
Citation: Ahmed, A.; Bader, M.;

Shahin, I.; Nassif, A.B.; Werghi, N.;

Basel, M. Arabic Mispronunciation

Recognition System Using LSTM

Network. Information 2023, 14, 413.

https://doi.org/10.3390/info14070413

Academic Editor: Katsuhide Fujita

Received: 27 April 2023

Revised: 13 July 2023

Accepted: 14 July 2023

Published: 16 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Article

Arabic Mispronunciation Recognition System Using LSTM Network
Abdelfatah Ahmed 1,*, Mohamed Bader 2, Ismail Shahin 2 , Ali Bou Nassif 3 , Naoufel Werghi 1

and Mohammad Basel 3

1 Department of Electrical and Computer Engineering, Khalifa University of Science Technology and Research,
Abu Dhabi 127788, United Arab Emirates

2 Department of Electrical Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
3 Department of Computer Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
* Correspondence: 100059689@ku.ac.ae

Abstract: The Arabic language has always been an immense source of attraction to various people
from different ethnicities by virtue of the significant linguistic legacy that it possesses. Consequently,
a multitude of people from all over the world are yearning to learn it. However, people from different
mother tongues and cultural backgrounds might experience some hardships regarding articulation
due to the absence of some particular letters only available in the Arabic language, which could
hinder the learning process. As a result, a speaker-independent and text-dependent efficient system
that aims to detect articulation disorders was implemented. In the proposed system, we emphasize
the prominence of “speech signal processing” in diagnosing Arabic mispronunciation using the
Mel-frequency cepstral coefficients (MFCCs) as the optimum extracted features. In addition, long
short-term memory (LSTM) was also utilized for the classification process. Furthermore, the analytical
framework was incorporated with a gender recognition model to perform two-level classification.
Our results show that the LSTM network significantly enhances mispronunciation detection along
with gender recognition. The LSTM models attained an average accuracy of 81.52% in the proposed
system, reflecting a high performance compared to previous mispronunciation detection systems.

Keywords: artificial intelligence; deep learning; long short-term memory; Mel-frequency cepstral
coefficients; pronunciation error; recurrent neural network

1. Introduction

The widespread use of CALL (computer-assisted language learning) systems attests
to their success in helping people improve their language and speech skills. CALL is
predominantly concerned with addressing pronunciation errors in non-native speakers’
speech. Accurate mispronunciation detection, voice recognition, and accurate pronunci-
ation evaluation are all activities that may be accomplished with CALL. Similarly, there
are a plethora of studies on speech processing that have been implemented in numerous
languages with the aim of facilitating language learning. Breakthroughs in AI and other
areas of computer science have permitted extensive study of CALL. Due to the inability
of their mouth muscles to articulate the intricacies of a particular language, speakers of
different languages are prone to committing pronunciation problems while speaking a
particular language. For this reason, academics often explore mispronunciation in English,
Dutch, and French, while Arabic literary studies are scarce. However, Arabic studies
have increased in recent years. Arabic, the most widely spoken language with approxi-
mately 290 million native speakers and 132 million non-native speakers, and one of the
six official languages of the United Nations (UN), has two major dialects, Classical Arabic
(CA) and Modern Standard Arabic (MSA). Classical Arabic is the language of the Quran,
whereas Modern Standard Arabic is a modified form of the Quran used in daily conver-
sation. In order to retain the right meaning of the phrases, the rules for pronouncing
the Quranic language are quite well-defined. This study emphasizes the recognition of

Information 2023, 14, 413. https://doi.org/10.3390/info14070413 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info14070413
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0001-7856-9342
https://orcid.org/0000-0003-1570-0897
https://doi.org/10.3390/info14070413
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info14070413?type=check_update&version=2

Information 2023, 14, 413 2 of 20

incorrect pronunciations of Arabic letters [1]. In addition, there is a distinction between
letters and sounds; sounds are pronounced and formed with our articulators, while letters
are written by the individual. As a result, we gathered the most mispronounced Arabic
phonemes from various speech pathologists; these phonemes will be represented as letters.
Table 1 illustrates the most mispronounced Arabic letters in the field of pronunciation.
Therefore, the effect of employing long short-term memory as a classifier blended with
Mel-frequency cepstral coefficients as the feature extractor is observed. The LSTM network
is well suited for speech recognition due to its ability to model the complex temporal rela-
tionships in speech signals, adapt to variations in the input data, and handle sequences of
variable lengths.

Table 1. Most common disordered Arabic letters.

No. Arabic Letter Phonetic Symbol

1 � /s/

2 P /r/

3 �
� /q/

4 h. /Z/

5 ¼ /k/

6 p /x/

7 	
¨ /G/

8 	
� /d/

9 h /h. /

10 � /S. /

11 /·/

12 	
 /∂/

13 	
X /ð/

Despite the advancements in existing research, to our knowledge, no studies address
the classification of pronunciation errors in conjunction with the gender of the speaker.
This lack of gender-based analysis in Arabic mispronunciation recognition creates a critical
gap in our understanding and the effectiveness of language learning systems. Motivated
by this, our study proposes a two-level detection framework that can identify both mis-
pronunciation and the speaker’s gender. This focus is particularly crucial considering
the potential influence of gender on pronunciation and the resultant implications for per-
sonalized language learning approaches. By leveraging the capabilities of deep learning,
specifically long short-term memory (LSTM) networks, we aim to improve the accuracy
and robustness of mispronunciation recognition systems, thus contributing to the evolution
of computer-assisted language learning (CALL) systems.

The substantial contributions of the exhibited framework are presented as follows:

• A two-stage diagnostic system for recognizing the mispronunciation of Arabic letters
using MFCC features and the LSTM model was implemented.

• To the best of our knowledge, this is the first attempt to recognize both mispronuncia-
tion and the gender of the speaker through two-level classification.

• The first benchmark for mispronunciation prediction for both native and non-native
Arabic speakers is provided in the paper.

• Grid search was utilized for the proposed framework to identify the optimum
model hyperparameters.

Information 2023, 14, 413 3 of 20

• Empirical analysis was conducted to investigate the impact of speech features on the
mispronunciation recognition system.

2. Literature Review

Numerous mispronunciation detection and diagnosis (MD&D) research methods
attempt to utilize both auditory and linguistic input elements. However, the absence
of a substantial quantity of annotated training data at the phoneme level constrains the
improvement of performance. Recent advancements in speech recognition, such as the LAS-
Transformer, which is an enhanced Transformer based on the Local Attention Mechanism,
suggest potential applications in improving mispronunciation detection by utilizing more
advanced attention mechanisms in processing auditory inputs [2]. To construct a more ro-
bust MD&D system, authors combined the embedding properties of acoustic, phonetic, and
linguistic data, abbreviated as APL. In [3], the suggested method has a detection accuracy
of 9.93% higher than the baseline, a diagnosis error rate of 10.13% lower, and an F-measure
of 6.17% higher than the baseline. These results were acquired through experimental work
performed on the L2-ARCTIC database. The authors introduced a phoneme-level MD&D
system that utilizes acoustic embedding (acoustic characteristics), phonetic embedding,
and linguistic embedding (canonical phoneme sequence) as inputs in order to predict
the spoken phoneme sequence. In [4], an acoustic-graphemic phonemic model (AGPM)
utilizing multi-distribution deep neural networks (MD-DNNs) is proposed, whose input
features consist of acoustic data, graphemes, and canonical transcriptions (encoded as
binary vectors). The AGPM is capable of intuitively modeling both grapheme-to-likely-
pronunciation and phoneme-to-likely-pronunciation conversions, which are incorporated
into acoustic modeling. Using the AGPM, in this paper, a unified MDD framework that
functions similarly to freephone recognition is constructed. Experiments indicate that the
proposed technique yields an 11.1% phone error rate (PER). The false rejection rate (FRR),
the false acceptance rate (FAR), and the diagnostic error rate (DER) for MDD are 4.6%,
30.5%, and 13.5%, respectively. While this model showed promising results, it is notable
that it resulted in relatively high false rejection and acceptance rates, indicating room for
improvement in model accuracy.

Computer-aided pronunciation training systems necessitate reliable automated pro-
nunciation error detection techniques to recognize human faults. Yet, the overall number of
mispronounced speech data utilized to train these algorithms and their manual annotation
reliability greatly affect their performance [5]. To resolve this issue, the authors in [5] em-
ployed anomaly detection methods to identify mispronunciation. Their anomaly detection
model was the One-Class SVM, using phoneme-specific models. A bank of binary DNN
speech attribute detectors retrieved manners and locations of articulation for each model.
Multi-task learning and dropout were implemented to reduce DNN speech attribute detec-
tor overfitting. The model was trained using the WSJ0 and TIMIT standard datasets, which
contain solely native English speech data, and then assessed it using three datasets: a native
English speaker corpus with fake mistakes, a foreign-accented speech corpus, and a chil-
dren’s disordered speech corpus. Lastly, the proposed approach was compared to the usual
goodness-of-pronunciation (GOP) algorithm to prove its efficacy. The technique lowered
false-acceptance and false-rejection rates by 26% and 39% compared to the GOP technique.
Furthermore, in [6], the authors presented a speech recognition system capable of detecting
mispronunciations. The dataset contains 89 students, 46 of whom are female. Ten times
28 Arabic phonemes are voiced. MFCCs are retrieved from 890 utterances for modeling
with five different machine-learning models. K nearest neighbor (KNN), support vector
machine (SVM), naive Bayes, multi-layer perceptron (MLP), and random forest (RF) are
some of them. The experimental findings show that the random forest approach achieves
an accuracy rate of 85.02%, which is higher than that of other machine learning models.
Shareef et al. [7] emphasize the extensive comparison of feature extraction algorithms for
the purpose of identifying impaired Arabic speech. The feature extraction approach is
based on several wavelet transformation variants. LSTM and CNN-LSTM models are

Information 2023, 14, 413 4 of 20

built to identify the impairment in Arabic speech. The combination of MFCCs and LSTM
achieves the highest classification accuracy (93%), followed by CNN-LSTM (91%).

Table 2 summarizes the various approaches used in these studies for mispronunciation
detection and diagnosis. However, these studies have largely overlooked the influence of
gender on pronunciation, an aspect that may hold key insights for personalized language
learning. To address these limitations, our paper proposes a two-level detection system that
not only recognizes the mispronunciation of Arabic letters but also identifies the gender of
the speaker. By implementing this dual-level approach, our model aims to provide a more
comprehensive understanding of Arabic pronunciation errors, thus contributing to more
effective personalized language learning strategies.

Table 2. Comparative analysis of different mispronunciation detection and diagnosis methods.

Work Classification Algorithm Data Utilized Performance Metrics Results

Ye et al. [3] Acoustic, Phonetic, and
Linguistic Data Embedding L2-ARCTIC database

Detection Accuracy,
Diagnosis Error Rate,

F-Measure

Accuracy: 9.93%
DER: 10.13%

F-measure: 6.17%

Li et al. [4]

Acoustic-Graphemic
Phonemic Model (AGPM)
Using Multi-Distribution
Deep Neural Networks

(MD-DNNs)

Not specified

Phone Error Rate (PER),
False Rejection Rate

(FRR), False Acceptance
Rate (FAR), Diagnostic

Error Rate (DER)

PER: 11.1%,
FRR: 4.6%,

FAR: 30.5%,
DER: 13.5%

Shahin and
Ahmed [5]

One-Class SVM, DNN
Speech Attribute Detectors

WSJ0 and TIMIT
standard datasets

False-Acceptance Rate,
False-Rejection Rate

Lowered FAR and FRR
by 26% and 39%

compared to the GOP
technique

Arafa et al. [6] Random Forest (RF) 89 students’ Arabic
phoneme utterances Accuracy 85.02%

Shareef and
Al-Irhayim [7]

LSTM and
CNN-LSTM Not specified Classification Accuracy LSTM: 93%,

CNN-LSTM: 91%

The rest of the paper is arranged as follows: Section 3 provides the methodology, which
illustrates the utilized framework. Section 4 presents the experimental setup. Section 5
discusses the experimental results. Section 6 concludes our work.

3. Methodology
3.1. Speech Corpus

Throughout this manuscript, we collected our database since there is no standard
database available that suits our requirements. Our corpus was obtained via the implemen-
tation of two distinctive and prearranged sessions, specifically denoted as the “training”
and “testing” sessions. The first session comprises 30 native Arabic speakers (15 male
and 15 female). This part of the dataset provides us with the correct pronunciation. Each
speaker was asked to utter different Arabic letters and words several times in a neutral
talking condition. The total collected number of utterances used for training was 7800
((30 speakers × 13 letters × 5 repetitions/letter) + (30 speakers × 39 words × 5 repeti-
tions/word)). The letters and words are displayed in Table 3. On the other hand, the testing
session comprises 11 native Arabic speakers and 42 non-native Arabic speakers (23 male
and 29 female). This part of the dataset provides us with correct and incorrect pronuncia-
tion. Individual participants were prompted to enunciate different Arabic letters and words
three times only. The total collected number of utterances that were used for testing was
3120. Our database was recorded by a speech acquisition board using a 16-bit linear coding
A/D converter and sampled at a sampling rate of 44.1 kHz. For noise reflection reduction,
we utilized microphone isolation shield sound absorber foam. Furthermore, Figure 1 il-
lustrates the country distribution of our speakers. As we can see, our dataset comprises

Information 2023, 14, 413 5 of 20

speakers from 17 different countries. Also, Figure 2 shows that the speaker’s age spans 9 to
65 years. Based on the method of acquiring the dataset, our system is speaker-independent
and text-dependent. Furthermore, according to a speech-language therapist, the effective
method of evaluating mispronunciation is by uttering the letter alone and the letter in three
different locations in the word (beginning, middle, and end). It should be noted that this
dataset is utilized to detect only two classes, correct or incorrect pronunciation. Along with
that, it can also be used for gender recognition tasks. Consequently, we proposed a gender
and mispronunciation recognition system.

Table 3. Arabic mispronunciation database.

Letters Word Initial Word Medial Word Final

/Z/h. /Zbl/ ÉJ.k. /nZm/ Ñm.
�

	
' /zwZ/ h. ð 	P

/h. /h /h. bl/ ÉJ.k /lh. m/ ÑmÌ /mlh. / iÊÓ

/x/p /xjmh/ �
éÒJ

	
k /nxl/ É

	
m�

	
' /jdwx/ pðYK

/ð/ 	
X /ðÜb/ I.

K

	
X /Üðhb/ I. ë

	
X@ /mnð/

	
Y

	
JÓ

/r/P /rml/ ÉÓP /brmjl/ ÉJ
ÓQK. /Ümr/ QÓ

@

/s/� /sjf/ 	
J
� /nsf/ 	

�
	
� /jlbs/ ��. ÊK

/S. /� /S. jf/ 	
J
� /bS. l/ É��. /lS. / �Ë

/d/ 	
� /db/ I.

	
� /mdÜ/ úæ

	
�Ó /nbd/ 	

�J.
	
K

/·/ /·jb/ I. J
£ /mn·Üd/ XA¢
	
JÓ /hbw·/ ñJ.ë

/∂/ 	
 /∂l/ É

	
£ /m∂lh/ �

éÊ
	

¢Ó /mlfw∂/ 	
 ñ

	
®ÊÓ

/G/
	

¨ /GÜbh/ �
éK. A

	
« /bbGÜÜ/ ZA

	
ªJ. K. /blG/ 	

©ÊK.

/q/ �
� /qlm/ ÕÎ

�
¯ /lqmh/ �

éÒ
�
®Ë /jtfq/ �

�
	
®

�
JK

/k/¼ /khf/ 	
ê» /mkÜn/ 	

àA¾Ó /djk/ ½K
X

Information 2023, 14, x FOR PEER REVIEW 5 of 20

ing A/D converter and sampled at a sampling rate of 44.1 kHz. For noise reflection reduc-
tion, we utilized microphone isolation shield sound absorber foam. Furthermore, Figure
1 illustrates the country distribution of our speakers. As we can see, our dataset comprises
speakers from 17 different countries. Also, Figure 2 shows that the speaker’s age spans 9
to 65 years. Based on the method of acquiring the dataset, our system is speaker-inde-
pendent and text-dependent. Furthermore, according to a speech-language therapist, the ef-
fective method of evaluating mispronunciation is by uttering the letter alone and the letter
in three different locations in the word (beginning, middle, and end). It should be noted
that this dataset is utilized to detect only two classes, correct or incorrect pronunciation.
Along with that, it can also be used for gender recognition tasks. Consequently, we pro-
posed a gender and mispronunciation recognition system.

Table 3. Arabic mispronunciation database.

Letters Word initial Word medial Word final
/ʒ/ ج /ʒbl/ جبل /nʒm/ نجم /zwʒ/ زوج
/ḥ/ ح /ḥbl/ حبل /lḥm/ لحم /mlḥ/ ملح
/x/ خ /xjmh/ خيمة /nxl/ نخل /jdwx/ يدوخ
/ð/ ذ /ðʡb/ ذئب /ʡðhb/ اذهب /mnð/ منذ
/r/ ر /rml/ رمل /brmjl/ برميل /ʡmr/ أمر
/s/ س /sjf/ سيف /nsf/ نسف /jlbs/ يلبس
/Ṣ/ص /Ṣjf/ صيف /bṢl/ بصل /lṢ/ لص
/d/ ض /db/ ضب /mdʡ/ مضى /nbd/ نبض
/ŧ/ ط /ŧjb/ طيب /mnŧʡd/ منطاد /hbwŧ/ هبوط
 ملفوظ /∂mlfw/ مظلة /m∂lh/ ظل /l∂/ ظ /∂/
/ɣ/ غ /ɣʡbh/ غابة /bbɣʡʡ/ ببغاء /blɣ/ بلغ
/q/ ق /qlm/ قلم /lqmh/ لقمة /jtfq/ يتفق
/k/ ك /khf/ كهف /mkʡn/ مكان /djk/ ديك

Figure 1. Country distribution. Figure 1. Country distribution.

Information 2023, 14, 413 6 of 20Information 2023, 14, x FOR PEER REVIEW 6 of 20

Figure 2. Age distribution.

3.2. Speech Preprocessing
To optimize the efficiency of our analysis, it was deemed necessary to engage in pre-

processing procedures for each captured utterance. Considering this, we utilized the
PRAAT software tool to extract the section of recorded audio that contains speech from
the surrounding silence, as depicted in the graphical illustration provided in Figure 3 [8].
Additionally, it may be postulated that the original speech signal may be symbolized as
x(n), while the cleaned speech signal with the presence of noise can be mathematically
represented by d(n). Thus, the subsequent expression [9] represents the speech signal in
its unprocessed state:

x(n) = s(n) + d(n) (1)

(a)

Figure 2. Age distribution.

3.2. Speech Preprocessing

To optimize the efficiency of our analysis, it was deemed necessary to engage in
preprocessing procedures for each captured utterance. Considering this, we utilized the
PRAAT software tool to extract the section of recorded audio that contains speech from
the surrounding silence, as depicted in the graphical illustration provided in Figure 3 [8].
Additionally, it may be postulated that the original speech signal may be symbolized as
x(n), while the cleaned speech signal with the presence of noise can be mathematically
represented by d(n). Thus, the subsequent expression [9] represents the speech signal in its
unprocessed state:

x(n) = s(n) + d(n) (1)

Information 2023, 14, x FOR PEER REVIEW 6 of 20

Figure 2. Age distribution.

3.2. Speech Preprocessing
To optimize the efficiency of our analysis, it was deemed necessary to engage in pre-

processing procedures for each captured utterance. Considering this, we utilized the
PRAAT software tool to extract the section of recorded audio that contains speech from
the surrounding silence, as depicted in the graphical illustration provided in Figure 3 [8].
Additionally, it may be postulated that the original speech signal may be symbolized as
x(n), while the cleaned speech signal with the presence of noise can be mathematically
represented by d(n). Thus, the subsequent expression [9] represents the speech signal in
its unprocessed state:

x(n) = s(n) + d(n) (1)

(a)

Figure 3. Cont.

Information 2023, 14, 413 7 of 20Information 2023, 14, x FOR PEER REVIEW 7 of 20

(b)

(c)

Figure 3. (a) The original speech signal without removing silence; (b) selecting the part without
silence; (c) the speech signal without silence.

3.3. Proposed Framework
In this work, we proposed a two-level classification to obtain both speaker’s gender

and the pronunciation state. Figure 4 shows the methodology of our proposed framework.
In the proposed design, the collected dataset undergoes the preprocessing phase, where
it gets filtered from all the noises, and all the silence portions are eliminated. Hence, this
process leads to a remarkable increment in the system’s performance. Furthermore, when-
ever the preprocessing is completed, the feature extraction process is initiated, and its de-
termination is essential for enhancing the system’s performance. These extracted features
are fed to the LSTM network through which training and testing are conducted on the
proposed system. Lastly, a fully connected network classifies the gender of the speaker
along with the presence of mispronunciation. The complete description of each block is
specified in the following subsections.

Figure 3. (a) The original speech signal without removing silence; (b) selecting the part without
silence; (c) the speech signal without silence.

3.3. Proposed Framework

In this work, we proposed a two-level classification to obtain both speaker’s gender
and the pronunciation state. Figure 4 shows the methodology of our proposed framework.
In the proposed design, the collected dataset undergoes the preprocessing phase, where
it gets filtered from all the noises, and all the silence portions are eliminated. Hence,
this process leads to a remarkable increment in the system’s performance. Furthermore,
whenever the preprocessing is completed, the feature extraction process is initiated, and
its determination is essential for enhancing the system’s performance. These extracted
features are fed to the LSTM network through which training and testing are conducted on

Information 2023, 14, 413 8 of 20

the proposed system. Lastly, a fully connected network classifies the gender of the speaker
along with the presence of mispronunciation. The complete description of each block is
specified in the following subsections.

Information 2023, 14, x FOR PEER REVIEW 8 of 20

Figure 4. Block diagram of the proposed system.

3.3.1. Recurrent Neural Network (RNN)
Classification is a fundamental mapping of input vectors to a finite set of N classes.

In the context of this research endeavor, we utilized cutting-edge deep neural networks.
These neural networks facilitate the generation of output classes by activating N output
neurons, where the neuron that corresponds to the class of the input vector is character-
ized by an activation value of 1, and all other outputs remain quiescent with an activation
value of 0. As described in [10], this innovative technique is frequently employed in speech
recognition systems to correlate speech frames with phoneme classes. In addition to deep
neural networks, we also explored recurrent neural networks (RNNs), which are a subset
of neural networks used predominantly for predicting future data sequences based on
past data samples. RNNs are proficient in modeling sequence data such as speech and
text. However, the extensive use of RNNs has been limited due to the difficulties posed
by their training processes, which stem from their inability to capture long-term depend-
encies accurately [11,12]. The computation of the output of the recurrent neural network
(RNN) is performed by recursively iterating the following mathematical equations from
time t = 1 to t = T [13]: ℎ௧ = ℋሺ𝑊௫𝑥௧ + 𝑊ℎ௧ିଵ + 𝑏ሻ (2)𝑦௧ = 𝑊௬ℎ௧ + 𝑏௬ (3)

Within the conceptual framework of the recurrent neural network (RNN), x signifies
the input variable, y represents the output sequence, and h denotes the hidden vector se-
quence. Additionally, the architectural integrity of the RNN is founded upon the incorpo-
ration of the weight matrices W and the bias vector b, in conjunction with the underlying
hidden layer function ℋ [13]. The rationale for employing recurrent neural networks
(RNNs) instead of conventional neural networks in speech recognition systems is
grounded in the premise that conventional neural networks presuppose the independence
of inputs and outputs. However, the non-linear temporal dynamics of speech necessitate
a more sophisticated modeling approach. Furthermore, the prediction of every term in a
given sentence requires the inclusion of information pertaining to the previously utilized
terms [14].

3.3.2. Long Short-Term Memory (LSTM)

Figure 4. Block diagram of the proposed system.

3.3.1. Recurrent Neural Network (RNN)

Classification is a fundamental mapping of input vectors to a finite set of N classes.
In the context of this research endeavor, we utilized cutting-edge deep neural networks.
These neural networks facilitate the generation of output classes by activating N output
neurons, where the neuron that corresponds to the class of the input vector is characterized
by an activation value of 1, and all other outputs remain quiescent with an activation value
of 0. As described in [10], this innovative technique is frequently employed in speech
recognition systems to correlate speech frames with phoneme classes. In addition to deep
neural networks, we also explored recurrent neural networks (RNNs), which are a subset
of neural networks used predominantly for predicting future data sequences based on
past data samples. RNNs are proficient in modeling sequence data such as speech and
text. However, the extensive use of RNNs has been limited due to the difficulties posed by
their training processes, which stem from their inability to capture long-term dependencies
accurately [11,12]. The computation of the output of the recurrent neural network (RNN) is
performed by recursively iterating the following mathematical equations from time t = 1 to
t = T [13]:

ht = H(Wxhxt + Whhht−1 + bh) (2)

yt = Whyht + by (3)

Within the conceptual framework of the recurrent neural network (RNN), x signifies
the input variable, y represents the output sequence, and h denotes the hidden vector
sequence. Additionally, the architectural integrity of the RNN is founded upon the incorpo-
ration of the weight matrices W and the bias vector b, in conjunction with the underlying
hidden layer function H [13]. The rationale for employing recurrent neural networks
(RNNs) instead of conventional neural networks in speech recognition systems is grounded
in the premise that conventional neural networks presuppose the independence of in-
puts and outputs. However, the non-linear temporal dynamics of speech necessitate a
more sophisticated modeling approach. Furthermore, the prediction of every term in a
given sentence requires the inclusion of information pertaining to the previously utilized
terms [14].

Information 2023, 14, 413 9 of 20

3.3.2. Long Short-Term Memory (LSTM)

The long short-term memory (LSTM) architecture exhibits the ability to retain data
information over prolonged time intervals while simultaneously facilitating the retrieval
of previously stored information. Furthermore, with regard to the specific LSTM variant
utilized within our system, the canonical representation of an individual LSTM cell unit
can be mathematically articulated through the following set of equations [13]:

ft = σ
(

W f [ht−1, xt] + b f

)
(4)

it = σ(Wi[ht−1, xt] + bi) (5)

C̃t = tanh(WC[ht−1, xt] + bC) (6)

Ct = ft × Ct−1 + it × C̃t (7)

ot = σ(Wo[ht−1, xt] + bo) (8)

ht = ot × tanh(Ct) (9)

The formulation of a single long short-term memory (LSTM) cell unit involves the
integration of several components, specifically the forget gate (f), input gate (i), output gate (o),
new memory cell content (C̃), memory cell content (C), and the sigmoid function (σ). The
sigmoid function is instrumental in the generation of three gates within the memory cell,
while the hyperbolic tangent function (tanh) serves to augment the memory cell output, as
expounded upon in reference [13]. Each LSTM block comprises a memory cell and three
distinct gate units, namely the input gate, output gate, and forget gate, which regulate
the memory block’s functionality. The forget gate serves to reset the cell variable, thus
expunging stored input Ct from memory, whereas the input and output gates facilitate the
input of data from the feature vector x_t and the output of data to ht, respectively. As a
consequence, the network is capable of retaining input data over prolonged time intervals
and leveraging an acquired amount of long-range temporal context, thereby enhancing its
self-learning capabilities [15].

3.3.3. Feature Extraction

Speech features refer to the numerous parameters encapsulated within sound waves
and serve as fundamental inputs for speech-processing algorithms. The accurate determi-
nation and normalization of these parameters are pivotal steps that heavily influence the
efficacy of the system. Normalization ensures that all our features maintain a consistent
scale, minimizing potential bias and aiding the model’s learning process. Within the context
of the present study, the following categories of features were extracted:

• Zero-crossing rate (ZCR): These features embody the number of times the sound
signal transitions from positive to negative and vice versa, thereby providing insight
into the temporal characteristics of the signal. The zero-crossing rate (ZCR) is a crucial
indicator of the dominant frequency component of the signal, which serves as a crucial
determinant in the appraisal of the signal’s acoustic properties [9,11,16].

• Mel-frequency cepstral coefficients (MFCCs): The Mel-frequency cepstral coeffi-
cients (MFCCs) constitute an inherent feature that is widely utilized in the fields
of speaker and emotion recognition. This is attributable to the high-level representa-
tion of human auditory perception that MFCCs afford, thus rendering them a critical
component in the assessment of acoustic properties [17–20]. The computation of
MFCCs necessitates the utilization of a psychoacoustical-motivated filter bank, which

Information 2023, 14, 413 10 of 20

is subsequently followed by logarithmic compression and discrete cosine transform
(DCT) techniques. The MFCCs are calculated based on the following formula [21,22]:

C(n) = ∑M
m=1[log Y(m)] cos

[
πn
M

(
m− 1

2

)]
(10)

In the given formula, Y(m) represents the output obtained from the M-channel filter
bank, where the index “m” indicates the specific filter. Additionally, the cepstral
coefficient index is indicated by “n”, and it plays a crucial role in the calculation
of MFCCs.

• ∆MFCC: MFCC’s first-order time derivative. This expression is utilized for calculating
differential coefficients [11,23]:

Dt =
∑N

n=1 n(ct+n − ct−n)

2 ∑N
n=1 n2

(11)

where the delta coefficient of the frame t is denoted by Dt, and ct+n to ct-n are the
static coefficients.

• ∆2 MFCC: Another important feature in speech processing algorithms is the second-
order derivative of Mel-frequency cepstral coefficients (MFCCs), which is calculated
through a differential computation.

• Linear prediction cepstral coefficients (LPCCs): The coefficients derived from the
impulse response of the linear prediction coefficients (LPCs) are modeled to mimic
the vocal tract of the human speech production system, providing a resilient and
noise-tolerant speech feature compared to LPCs. LPC analysis evaluates the speech
signal by approximating the formants, removing their effects from the speech signal,
and estimating the residual concentration and frequency that remain [24,25].

• Gammatone-frequency cepstral coefficients (GFCCs): Derived from gammatone fil-
ter banks, they offer a more precise representation of speech features and are less
affected by noise and distortion compared to MFCCs. Their integration into speech
processing algorithms has resulted in better performance and accuracy in tasks such as
speaker recognition, speech emotion recognition, and music information retrieval [26].

• Log-frequency cepstral coefficients (LFCCs): A comparable technique to Mel-frequency
cepstral coefficients (MFCCs) is employed; however, this approach leverages a spatially
distributed filter bank situated along a linear frequency spectrum [25].

3.3.4. Grid Search

Prior to training, a machine learning model’s hyperparameters are determined, necessi-
tating their adjustment to conform the model to a specific dataset. Optimal hyperparameter
configurations for one dataset may not be ideal for another, complicating the hyperpa-
rameter optimization process. Grid search represents an advancement in conventional
hyperparameter optimization, dedicating the search to a specified segment of the training
algorithm’s hyperparameter domain. In a grid search, the range of potential parameters is
manually designated. Subsequently, the software conducts an exhaustive search for these
parameters. Fundamentally, a brute-force approach is employed to explore all hyperparam-
eter permutations, followed by model evaluation using cross-validation techniques [27].

4. Experimental Setup
4.1. Evaluation Metrics

To evaluate the LSTM models, we used the performance metrics of precision, recall, F1
score, area under curve (AUC), and accuracy. A confusion matrix is also used to illustrate
LSTM performance based on the four classes: True Positive, False Positive, True Negative,
and False Negative; these four classification classes are used to calculate each performance
metric. Figure 5 shows the confusion matrix classification.

Information 2023, 14, 413 11 of 20

Information 2023, 14, x FOR PEER REVIEW 11 of 20

Figure 5. Basic confusion matrix.

In our system, we can define the four different classes of confusion matrix as follows:
• True Positive is an incorrect positive pronunciation prediction.
• False Positive is a correct positive pronunciation prediction.
• True Negative is an incorrect negative pronunciation prediction.
• False Negative is a correct negative pronunciation prediction.

Furthermore, accuracy is defined as the measurement of how correctly a model pre-
dicts the pronunciation corresponding to the actual pronunciation. The subsequent for-
mula delineates the computation of accuracy within a given context [13,28]: 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = ்௨ ௦௧௩ ା ்௨ ே௧௩ ்௨ ௦௧௩ ା ி௦ ே௧௩ ା ்௨ ே௧௩ ା ி௦ ௦௧௩ (12)

Precision is a statistical measure that assesses the ratio of accurately predicted posi-
tive outcomes to the total number of predicted positive outcomes. The formula provided
can be utilized to compute the precision metric [13,28]: 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = ்௨ ௦௧௩ ்௨ ௦௧௩ ା ி௦ ௦௧௩ (13)

Recall is a metric that indicates the proportion of accurately predicted positive out-
comes that are correctly identified by the model. To calculate the recall metric, the follow-
ing mathematical expression is employed [13,28]: 𝑅𝑒𝑐𝑎𝑙𝑙 = ்௨ ௦௧௩ ்௨ ௦௧௩ ା ி௦ ே௧௩ (14)

The F1 score is a performance metric that characterizes the harmonic mean between
recall and precision. This metric is particularly useful for imbalanced datasets that feature
disproportionate class frequencies. The calculation of the F1 score can be expressed using
the following equation [13,28]: 𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 × ቀோ ∗ ௦ ோ ା ௦ቁ (15)

4.2. Platform
We built our project using the Python language that was written in a development

environment called PyCharm. Computation was performed on an Intel Core i7-4750HQ
CPU with 16 GB RAM and NVIDIA GeForce GTX 950M. The training process was com-
pleted 53 times. For each letter, the training was performed for the letters alone, the letter
at the beginning of the word, the letter in the middle of the word, and the letter at the end
of the word. Therefore, training took approximately 18 h, including the optimization
steps.

5. Experimental Results
5.1. Ablation Study

Figure 5. Basic confusion matrix.

In our system, we can define the four different classes of confusion matrix as follows:

• True Positive is an incorrect positive pronunciation prediction.
• False Positive is a correct positive pronunciation prediction.
• True Negative is an incorrect negative pronunciation prediction.
• False Negative is a correct negative pronunciation prediction.

Furthermore, accuracy is defined as the measurement of how correctly a model pre-
dicts the pronunciation corresponding to the actual pronunciation. The subsequent formula
delineates the computation of accuracy within a given context [13,28]:

Accuracy =
True Positive + True Negative

True Positive + False Negative + True Negative + False Positive
(12)

Precision is a statistical measure that assesses the ratio of accurately predicted positive
outcomes to the total number of predicted positive outcomes. The formula provided can be
utilized to compute the precision metric [13,28]:

Precision =
True Positive

True Positive + False Positive
(13)

Recall is a metric that indicates the proportion of accurately predicted positive out-
comes that are correctly identified by the model. To calculate the recall metric, the following
mathematical expression is employed [13,28]:

Recall =
True Positive

True Positive + False Negative
(14)

The F1 score is a performance metric that characterizes the harmonic mean between
recall and precision. This metric is particularly useful for imbalanced datasets that feature
disproportionate class frequencies. The calculation of the F1 score can be expressed using
the following equation [13,28]:

F1 Score = 2×
(

Recall ∗ Precision
Recall + Precision

)
(15)

4.2. Platform

We built our project using the Python language that was written in a development en-
vironment called PyCharm. Computation was performed on an Intel Core i7-4750HQ CPU
with 16 GB RAM and NVIDIA GeForce GTX 950M. The training process was completed
53 times. For each letter, the training was performed for the letters alone, the letter at the
beginning of the word, the letter in the middle of the word, and the letter at the end of the
word. Therefore, training took approximately 18 h, including the optimization steps.

Information 2023, 14, 413 12 of 20

5. Experimental Results
5.1. Ablation Study
5.1.1. Optimum Model Hyperparameters

The optimization of model hyperparameters was performed using both manual and
grid search techniques. We divided the dataset into training (70%), testing (20%), and
validation (10%) sets. Using the grid search optimization method, we determined the ideal
parameters for the network: learning rate, epochs, dropout, and batch size. These optimal
values are shown in Table 4. It is important to note that the learning rate, epochs, and batch
size are common hyperparameters to tune in deep learning models. A lower learning rate
ensures that the model learns at a steady pace, whereas a high number of epochs means that
the model goes through the training set multiple times to better understand the patterns in
the data. A smaller batch size means the model gets to update its weights more frequently,
resulting in a more robust learning process. It should be noted that the optimization of
parameters is performed within the training session.

Table 4. Classification network parameters.

Parameters Learning Rate Epoch LSTM Layers LSTM Units Fully Connected
Layers

Fully Connected
Units Dropout

Value 10−3 190 2 179,179 2 64, 1 0.1

Moreover, the manual optimization technique is illustrated below:

Number of LSTM Cells in Each Layer

We used two hidden layers in our LSTM network, which is the most common number
used. Moreover, every hidden layer has several LSTM cells or neurons. To identify the
best number of cells for each layer, we trained the network using various values and found
that setting the cells in every layer to 179 minimized the MSE, as shown in Figure 6. The
experiment was conducted with a dropout of 0.2, 50 training epochs, and a batch size of
32 [29,30].

Information 2023, 14, x FOR PEER REVIEW 12 of 20

5.1.1. Optimum Model Hyperparameters
The optimization of model hyperparameters was performed using both manual and

grid search techniques. We divided the dataset into training (70%), testing (20%), and val-
idation (10%) sets. Using the grid search optimization method, we determined the ideal
parameters for the network: learning rate, epochs, dropout, and batch size. These optimal
values are shown in Table 4. It is important to note that the learning rate, epochs, and
batch size are common hyperparameters to tune in deep learning models. A lower learn-
ing rate ensures that the model learns at a steady pace, whereas a high number of epochs
means that the model goes through the training set multiple times to better understand
the patterns in the data. A smaller batch size means the model gets to update its weights
more frequently, resulting in a more robust learning process. It should be noted that the
optimization of parameters is performed within the training session.

Table 4. Classification network parameters.

Parame-
ters Learning Rate Epoch

LSTM Lay-
ers

LSTM
Units

Fully Connected Lay-
ers

Fully Connected
Units

Drop-
out

Value 10ିଷ 190 2 179,179 2 64, 1 0.1

Moreover, the manual optimization technique is illustrated below:

Number of LSTM Cells in Each Layer
We used two hidden layers in our LSTM network, which is the most common number

used. Moreover, every hidden layer has several LSTM cells or neurons. To identify the
best number of cells for each layer, we trained the network using various values and found
that setting the cells in every layer to 179 minimized the MSE, as shown in Figure 6. The
experiment was conducted with a dropout of 0.2, 50 training epochs, and a batch size of
32 [29,30].

Figure 6. Selecting the optimum value of neurons by the mean square error value.

Dropout
Overfitting is a vital dilemma that affects the system’s accuracy and needs to be

solved. Therefore, dropout is a layer that prevents overfitting; it randomly chooses any

Figure 6. Selecting the optimum value of neurons by the mean square error value.

Information 2023, 14, 413 13 of 20

Dropout

Overfitting is a vital dilemma that affects the system’s accuracy and needs to be solved.
Therefore, dropout is a layer that prevents overfitting; it randomly chooses any cell in a
layer according to the probability chosen and sets its output to 0. Furthermore, to find the
optimal dropout rate, a test was performed and implemented in all of the hidden layers.
We built and trained our LSTM model, then set the dropout to different values. Based
on Figure 7, the results indicate that the most effective dropout value for our scenario is
0.1, as it is associated with the lowest MSE. Therefore, the dropout was set to 30%. While
performing this test, the LSTM cells in the two hidden layers were set to 179, epoch to 50,
and batch size to 32 [29,30].

Information 2023, 14, x FOR PEER REVIEW 13 of 20

cell in a layer according to the probability chosen and sets its output to 0. Furthermore, to
find the optimal dropout rate, a test was performed and implemented in all of the hidden
layers. We built and trained our LSTM model, then set the dropout to different values.
Based on Figure 7, the results indicate that the most effective dropout value for our sce-
nario is 0.1, as it is associated with the lowest MSE. Therefore, the dropout was set to 30%.
While performing this test, the LSTM cells in the two hidden layers were set to 179, epoch
to 50, and batch size to 32 [29,30].

Figure 7. Selecting the optimum value of dropout by the mean square error value.

Batch Size
Batch size refers to the number of training data utilized in one iteration or epoch. We

split the training data into a batch size before starting the training process. Splitting the
training data will make the training more manageable and more efficient. Also, the higher
the batch size used, the more memory space is needed. Figure 8 shows the optimal batch
size value; in our case, it is 16 because that value has the lowest MSE. While performing
this test, the LSTM cells in the two hidden layers were set to 179, dropout to 0.1, and
epochs to 32 [29,30].

Figure 7. Selecting the optimum value of dropout by the mean square error value.

Batch Size

Batch size refers to the number of training data utilized in one iteration or epoch. We
split the training data into a batch size before starting the training process. Splitting the
training data will make the training more manageable and more efficient. Also, the higher
the batch size used, the more memory space is needed. Figure 8 shows the optimal batch
size value; in our case, it is 16 because that value has the lowest MSE. While performing
this test, the LSTM cells in the two hidden layers were set to 179, dropout to 0.1, and epochs
to 32 [29,30].

Number of Epochs

An epoch refers to a single iteration of the entire training dataset being passed through
the neural network. During this process, the training data are partitioned into batches,
where a batch size of 16 was chosen in this study. This means that the LSTM network is
first trained on the first 16 samples (0–16), then on the next 16 samples (16–31), and so on,
until all samples have been propagated through the network. As depicted in Figure 9, the
optimal number of epochs in our study was determined to be 190 based on the smallest
MSE. During this experiment, the LSTM cells in the two hidden layers were set to 179,
dropout was set to 0.1, and batch size was set to 16 [29,30].

Information 2023, 14, 413 14 of 20
Information 2023, 14, x FOR PEER REVIEW 14 of 20

Figure 8. Selecting the optimum value of batch size by the mean square error value.

Number of Epochs
An epoch refers to a single iteration of the entire training dataset being passed

through the neural network. During this process, the training data are partitioned into
batches, where a batch size of 16 was chosen in this study. This means that the LSTM
network is first trained on the first 16 samples (0–16), then on the next 16 samples (16–31),
and so on, until all samples have been propagated through the network. As depicted in
Figure 9, the optimal number of epochs in our study was determined to be 190 based on
the smallest MSE. During this experiment, the LSTM cells in the two hidden layers were
set to 179, dropout was set to 0.1, and batch size was set to 16 [29,30].

Figure 9. Selecting the optimum value of epochs by the mean square error value.

Figure 8. Selecting the optimum value of batch size by the mean square error value.

Information 2023, 14, x FOR PEER REVIEW 14 of 20

Figure 8. Selecting the optimum value of batch size by the mean square error value.

Number of Epochs
An epoch refers to a single iteration of the entire training dataset being passed

through the neural network. During this process, the training data are partitioned into
batches, where a batch size of 16 was chosen in this study. This means that the LSTM
network is first trained on the first 16 samples (0–16), then on the next 16 samples (16–31),
and so on, until all samples have been propagated through the network. As depicted in
Figure 9, the optimal number of epochs in our study was determined to be 190 based on
the smallest MSE. During this experiment, the LSTM cells in the two hidden layers were
set to 179, dropout was set to 0.1, and batch size was set to 16 [29,30].

Figure 9. Selecting the optimum value of epochs by the mean square error value.
Figure 9. Selecting the optimum value of epochs by the mean square error value.

Consequently, the values obtained manually are similar to the grid search parameters.
Therefore, the usage of the grid search is effective and requires less training time.

5.1.2. Optimum Speech Features

Feature extraction is vital to the system’s overall effectiveness. Hence, seven distinct
auditory features were acquired from the captured dataset sounds and forwarded to our
framework classification model. In Figure 10, we illustrate the features’ importance based
on system performance. To obtain these results, we used only the letter P/r/. The majority

of letters also showed the same results alongside the letter P/r/. Furthermore, it can be

Information 2023, 14, 413 15 of 20

observed that the MFCC features have the highest accuracy. Thus, we utilized the MFCCs
to be our optimum feature extraction method. However, we can also implement the system
using other features or their combination since they achieved good accuracy.

Information 2023, 14, x FOR PEER REVIEW 15 of 20

Consequently, the values obtained manually are similar to the grid search parameters.
Therefore, the usage of the grid search is effective and requires less training time.

5.1.2. Optimum Speech Features
Feature extraction is vital to the system’s overall effectiveness. Hence, seven distinct

auditory features were acquired from the captured dataset sounds and forwarded to our
framework classification model. In Figure 10, we illustrate the features’ importance based
on system performance. To obtain these results, we used only the letter ر /r/. The majority
of letters also showed the same results alongside the letter ر /r/. Furthermore, it can be
observed that the MFCC features have the highest accuracy. Thus, we utilized the MFCCs
to be our optimum feature extraction method. However, we can also implement the sys-
tem using other features or their combination since they achieved good accuracy.

Figure 10. Performance metrics of different speech features.

5.2. Overall Performance of the System
In order to accurately gauge the performance of our LSTM model, we meticulously

executed both the training and testing phases, each integral to the overall system. During
the training phase, the primary task was to convert the input training sets into correspond-
ing vector representations. Once these were prepared, they were introduced into the
LSTM network. This initiated a process where the model tried to learn the underlying
structure of the input data, using backpropagation to gradually adjust the network’s
weights and improve its predictions. Here, it is essential to explain that backpropagation
is a critical part of training deep learning models. It involves computing the gradient of
the loss function with respect to the weights of the network and using this information to
adjust the weights to minimize the loss. In the testing phase, we utilized input test signals
to probe the network’s learning. The output values generated by the network are deter-
mined by the weights the model has learned during the training phase. This phase is cru-
cial as it allows us to evaluate the LSTM model’s capability to capture relevant features
and relationships in the data and predict unseen data points. During the training and test-
ing process, we encountered a common issue in machine learning models, overfitting,

Figure 10. Performance metrics of different speech features.

5.2. Overall Performance of the System

In order to accurately gauge the performance of our LSTM model, we meticulously ex-
ecuted both the training and testing phases, each integral to the overall system. During the
training phase, the primary task was to convert the input training sets into corresponding
vector representations. Once these were prepared, they were introduced into the LSTM
network. This initiated a process where the model tried to learn the underlying structure
of the input data, using backpropagation to gradually adjust the network’s weights and
improve its predictions. Here, it is essential to explain that backpropagation is a critical
part of training deep learning models. It involves computing the gradient of the loss
function with respect to the weights of the network and using this information to adjust
the weights to minimize the loss. In the testing phase, we utilized input test signals to
probe the network’s learning. The output values generated by the network are determined
by the weights the model has learned during the training phase. This phase is crucial
as it allows us to evaluate the LSTM model’s capability to capture relevant features and
relationships in the data and predict unseen data points. During the training and testing
process, we encountered a common issue in machine learning models, overfitting, where
the model learns the training data too well and performs poorly on unseen data. However,
we successfully mitigated this problem by optimizing the LSTM parameters, as discussed in
Section 5.1.1. Figure 11 provides a visual representation of an instance of overfitting that we
encountered. It is a situation where the model, while performing well on the training data,
fails to generalize well to unseen data due to excessive complexity. Furthermore, Figure 12
illustrates the model’s accuracy and loss metrics during the training and validation process
after optimization. A balanced and improved performance in these metrics signifies an
effective learning model capable of making reliable predictions.

Information 2023, 14, 413 16 of 20

Information 2023, 14, x FOR PEER REVIEW 16 of 20

where the model learns the training data too well and performs poorly on unseen data.
However, we successfully mitigated this problem by optimizing the LSTM parameters, as
discussed in Section 5.1.1. Figure 11 provides a visual representation of an instance of
overfitting that we encountered. It is a situation where the model, while performing well
on the training data, fails to generalize well to unseen data due to excessive complexity.
Furthermore, Figure 12 illustrates the model’s accuracy and loss metrics during the train-
ing and validation process after optimization. A balanced and improved performance in
these metrics signifies an effective learning model capable of making reliable predictions.

(a) (b)

Figure 11. The overfitting plot of (a) model accuracy on training and the validation dataset; (b)
model loss on the validation dataset.

(a) (b)

Figure 12. The plot of (a) model accuracy on training and the validation dataset; (b) model loss on
training and the validation dataset.

Our testing resulted in the performance metrics of the LSTM models in identifying
mispronunciations, reported in Tables 5–8. Each table refers to a different set of conditions:
respectively, uttering letters alone, at the beginning of the word, in the middle of the word,
and at the end of the word. Analyzing the results, we find that the highest accuracy is
consistently achieved by the letter ج/ʒ/. When pronounced alone, or at the beginning or
middle of a word, the accuracy rates were 82.25%, 85.39%, and 91.84%, respectively, as
seen in Tables 5–7. The letter ك /k/ also demonstrated high accuracy, specifically 82.34%,
when articulated at the end of a word (Table 8). Conversely, the lowest accuracy across all
conditions was demonstrated by the letter ر /r/. When this letter was pronounced alone,

Figure 11. The overfitting plot of (a) model accuracy on training and the validation dataset; (b) model
loss on the validation dataset.

Information 2023, 14, x FOR PEER REVIEW 16 of 20

where the model learns the training data too well and performs poorly on unseen data.
However, we successfully mitigated this problem by optimizing the LSTM parameters, as
discussed in Section 5.1.1. Figure 11 provides a visual representation of an instance of
overfitting that we encountered. It is a situation where the model, while performing well
on the training data, fails to generalize well to unseen data due to excessive complexity.
Furthermore, Figure 12 illustrates the model’s accuracy and loss metrics during the train-
ing and validation process after optimization. A balanced and improved performance in
these metrics signifies an effective learning model capable of making reliable predictions.

(a) (b)

Figure 11. The overfitting plot of (a) model accuracy on training and the validation dataset; (b)
model loss on the validation dataset.

(a) (b)

Figure 12. The plot of (a) model accuracy on training and the validation dataset; (b) model loss on
training and the validation dataset.

Our testing resulted in the performance metrics of the LSTM models in identifying
mispronunciations, reported in Tables 5–8. Each table refers to a different set of conditions:
respectively, uttering letters alone, at the beginning of the word, in the middle of the word,
and at the end of the word. Analyzing the results, we find that the highest accuracy is
consistently achieved by the letter ج/ʒ/. When pronounced alone, or at the beginning or
middle of a word, the accuracy rates were 82.25%, 85.39%, and 91.84%, respectively, as
seen in Tables 5–7. The letter ك /k/ also demonstrated high accuracy, specifically 82.34%,
when articulated at the end of a word (Table 8). Conversely, the lowest accuracy across all
conditions was demonstrated by the letter ر /r/. When this letter was pronounced alone,

Figure 12. The plot of (a) model accuracy on training and the validation dataset; (b) model loss on
training and the validation dataset.

Our testing resulted in the performance metrics of the LSTM models in identifying
mispronunciations, reported in Tables 5–8. Each table refers to a different set of conditions:
respectively, uttering letters alone, at the beginning of the word, in the middle of the word,
and at the end of the word. Analyzing the results, we find that the highest accuracy is
consistently achieved by the letter h. /Z/. When pronounced alone, or at the beginning or
middle of a word, the accuracy rates were 82.25%, 85.39%, and 91.84%, respectively, as
seen in Tables 5–7. The letter ¼/k/ also demonstrated high accuracy, specifically 82.34%,
when articulated at the end of a word (Table 8). Conversely, the lowest accuracy across
all conditions was demonstrated by the letter P/r/. When this letter was pronounced
alone, or at the beginning, middle, or end of a word, the system’s accuracy was 75.67%,
75.49%, 86.53%, and 66.05%, respectively. These numbers, presented across Table 5 through
Table 8, reflect the challenge our system faced in accurately identifying the pronunciation of
this particular letter in different contexts. However, these results do not necessarily mean
that our system is universally more effective with some letters than others. The variance
could be due to factors such as the inherent difficulties of certain sounds, differences in
the number of training samples for each letter, or biases in our training data. Future work
could investigate these possibilities in more detail.

Information 2023, 14, 413 17 of 20

Following the evaluation of mispronunciation detection, we extended our system to
integrate gender recognition capabilities. Given the challenges our system faced with the
letter P/r/, as highlighted in the previous section, we chose this letter to test the combined
system’s robustness. The system was trained and tested to simultaneously recognize both
gender and mispronunciation. Table 9 shows the results of these tests. When creating a
separate model for genders, the system attained an average accuracy of 81.52%. Without
a separate model for genders, the accuracy was slightly higher, at 83.77%. Interestingly,
the system’s accuracy did not improve upon adding the gender recognition task, but it
maintained a reasonable accuracy level. This suggests that our LSTM model was able to
handle the added complexity of gender recognition without significantly compromising
its performance on mispronunciation detection. While the results are encouraging, they
also highlight areas for improvement. Future work can aim to refine the model, exploring
different architectures or training strategies, to boost accuracy in both tasks. The goal
would be a more robust system capable of detecting mispronunciations and recognizing
speaker gender with even higher accuracy.

Table 5. Performance metrics for letters alone.

Sample Precision Recall F1 Score Accuracy

Letter P/r/ 0.8255 0.7759 0.7964 0.7567

Letter 	
 /∂/ 0.8164 0.7880 0.8019 0.7717

Letter 	
�/d/ 0.8161 0.7873 0.8014 0.7709

Letter 	
X/ð/ 0.8110 0.7834 0.7970 0.7633

Letter
	

¨/G/ 0.8162 0.7808 0.7981 0.7652

Letter ¼/k/ 0.8165 0.7874 0.8017 0.7714

Letter �
�/q/ 0.8297 0.8090 0.8192 0.8114

Letter �/s/ 0.8127 0.7877 0.8000 0.7864

Letter �/S. / 0.8188 0.8125 0.8156 0.8130

Letter p/x/ 0.8188 0.8089 0.8138 0.8098

Letter h. /Z/ 0.8233 0.8226 0.8235 0.8225

Letter /·/ 0.8235 0.8097 0.8165 0.8109

Letter h/h. / 0.8240 0.8222 0.8231 0.8222

Table 6. Performance metrics for letters at the beginning of words.

Sample Precision Recall F1 Score Accuracy

Letter P/r/ 0.8369 0.7582 0.7756 0.7549

Letter 	
 /∂/ 0.8458 0.8050 0.8249 0.8027

Letter 	
�/d/ 0.8459 0.8023 0.8235 0.8004

Letter 	
X/ð/ 0.8100 0.7679 0.7884 0.7876

Letter
	

¨/G/ 0.8362 0.8245 0.8303 0.8258

Letter ¼/k/ 0.8255 0.8239 0.8247 0.8240

Letter �
�/q/ 0.8243 0.8172 0.8207 0.8176

Letter �/s/ 0.8232 0.8189 0.8210 0.8181

Letter �/S. / 0.8568 0.8067 0.8310 0.8351

Letter p/x/ 0.8561 0.8193 0.8373 0.8460

Letter h. /Z/ 0.8568 0.8574 0.8571 0.8539

Letter /·/ 0.8442 0.8404 0.8423 0.8410

Letter h/h. / 0.8429 0.8431 0.8430 0.8422

Information 2023, 14, 413 18 of 20

Table 7. Performance metrics for letters in the middle of words.

Sample Precision Recall F1 Score Accuracy

Letter P/r/ 0.9061 0.8699 0.8876 0.8653

Letter 	
 /∂/ 0.9131 0.9157 0.9144 0.9102

Letter 	
�/d/ 0.9137 0.9115 0.9126 0.9071

Letter 	
X/ð/ 0.9159 0.9140 0.9149 0.9112

Letter
	

¨/G/ 0.9188 0.9141 0.9164 0.9137

Letter ¼/k/ 0.9200 0.9151 0.9175 0.9157

Letter �
�/q/ 0.9191 0.8978 0.9083 0.8996

Letter �/s/ 0.9186 0.8841 0.9010 0.8873

Letter �/S. / 0.9196 0.9179 0.9187 0.9179

Letter p/x/ 0.9178 0.9137 0.9157 0.9125

Letter h. /Z/ 0.9200 0.9182 0.9191 0.9184

Letter /·/ 0.9199 0.9056 0.9127 0.9075

Letter h/h. / 0.9188 0.9178 0.9183 0.9171

Table 8. Performance metrics for letters at the end of words.

Sample Precision Recall F1 Score Accuracy

Letter P/r/ 0.7113 0.6926 0.7018 0.7105

Letter 	
 /∂/ 0.7756 0.7704 0.7730 0.7733

Letter 	
�/d/ 0.7756 0.7708 0.7732 0.7637

Letter 	
X/ð/ 0.7744 0.7607 0.7725 0.7727

Letter
	

¨/G/ 0.7743 0.7669 0.7606 0.7778

Letter ¼/k/ 0.7772 0.7266 0.7469 0.7765

Letter �
�/q/ 0.7471 0.7386 0.7428 0.7394

Letter �/s/ 0.8251 0.8110 0.8180 0.8104

Letter �/S. / 0.8280 0.8246 0.8263 0.8234

Letter p/x/ 0.8288 0.8189 0.8238 0.8148

Letter h. /Z/ 0.7607 0.7578 0.7592 0.7582

Letter /·/ 0.8029 0.7975 0.7902 0.8180

Letter h/h. / 0.7747 0.7723 0.7735 0.7726

Table 9. System accuracy based on different techniques.

Techniques Average Accuracy (%)

Creating a model for genders 81.52

Without creating a model for genders 83.77

6. Concluding Remarks

Our research introduces an effective speaker-independent and text-dependent system
aimed at detecting articulation disorders in Arabic language learners. This system leverages
the power of speech signal processing, specifically using Mel-frequency cepstral coefficients
(MFCCs) as the optimal features, and long short-term memory (LSTM) for classification.
It delivers robust performance with an average accuracy rate of 81.52%, representing a
significant improvement over previous mispronunciation detection systems. One of the in-
novative aspects of this system is the incorporation of a gender recognition model, enabling
two-level classification. While this incorporation led to some interesting observations, it did
not significantly improve the overall accuracy of the system. In fact, the results suggested

Information 2023, 14, 413 19 of 20

that Arabic mispronunciation patterns might not be distinctly gender-specific. This observa-
tion has enriched our understanding and opened up a new line of inquiry for future work.
Although the gender recognition aspect did not greatly impact mispronunciation detection
in the current study, we see potential in further exploring its influence. It represents an
uncharted territory in the field of Arabic mispronunciation detection and could reveal new
insights and dimensions. We plan to investigate more sophisticated gender recognition
mechanisms or other sociolinguistic variables that might influence pronunciation patterns
in the future. Future work also could focus on improving the system’s efficiency for people
with different disorder cases and incorporating additional teaching tools, such as a 3D
animation of the vocal tract, on providing the appropriate teaching tools for non-Arabic
speakers and children to learn the proper Arabic language. Overall, the proposed system
has the potential to provide significant support for Arabic language learners by identifying
and correcting mispronunciation errors, which can improve language and speech skills.
This study represents a valuable contribution to the field of CALL, demonstrating the
potential for using AI and machine learning in language learning and teaching.

Author Contributions: A.A.: Conceptualization, Methodology, Software, Writing—Original Draft.
M.B. (Mohamed Bader): Conceptualization, Methodology, Writing—Original Draft. I.S.: Conceptual-
ization, Methodology, Investigation, Writing—Original Draft, Writing—Review & Editing, Project
administration, Supervision. A.B.N.: Conceptualization, Methodology, Formal Analysis, Investiga-
tion, Writing—Review & Editing, Supervision. N.W.: Writing—Review & Editing. M.B. (Mohammad
Basel): Methodology, Writing—Original Draft. All authors have read and agreed to the published
version of the manuscript.

Funding: This project was funding through the competitive research project entitled “Analysis and
Investigation of Emirati-Accented Corpus in Emotional and Stressful Talking Environments for
Speaker and Emotion Recognition based on Capsule Networks”, Project ID: No. 23020403251.

Data Availability Statement: The authors generated the dataset used in this study. Due to ethical
restrictions, it is not publicly available but can be accessed for research purposes upon request. Any
distribution of the data will adhere strictly to confidentiality and ethical guidelines.

Acknowledgments: The authors would like to thank the University of Sharjah in the United Arab
Emirates for funding this work.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Calik, S.S.; Kucukmanisa, A.; Kilimci, Z.H. An ensemble-based framework for mispronunciation detection of Arabic phonemes.

arXiv 2023, arXiv:2301.01378.
2. Fu, P.; Liu, D.; Yang, H. LAS-Transformer: An Enhanced Transformer Based on the Local Attention Mechanism for Speech

Recognition. Information 2022, 13, 250. [CrossRef]
3. Ye, W.; Mao, S.; Soong, F.; Wu, W.; Xia, Y.; Tien, J.; Wu, Z. An Approach to Mispronunciation Detection and Diagnosis with

Acoustic, Phonetic and Linguistic (Apl) Embeddings. In Proceedings of the ICASSP 2022—2022 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), Singapore, 23–27 May 2022; pp. 6827–6831. [CrossRef]

4. Li, K.; Qian, X.; Meng, H. Mispronunciation Detection and Diagnosis in L2 English Speech Using Multidistribution Deep Neural
Networks. IEEE/ACM Trans. Audio Speech Lang. Process. 2017, 25, 193–207. [CrossRef]

5. Shahin, M.; Ahmed, B. Anomaly detection based pronunciation verification approach using speech attribute features. Speech
Commun. 2019, 111, 29–43. [CrossRef]

6. Arafa, M.N.M.; Elbarougy, R.; Ewees, A.A.; Behery, G.M. A Dataset for Speech Recognition to Support Arabic Phoneme
Pronunciation. Int. J. Image Graph. Signal Process. 2018, 10, 31–38. [CrossRef]

7. Shareef, S.; Al-Irhayim, Y. Comparison between Features Extraction Techniques for Impairments Arabic Speech. Al-Rafidain Eng.
J. 2022, 27, 190–197. [CrossRef]

8. Keerio, A.; Mitra, B.K.; Birch, P.; Young, R.; Chatwin, C. On preprocessing of speech signals. World Acad. Sci. Eng. Technol. 2009,
35, 818–824. [CrossRef]

9. Ibrahim, Y.A.; Odiketa, J.C.; Ibiyemi, T.S. Preprocessing technique in automatic speech recognition for human computer interaction:
An overview. Ann. Comput. Sci. Ser. 2017, 15, 186–191.

https://doi.org/10.3390/info13050250
https://doi.org/10.1109/ICASSP43922.2022.9746604
https://doi.org/10.1109/TASLP.2016.2621675
https://doi.org/10.1016/j.specom.2019.06.003
https://doi.org/10.5815/ijigsp.2018.04.04
https://doi.org/10.33899/rengj.2022.132977.1160
https://doi.org/10.5281/zenodo.1332328

Information 2023, 14, 413 20 of 20

10. Kaur, M.; Mohta, A. A Review of Deep Learning with Recurrent Neural Network. In Proceedings of the 2019 International
Conference on Smart Systems and Inventive Technology (ICSSIT), Tirunelveli, India, 27–29 November 2019; pp. 460–465.
[CrossRef]

11. Hassan, A.; Shahin, I.; Alsabek, M.B. COVID-19 Detection System using Recurrent Neural Networks. In Proceedings of the
2020 International Conference on Communications, Computing, Cybersecurity, and Informatics (CCCI), Sharjah, United Arab
Emirates, 3–5 November 2020. [CrossRef]

12. Nassif, A.B.; Shahin, I.; Attili, I.; Azzeh, M.; Shaalan, K. Speech Recognition Using Deep Neural Networks: A Systematic Review.
IEEE Access 2019, 7, 19143–19165. [CrossRef]

13. Shewalkar, A.; Nyavanandi, D.; Ludwig, S.A. Performance Evaluation of Deep neural networks Applied to Speech Recognition:
Rnn, LSTM and GRU. J. Artif. Intell. Soft Comput. Res. 2019, 9, 235–245. [CrossRef]

14. Amberkar, A.; Awasarmol, P.; Deshmukh, G.; Dave, P. Speech Recognition using Recurrent Neural Networks. In Proceedings of
the 2018 International Conference on Current Trends towards Converging Technologies (ICCTCT), Coimbatore, India, 1–3 March
2018; pp. 1–4. [CrossRef]

15. Geiger, J.T.; Zhang, Z.; Weninger, F.; Schuller, B.; Rigoll, G. Robust speech recognition using long short-term memory recur-
rent neural networks for hybrid acoustic modelling. In Proceedings of the Annual Conference on the International Speech
Communication Association (Interspeech 2014), Singapore, 14–18 September 2014; pp. 631–635.

16. Kos, M.; Kačič, Z.; Vlaj, D. Acoustic classification and segmentation using modified spectral roll-off and variance-based features.
Digit. Signal Process. 2013, 23, 659–674. [CrossRef]

17. Shahin, I.; Nassif, A.B.; Bahutair, M. Emirati-accented speaker identification in each of neutral and shouted talking environments.
Int. J. Speech Technol. 2018, 21, 265–278. [CrossRef]

18. Shahin, I. Novel third-order hidden Markov models for speaker identification in shouted talking environments. Eng. Appl. Artif.
Intell. 2014, 35, 316–323. [CrossRef]

19. Shahin, I. Using emotions to identify speakers. In Proceedings of the 5th International Workshop on Signal Processing and Its
Applications (WoSPA 2008), Sharjah, United Arab Emirates, 18–20 March 2008.

20. Shahin, I. Identifying Speakers Using Their Emotion Cues. Int. J. Speech Technol. 2011, 14, 89–98. [CrossRef]
21. Shahin, I.; Nassif, A.B.; Hamsa, S. Novel cascaded Gaussian mixture model-deep neural network classifier for speaker identifica-

tion in emotional talking environments. Neural Comput. Appl. 2020, 32, 2575–2587. [CrossRef]
22. Alsabek, M.B.; Shahin, I.; Hassan, A. Studying the Similarity of COVID-19 Sounds based on Correlation Analysis of MFCC.

In Proceedings of the 2020 International Conference on Communications, Computing, Cybersecurity, and Informatics (CCCI),
Sharjah, United Arab Emirates, 3–5 November 2020. [CrossRef]

23. Ranjan, R.; Thakur, A. Analysis of feature extraction techniques for speech recognition system. Int. J. Innov. Technol. Explor. Eng.
2019, 8, 197–200.

24. Kinnunen, T.; Li, H. An overview of text-independent speaker recognition: From features to supervectors. Speech Commun. 2010,
52, 12–40. [CrossRef]

25. Atrey, P.K.; Maddage, N.C.; Kankanhalli, M.S. Audio based event detection for multimedia surveillance. In Proceedings of the
2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings, Toulouse, France, 14–19 May 2006;
Volume 5, pp. 813–816. [CrossRef]

26. Ayoub, B.; Jamal, K.; Arsalane, Z. Gammatone frequency cepstral coefficients for speaker identification over VoIP networks.
In Proceedings of the 2016 International Conference on Information Technology for Organizations Development (IT4OD), Fez,
Morocco, 30 March–1 April 2016. [CrossRef]

27. Liashchynskyi, P.; Liashchynskyi, P. Grid Search, Random Search, Genetic Algorithm: A Big Comparison for NAS. arXiv 2019,
arXiv:1912.06059.

28. Sokolova, M.; Japkowicz, N.; Szpakowicz, S. Beyond accuracy, F-score and ROC: A family of discriminant measures for
performance evaluation. In Proceedings of the 19th Australian Joint Conference on Artificial Intelligence, Hobart, Australia, 4–8
December 2006; WS-06-06; pp. 24–29. [CrossRef]

29. Bahador, M.; Ahmed, W. The Accuracy of the LSTM Model for Predicting the S&P 500 Index and the Difference between
Prediction and Backtesting. Bachelor’s Thesis, KTH Royal Institute of Technology, Stockholm, Sweden, 2018; p. 37.

30. Azzouni, A.; Pujolle, G. A long short-term memory recurrent neural network framework for network traffic matrix prediction.
arXiv 2017, arXiv:1705.05690.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/ICSSIT46314.2019.8987837
https://doi.org/10.1109/CCCI49893.2020.9256562
https://doi.org/10.1109/ACCESS.2019.2896880
https://doi.org/10.2478/jaiscr-2019-0006
https://doi.org/10.1109/ICCTCT.2018.8551185
https://doi.org/10.1016/j.dsp.2012.10.008
https://doi.org/10.1007/s10772-018-9502-0
https://doi.org/10.1016/j.engappai.2014.07.006
https://doi.org/10.1007/s10772-011-9089-1
https://doi.org/10.1007/s00521-018-3760-2
https://doi.org/10.1109/CCCI49893.2020.9256700
https://doi.org/10.1016/j.specom.2009.08.009
https://doi.org/10.1109/icassp.2006.1661400
https://doi.org/10.1109/IT4OD.2016.7479293
https://doi.org/10.1007/11941439_114

	Introduction
	Literature Review
	Methodology
	Speech Corpus
	Speech Preprocessing
	Proposed Framework
	Recurrent Neural Network (RNN)
	Long Short-Term Memory (LSTM)
	Feature Extraction
	Grid Search

	Experimental Setup
	Evaluation Metrics
	Platform

	Experimental Results
	Ablation Study
	Optimum Model Hyperparameters
	Optimum Speech Features

	Overall Performance of the System

	Concluding Remarks
	References

