ResNet-50 72.61 3608

EfficientNet-B0 57.27 372
MobileNetv2 64.89 290

TMBNet 61.40 95

VGG-16 w/MVP 98.82 15,670
ResNet-50 w/MVP 98.53 3608

EfficientNet-B0 w/MVP 97.66 372
MobileNetv2 w/MVP 97.95 290

TMBNet w/MVP 95.61 95

4.3. Leave-One-Out Comparison of TMBNet

To further validate the robustness of 2D CNNs with the proposed MVP, we conducted
ten independent experiments, each involving the random allocation of training and testing
sets in a 4:1 ratio. In other words, out of the 114 individuals, only one image per person (out
of a set of five) was retained as a testing sample, while the remaining four images were used
for training purposes. Table 4 shows the results, where the mean accuracy represents the
average accuracy across the ten independent experiments, the min accuracy represents the
lowest accuracy achieved, and the max accuracy represents the highest accuracy achieved.
We can observe that regardless of using VGG, ResNet, or our proposed TMBNet, both the
min accuracy and max accuracy exhibit remarkable stability. This once again confirms
the efficacy of our proposed MVP method in preserving the information lost during the
transformation from 3D palm projects to 2D images, and in enhancing the performance of
2D CNNs as simpler classifiers.

Table 4. The leave-one-out comparison of classic 2D CNNs and TMBNet, all trained with the
proposed MVP. The mean accuracy is the average result of ten runs.

Mean Accuracy Min Accuracy Max Accuracy

VGG-16 98.78 97.60 99.33
ResNet-50 98.38 97.15 98.96

EfficientNet-B0 97.17 95.13 98.64
MobileNetv2 97.25 95.37 98.81

TMBNet 96.49 94.92 97.25

4.4. Comparison of TMBNet with 3D Baselines

We have already demonstrated the effectiveness of MVP in the 2D classic model
experiments; now, we want to examine whether TMBNet w/MVP surpasses the 3D baseline.
We use PointNet and PointNet++ as our baseline, the widely used 3D CNN models, and
we compare their performance with our proposed TMBNet w/MVP. As shown in Table 5,
we first find that PointNet++ beat PointNet by a minor margin; this phenomenon deserves
our attention because the performance of PointNet++ surpassed PointNet on various
large datasets by a significant margin in their studies. Considering the PolyU-CFHD is
a small, single-class, palm-only dataset, it has more limitations of feature richness than
other large datasets. So we believe that improving the performance cannot only rely on
the feature extraction ability from models but should use multiple views to enhance the
feature richness of single palm as MVP does. In short, instead of using a strong 3D extractor
such as PointNet or PointNet++, it is better to use MVP to enhance the feature richness
of a single palm and use the more simpler 2D CNNs. Then we can see that the proposed
TMBNet w/MVP achieves 2.35% to 2.71% higher accuracy and 4.6 to 17.7× fewer FLOPs
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than baseline. This comparison shows the potential benefits of using 2D CNN CNNs
with MVP to handle 3D point cloud data rather than relying on traditional 3D CNNs.
Moreover, it demonstrates that the proposed MVP avoids the negative properties of the
3D palms in 2D image form and enables a straightforward model like TMBNet to achieve
significant accuracy with tiny FLOPs. This result is particularly relevant for real-world
applications where computational resources are limited and there is a need for efficient and
effective models. Additionally, it opens up possibilities for using MVP in other types of 2D
CNN CNNs for handling 3D palms data, potentially leading to more efficient and accurate
models. Overall, the comparison between TMBNet w/MVP and PointNet confirms the
advantages of our proposed method and highlights its potential for practical use in various
applications.

Table 5. The comparison of PointNet and TMBNet with different input scales.

Input Shape Accuracy MFLOPs

PointNet - 92.90 440
PointNet++ - 93.26 1680

TMBNet w/MVP 224 × 224 95.61 95
TMBNet w/MVP 160 × 160 94.28 48
TMBNet w/MVP 120 × 120 93.47 26

4.5. Input Shape Reduction for More Smaller TMBNet

To explore the possibility of making TMBNet even more minor, we conducted exper-
iments to reduce its input image size. This approach can sacrifice some accuracy while
achieving even fewer FLOPs. The initial TMBNet model used a 224× 224 input size. We
reduced this input size to 160× 160 and 120× 120. Then training and testing the new
models on the PolyU-CFHD dataset. As shown in Table 5, the accuracy of the 160× 160
version decreased slightly to 94.28% compared to the initial model’s accuracy of 95.61%, but
it only required 48 MFLOPs. Furthermore, the 120× 120 version achieved an accuracy of
93.47% with ultra-lightweight computation of 26 MFLOPs. Even though the accuracy of the
120× 120 version is lower than the initial model, it still outperforms PointNet’s accuracy of
92.90% with significantly fewer FLOPs. These results suggest that it is possible to reduce
the input image size of TMBNet while still achieving high accuracy. Such a reduction can
significantly reduce the computational complexity of the model, making it more suitable
for resource-constrained environments. The experiments also demonstrate the effectiveness
of our MVP method in reducing the feature loss caused by 3D point clouds, enabling a
lightweight model like TMBNet to achieve high accuracy.

5. Conclusions

This paper has proposed a novel Multi-View Projection (MVP) method for enhancing
the performance of 2D CNNs in human palms recognition tasks; MVP imitates human
views on different angles for their palms, which enables the 2D CNNs to achieve signif-
icant accuracy with the weaker data type (2D images) than the more vital data type (3D
point clouds). The experimental results have demonstrated the efficacy of MVP in various
experiments on popular 2D CNNs, including VGG, ResNet, EfficientNet, and MobileNetv2,
where the models get considerable improvement with MVP. Inspired by the success of
MVP, we further proposed a more lightweight 2D CNN, Tiny-MobileNet (TMBNet), which
performs impressive results on the human palms benchmark. TMBNet achieved a high
accuracy of 95.61% with only 95 MFLOPs, surpassing the 3D baseline PointNet and Point-
Net++ with 2.35% to 2.71% accuracy margin while utilizing only a quarter of PointNet’s
computational complexity. Furthermore, we have explored the possibility of further reduc-
ing the input image size of TMBNet, where the ultra-lightweight version with an input
size of 120 × 120 achieved an accuracy of 93.47% with only 6% of PointNet’s FLOPs. Our
research demonstrates the extremely lightweight TMBNet with MVP reaches high accuracy
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with much fewer computational resources than classic 3D methods in human palms recog-
nition tasks, which makes the proposed methods suitable for resource-limited devices and
real-time ID recognition systems. We believe our work can inspire further research in ID
recognition based on human palms and promote the development of lightweight models
for practical use.
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The following abbreviations are used in this manuscript:

TMBNet Tiny-MobileNet
IRB Inverted Residual Block
LIRB Light Inverted Residual Block
MVP Multi-View Projection
BP Basic Projection
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PCA Principal Component Analysis
SVM Support Vector Machine
GAP Global Average Pooling
FLOPs floating-point operations
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