
Citation: Hao, S.; Wu, H.; Jiang, Y.; Ji,

Z.; Zhao, L.; Liu, L.; Ganchev, I.

GSCEU-Net: An End-to-End

Lightweight Skin Lesion Segmentation

Model with Feature Fusion Based on

U-Net Enhancements. Information

2023, 14, 486. https://doi.org/

10.3390/info14090486

Academic Editor: Gholamreza

Anbarjafari (Shahab)

Received: 26 July 2023

Revised: 20 August 2023

Accepted: 28 August 2023

Published: 1 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

  information

Article

GSCEU-Net: An End-to-End Lightweight Skin Lesion
Segmentation Model with Feature Fusion Based on
U-Net Enhancements
Shengnan Hao 1, Haotian Wu 1, Yanyan Jiang 1, Zhanlin Ji 1,2 , Li Zhao 3, Linyun Liu 1,* and Ivan Ganchev 2,4,5,*

1 Hebei Key Laboratory of Industrial Intelligent Perception, North China University of Science and Technology,
Tangshan 063210, China; haoshengnan@ncst.edu.cn (S.H.); wuhaotian@stu.ncst.edu.cn (H.W.);
13933873356@163.com (Y.J.); zhanlin.ji@ncst.edu.cn (Z.J.)

2 Telecommunications Research Centre (TRC), University of Limerick, V94 T9PX Limerick, Ireland
3 Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine,

Tsinghua University, Beijing 100084, China; zhaoli@tsinghua.edu.cn
4 Department of Computer Systems, University of Plovdiv “Paisii Hilendarski”, 4000 Plovdiv, Bulgaria
5 Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 1040 Sofia, Bulgaria
* Correspondence: liujy23@ncst.edu.cn (L.L.); ivan.ganchev@ul.ie (I.G.)

Abstract: Accurate segmentation of lesions can provide strong evidence for early skin cancer diag-
nosis by doctors, enabling timely treatment of patients and effectively reducing cancer mortality
rates. In recent years, some deep learning models have utilized complex modules to improve their
performance for skin disease image segmentation. However, limited computational resources have
hindered their practical application in clinical environments. To address this challenge, this paper
proposes a lightweight model, named GSCEU-Net, which is able to achieve superior skin lesion
segmentation performance at a lower cost. GSCEU-Net is based on the U-Net architecture with
additional enhancements. Firstly, the partial convolution (PConv) module, proposed by the FasterNet
model, is modified to an SConv module, which enables channel segmentation paths of different
scales. Secondly, a newly designed Ghost SConv (GSC) module is proposed for incorporation into
the model’s backbone, where the Separate Convolution (SConv) module is aided by a Multi-Layer
Perceptron (MLP) and the output path residuals from the Ghost module. Finally, the Efficient Chan-
nel Attention (ECA) mechanism is incorporated at different levels into the decoding part of the
model. The segmentation performance of the proposed model is evaluated on two public datasets
(ISIC2018 and PH2) and a private dataset. Compared to U-Net, the proposed model achieves an IoU
improvement of 0.0261 points and a DSC improvement of 0.0164 points, while reducing the parameter
count by 190 times and the computational complexity by 170 times. Compared to other existing
segmentation models, the proposed GSCEU-Net model also demonstrates superiority, along with an
advanced balance between the number of parameters, complexity, and segmentation performance.

Keywords: skin lesion segmentation; convolutional neural network; lightweight; attention mechanism

1. Introduction

Skin diseases are diverse, with the most severe and potentially fatal consequence
being skin cancer [1], which is a result of a malignant tumor that originates from different
tissues and cell types of the skin. It is one of the most common types of cancer and is
primarily caused by factors such as excessive exposure to ultraviolet radiation, genetic
factors, immune system issues, and carcinogenic substances. According to data from the
World Health Organization (WHO), over 3 million people worldwide are diagnosed with
non-melanoma skin cancer annually [2], while melanoma affects over 270,000 individuals
each year. Basal cell carcinoma is the most common type of non-melanoma skin cancer,
accounting for approximately 80% of all skin cancer cases, while melanoma is the deadliest
form of skin cancer.
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Early diagnosis of skin cancer is of paramount importance. However, timely and
accurate analysis of skin lesions is equally crucial, as they might serve as precursors to
skin disorders, including malignant melanoma and other skin conditions. Skin lesion
segmentation involves the process of delineating the areas of pathology from normal
skin regions in medical images, aiding in early detection, diagnosis, and treatment. This
task is essential for treatment planning and monitoring disease progression, as well as
supporting medical research and education. Therefore, precise skin lesion segmentation
not only enhances medical efficiency and patient recovery rates, but also equips medical
professionals with valuable tools to better manage skin health.

Currently, skin lesion segmentation methods can be broadly classified into two cat-
egories, [3]. The first category consists of traditional machine learning-based image seg-
mentation methods [4], such as thresholding [5,6], region growing [7,8], edge detection [9],
and region splitting and merging [8]. However, traditional medical image segmentation
methods have limitations. They can be sensitive to noise in images, which may result
in discontinuous and inaccurate segmentation results. Additionally, their performance
may be limited when dealing with complex textures, shadows, overlapping structures, or
blurred boundaries. The second category involves deep learning-based methods. With
the advancement of deep learning, significant progress has been made in medical image
segmentation. Deep learning-based methods have shown stronger adaptability, robustness,
and accuracy compared to traditional machine learning-based methods.

Most existing deep learning models are based on the U-Net model [10], which has an
encoder–decoder architecture, due to its simplicity and scalability. Many improved models
have been proposed, such as U-Net++ [11], Attention-UNet [12], V-Net [13], and Recurrent
Residual U-Net (R2U-Net) [14]. However, previous works still face some challenges. Firstly,
previous research tends to introduce more complex modules into U-Net to achieve better
performance. However, due to limited memory on mobile medical devices, many models
with a large number of parameters cannot be effectively applied in real clinical scenarios.
Secondly, medical image segmentation is a layout-specific task [15], where the differences
between samples are small, but the differences within each sample can be significant in
medical datasets. Based on these considerations [16], this paper proposes a lightweight
segmentation model, named GSCEU-Net (https://github.com/1194449282/GSCEU-Net
(accessed on 9 August 2023)), which is based on U-Net and utilizes multiple lightweight
modules in both the encoding and decoding parts. Extensive experiments, conducted on
the ISIC2018 [17] and PH2 [18] public datasets, and a private dataset, demonstrate that the
proposed model achieves excellent performance in image segmentation and is also highly
competitive in terms of lightweight performance.

The main contributions of this paper are reflected in four aspects:

1. The proposed GSCEU-Net model adopts the overall U-shaped encoding–decoding
structure of U-Net [10]. However, by reducing the number of channels and by in-
corporating newly designed Separate Convolution (SConv) and Ghost SConv (GSC)
modules, along with an Efficient Channel Attention (ECA) module [19], it is able
to attain a light weight, which is reflected in the reduction of the number of model
parameters and floating-point operations performed;

2. A newly designed SConv module is proposed as a technical advancement derived
from the recent FasterNet’s partial convolution (PConv) [20] with additional improve-
ments. It upgrades the PConv replication path to a 1 × 1 convolution path and
dynamically calculates the input channel numbers, thereby extracting spatial features
from image regions and accelerating the model training convergence;

3. The upgraded path after SConv convolution is further connected with the Ghost
module residuals [21] to form a newly designed GSC module. Multi-Layer Perceptron
(MLP) [22] is utilized to absorb hidden layer features, and DropPath is applied to
refine features and prevent model overfitting, thus further enhancing the model’s
generalization ability.

https://github.com/1194449282/GSCEU-Net
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4. The decoding part of the proposed model utilizes the ECA attention mechanism, allocat-
ing model weights with minimal complexity cost, so as to optimize the decoding process.

Table 1 shows the abbreviations that are frequently used further on in the paper, along
with their full names and descriptions.

Table 1. Frequently used abbreviations with their full names and descriptions.

Abbreviation Full Name Description

ECA Efficient Channel
Attention A lightweight attention mechanism

GSC Ghost Separate
Convolution A backbone network for feature fusion

MLP Multi-Layer
Perceptron A neural network with input, hidden, and output layers.

PConv Partial Convolution A lightweight partial convolution proposed by FasterNet

SConv Separate
Convolution

An enhanced convolution proposed in this paper for feature
extraction

U-Net U-Net A convolutional neural network model commonly used for
image segmentation

2. Related Work
2.1. Medical Image Segmentation

With the advancement of convolutional neural networks (CNNs) [23] in medical image
analysis and processing, deep learning-based segmentation methods have become a hot
research topic, due to their ability to automatically learn image features and overcome the
limitations of manual feature extraction in traditional methods. One typical end-to-end deep
network for image segmentation is the fully CNN (FCN) [24]. FCN uses deconvolutional
layers to upsample [25] the feature maps from the last convolutional layer, restoring them to
the same size as the input image. This allows for generating predictions for each pixel while
preserving the spatial information from the original input image. At the end, the upsampled
feature maps are pixel-wise classified to achieve the final image segmentation. Based on
FCN, Ronneberger et al. designed a U-Net network [10] specifically for biomedical images,
which has been widely applied in medical image segmentation since its introduction.
Due to its excellent performance, U-Net and its variants have been extensively used in
various subfields of computer vision. U-Net is suitable for medical image segmentation
because its architecture combines both low-level and high-level information. The low-level
information helps improve accuracy, while the high-level information aids in extracting
complex features, [26]. UNeXt [27], proposed by Valanarasu et al., combines MLP [22] with
U-Net to achieve reduced parameter count while maintaining segmentation performance.
Considering the importance of lightweight models in practical applications and mobile
health, this study builds upon previous research and introduces various attention modules
to ensure high-performing and efficient medical image segmentation. Recently, Ruan
et al. proposed MALUNet [16], a network model that incorporates four attention blocks:
Channel Attention Bridge (CAB) block, Spatial Attention Bridge (SAB) block, Dilated Gated
Attention (DGA) block, and Inverted External Attention (IEA) block. These attention blocks
enable the model to acquire multi-stage and multi-scale information, and significantly
reduce the number of channels.

2.2. Skin Lesion Segmentation

Recently, the integration of deep learning and machine learning in the context of
skin disease segmentation has gained attention. In 2020, Khan et al. proposed a novel
automated system for skin lesion localization and recognition [28], which combines the
concepts of deep learning and IcNR-based feature selection and follows three main steps:
rapid lesion localization through region-based convolutional neural networks (R-CNN) [29],
deep feature extraction, and feature selection using the IcNR method. In 2022, Manzoor et al.
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introduced a lightweight skin disease detection approach [30] involving optimal feature
fusion. These authors initially segmented images using CNN segmentation and applied
filter operations after segmentation to eliminate the noise. Statistical feature extraction
employed principal component analysis and the Gray-Level Co-occurrence Matrix (GLCM)
algorithm [31], supplemented by deep feature extraction through the AlexNet transfer
learning method. ABCD [32] rule features were also extracted. In 2023, Zafar et al. [33]
compiled and organized skin disease detection from the perspectives of both machine
learning and deep learning. Their study was compared with other studies, highlighting
its novelty and comprehensiveness. They outlined the main steps of computer-aided
skin cancer diagnosis systems, such as preprocessing, segmentation, feature extraction,
selection, and classification. While relevant machine learning algorithms can post-process
deep learning results and demonstrate advantages through further feature fusion, such
integration may increase the complexity of the entire process. Capable of automatic feature
learning from data, the GSCEU-Net model, proposed in this paper, reduces the need for
manual feature engineering. Additionally, the GSCEU-Net model’s training data comprise
only 200 KB, making it suitable for deployment on micro devices, achieving high levels of
lightweight efficiency.

2.3. Attention

The attention mechanism [34] is a commonly used method in deep learning to assign
different weights to different input information. These weights have the flexibility to
be adapted in various scenarios, rendering attention mechanisms exceptionally versatile
and resilient.

In the realm of medical image segmentation, Oktay et al. introduced Attention-
UNet [12], an innovative network incorporating Attention Gates (AG) for the processing
of medical images. It calculates similarity scores between different inputs and performs
weighted aggregation based on these similarity scores. The lightweight Squeeze-and-
Excitation (SE) attention mechanism [35] is used to enhance model representation capacity.
The SE mechanism was initially introduced in image classification tasks and has been
widely adopted in some lightweight models to improve their performance. Its core idea
is to learn a channel attention weight vector to weight the feature maps of the input.
Through the squeeze and excitation steps, the importance of each channel in the input
feature maps is reweighted, enhancing the representation and learning capability of crucial
information. Woo et al. proposed the Convolutional Block Attention Module (CBAM) [36].
The CBAM attention mechanism combines spatial attention and channel attention by
element-wise multiplication of the two. This operation is applied to the input feature
maps, resulting in the output of the CBAM attention mechanism. The model can weight
the feature maps based on channel- and spatial-attention weights, thereby enhancing the
representation and learning capability of important information. Although CBAM belongs
to lightweight attention mechanisms, it introduces some additional parameters, which
increases the model’s parameter count and computational complexity compared to a single
attention model.

2.4. Lightweight CNNs

Lightweight CNNs were developed to meet the requirements of applications with lim-
ited resources, high real-time demands, and energy efficiency, aiming to create small, fast,
and energy-saving models to reduce costs and meet practical needs. In 2018, Mehta et al.
introduced the ESPNet network [37], specifically designed for semantic segmentation tasks.
It employs a hierarchical structure comprising a lightweight encoder and a multi-scale
decoder, while utilizing techniques such as depth-wise separable convolution, point-wise
convolution, and spatial pyramid pooling to efficiently capture multi-scale features and
strike a balance between computational cost and performance. It is suitable for mobile
devices and embedded systems. In 2019, Wu et al. proposed an adaptable lightweight
neural network architecture named FBNet [38], aiming to deliver high performance with
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low computational cost. It employs lightweight operations and “ghost modules” to re-
duce parameter count while maintaining model efficacy. FBNet’s flexible design enables
customization, based on diverse tasks and resource requirements, making it applicable to
various image-processing applications.

In 2020, Han et al. proposed GhostNet [21], which aimed to strike a balance between
model efficiency and accuracy by introducing the concept of “ghost” modules. The key idea
of GhostNet is to enhance feature-extraction efficiency by incorporating ghost modules into
the network. Specifically, a Ghost module employs a technique called “ghost operation”
that divides the input feature map into two parts, one of which is called the “ghost feature
map”. Lightweight convolution operations are applied to the ghost feature map to extract
additional features at a lower computational cost.

To produce even faster networks, a new technique called partial convolution (PConv)
was introduced in FasterNet [20] in 2023. PConv, shown in Figure 1, minimizes unnecessary
computations and memory access to enhance the extraction of spatial features with greater
efficiency. It achieves significantly higher running speeds on various devices without
compromising the accuracy of various visual tasks. For example, on ImageNet-1k, the
smaller FasterNet-T0 outperforms MobileVitXXS [39] by 3.1 times on GPU, 3.1 times on
CPU, and 2.5 times on ARM processors, with an accuracy improvement of 2.9%.
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3. Proposed Model: GSCEU-Net
3.1. Overall Structure

Figure 2 illustrates the overall structure of the proposed GSCEU-Net model. The
model takes RGB skin lesion images as an input and produces a single-channel black-and-
white predicted lesion image as an output. GSCEU-Net adopts a U-Net structure [10],
consisting of an encoding part and a decoding part. The encoding part gradually reduces
the size and number of feature maps, while the decoding part restores the feature maps
to their original size through upsampling and skip connections. The presence of skip
connections allows the network to utilize high-resolution features (from the encoding
part) in the decoding part, thus effectively preserving target boundaries and details. In
the proposed model, the GSC module is employed as a key component in the encoding
part. The GSC module utilizes 1 × 1 and 3 × 3 convolutions to process the input feature
maps, extracting and integrating features at different scales. In the decoding part, the
Efficient Channel Attention (ECA) mechanism [19] is combined with the GSC module.
The ECA mechanism effectively captures channel interactions and enhances important
information in the feature maps. After the decoding stage, a 1 × 1 convolution is employed
to map the feature results with four channels to a single-channel predicted image. This
design preserves the overall U-Net structure [10], guaranteeing its powerful segmentation
capability. Furthermore, by combining lightweight backbone networks and lightweight
attention mechanisms, the proposed model represents the most representative features
of the image using fewer parameters, which affects positively the model’s complexity.
Through this design, the proposed model can fully leverage the advantages of U-Net,
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while at the same time being able to improve its efficiency and performance, and maintain
lightweight characteristics. This enables its better adaptation to the requirements of skin
lesion image-segmentation tasks.
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3.2. Separate Convolution (SConv)

The U-Net architecture [10] comprises a contraction pathway and an expansion path-
way, corresponding to increasing and decreasing feature-map depths, i.e., the number of
channels. However, our idea of incorporating a PConv module [20] into U-Net is not di-
rectly realizable due to the use of a different number of input and output layers. Therefore,
a modified PConv module, called the Separate Convolution (SConv) module, is proposed
here, as shown in Figure 3 (taking the contracting path as an example, with increasing
output channels, and choosing a split value of four for the input channels). A 3 × 3 2D
convolution is applied to one quarter of the feature maps, while for the remaining three-
quarters, instead of directly concatenating them like in the original PConv, a 1 × 1 2D
convolution is performed, followed by concatenation of the results. Finally, the output
channels are split, and the processed feature results are mapped to either an enlargement
or reduction. By sliding a 3 × 3 convolutional kernel at different positions, the designed
SConv module can effectively capture image edges, textures, and other local features, which
helps the proposed GSCEU-Net model learn low-level and mid-level features of the images.
The 3 × 3 convolution also reduces the number of parameters while maintaining a larger
receptive field, enhancing the network’s ability to recognize larger skin lesions. The use
of a 1 × 1 convolution changes the channel numbers of the feature maps, allowing for
decreased model complexity. Additionally, performing convolutions at each position of the
feature map allows for the extraction of local spatial features, speeding up the convergence
of model training. The SConv operation can be expressed as:

YSConv = Cat{Conv2d3×3(Split(X/4)); Conv2d1×1(Split(X 3/4))} (1)
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3.3. Ghost Separate Convolution (GSC)

Serving as a foundational component for the proposed GSCEU-Net model, the newly
designed GSC module consists of two paths—left and right, as depicted in Figure 4. The
left path incorporates a Ghost module [21], which includes two convolutions. The first
convolution utilizes a 1 × 1 kernel, followed by a batch normalization (BN) [40] and
a Rectified Linear Unit (ReLU) [41] activation to obtain low-dimensional feature maps.
The second convolution employs a 3 × 3 grouped kernel, followed by BN and ReLU, to
enrich the output feature maps from the first convolution. Finally, the results of the two
convolutions are concatenated. The right path, consisting of a SConv module followed
by a multilayer perceptron (MLP) [22] and a DropPath, which randomly removes excess
parameters to prevent model overfitting. The outputs of the left and right paths are added
together to produce the final output of the GSC module. The advantage of the Ghost
module is that it splits one convolutional layer in a conventional deep neural network into
two parts, using fewer parameters to generate more features. This module implements a
residual connection network structure at a low computational cost. Both the Ghost module
and SConv module have low computational complexity while preserving the respective
features. The operation of the Ghost module can be expressed as:

YGhost_1 = ReLU(BN(Conv2d1×1(X))) (2)

YGhost = Cat
{

ReLU
(

BN
(
Group_Conv2d3×3(YGhost_1)

))
; YGhost_1

}
(3)
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The operation of the GSC module can be expressed as:

YGSC = YGhost + DropPath(MLP(YSConv)) (4)

3.4. Efficient Channel Attention (ECA)

ECA [19] is a crucial element in deep learning models for enhancing their representa-
tion and performance. It addresses the challenge of dimension reduction by preserving the
original dimensions and effectively capturing channel-wise interactions. The ECA module,
shown in Figure 5, operates by performing channel-wise global average pooling without
dimension reduction. This operation allows the module to capture local cross-channel
interactions by considering each channel and its neighboring channels. Specifically, it
applies convolutional operations to each channel of the input feature map and normalizes
the results using a sigmoid function to generate channel attention weights. These weights
determine the importance of each channel in the feature map. Finally, the weighted feature
representation is obtained by multiplying the channel attention weights with the input
feature map in the channel dimension. Experimental results have demonstrated that the
ECA module offers efficiency and effectiveness in model training. It introduces minimal
additional parameters and incurs negligible computational overheads, while achieving
significant performance gains. Moreover, the design of the ECA module allows for dynamic
adjustment of the convolutional kernel values, providing flexibility and adaptability. In
the GSCEU-Net model proposed in this paper, a kernel size of k = 3 is selected to strike a
balance between model complexity and performance. Overall, the ECA module effectively
preserves the feature dimensions in the decoding stage, captures channel-wise interactions,
and enhances the performance of the proposed model. Its operation can be represented
as follows:

Y = σ(Conv2d1×1(AvgPool(X)))⊗ X (5)

where σ denotes the activation function and ⊗ denotes the matrix multiplication.
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4. Experiments and Results
4.1. Datasets and Data Preprocessing

The International Skin Imaging Collaboration Challenge (ISIC2018) public dataset [17],
the PH2 public dataset [18], and a private dataset were used in the experiments to both
train and assess the performance of the proposed GSCEU-Net model in comparison to other
existing segmentation models. Presently, ISIC2018 holds the distinction of being the world’s
most extensive collection of skin lesion images. It offers meticulously annotated digital
images of skin lesions, effectively advancing the development of Computer-Aided Diag-
nosis (CAD) systems targeted at melanoma and various other forms of skin cancers. The
PH2 public dataset was collaboratively gathered by Pedro Hispano Hospital in Matosinhos,
Portugal, and the dermatology department at the University of Porto. The private dataset,
originating from Peking Union Medical College Hospital, encompasses skin lesion images
portraying conditions such as acne and lupus erythematosus.

The ISIC2018 public dataset comprises 2594 skin microscopy images accompanied by
segmentation mask labels. For conducting the experiments, this dataset was partitioned
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into training, validation, and test subsets, utilizing a ratio of 7:1:2, respectively. Before
commencing the model training, we randomly selected one-third of the training images
and programmatically simulated additional random body hair. Moreover, throughout the
training phase, we applied various operations such as horizontal and vertical flipping, ran-
dom adjustments to brightness, Gaussian blurring, mean smoothing filtering, and random
hue saturation to the ISIC2018 training subset (as depicted in Figure 6). It is important
to note that none of these supplementary operations were applied to the validation and
test subsets.
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The ISIC2018 public dataset is widely used in the field of dermatology and skin cancer
research. It consists of high-resolution dermoscopy images collected from various sources,
including different anatomical sites and a wide range of skin conditions. Therefore, it is the
most compelling dataset among the three datasets used in the experiments. Consequently,
the ablation study experiments, outlined in Section 4.5.4, were conducted solely on this
dataset.

Consisting of only 200 images, the PH2 dataset was employed as an auxiliary testing
set to evaluate the models trained on the ISIC2018 dataset. Encompassing 1010 images, the
private dataset was randomly partitioned into training, validation, and test subsets using
an 8:1:1 ratio for experimentation purposes.

Details of the utilized datasets are shown in Table 2.

Table 2. Datasets: sizes, splitting, and image resolution.

Dataset
Total
Size

(Images)

Size of
Training Set

(Images)

Size of
Validation Set

(Images)

Size of
Testing Set

(Images)

Image
Resolution

(Pixels)

ISIC2018 [17] 2594 1816 259 519 256 × 256
PH2 [18] 200 200 256 × 256

Private dataset 1010 808 101 101 256 × 256

4.2. Experimental Environment

The experiments were conducted by utilizing PyTorch version 1.12.1 [42], in conjunc-
tion with Python version 3.10.6, and operating on Ubuntu 22.04. All trials were executed
on a computer equipped with a 12th Gen Intel® Core™ i5-12400 CPU, 16 GB of RAM, and
an NVIDIA GeForce RTX 3060 with 12 GB VRAM. The training process extended across
500 epochs. To optimize our model, we employed the SGD optimizer [43] with an initial
learning rate of 1 × 10−2, weight decay set to 1 × 10−4, momentum set to 0.9, and batch
size set to 8.
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The determination of the number of epochs, which represents complete training
iterations on a dataset, strikes a balance between model convergence and avoiding model
overfitting. We opted for a value of 500 epochs (c.f. Figure 7). To prevent rapid oscillations
and instability, an initial learning rate of 0.01 was chosen, based on empirical observations.
Furthermore, a gradually decaying learning-rate schedule was employed to achieve finer
convergence towards the end of training. A batch size of 8 was selected to strike a balance
between efficient gradient computation and memory utilization. A smaller batch size results
in increased parameter variance, whereas a larger batch size strains memory resources.
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4.3. Evaluation Metrics

In the experiments, four commonly used evaluation metrics were utilized to measure
the segmentation performance of the compared models, namely the Intersection over Union
(IoU), Dice Similarity Coefficient (DSC), accuracy, and sensitivity. Among these, the first two
are the main evaluation metrics used in image segmentation tasks.

IoU, also referred to as the Jaccard index, stands as a prevalent metric within the realm
of semantic segmentation. IoU quantifies the degree of overlap between the predicted
segmentation and the ground truth, divided by the area encompassing their union. In the
experiments, its computation takes the form of:

IoU =
TP

TP + FP + FN
(6)

where TP (true positives) denotes the count of accurately classified pixels as belonging to
an entity (a skin lesion in our context), FN (false negatives) corresponds to the number of
inaccurately classified pixels as not belonging to an entity, and FP (false positives) indicates
the count of inaccurately classified pixels as belonging to an entity.

DSC stands as the most extensively employed metric for assessing the performance
of image segmentation models. Its computation involves doubling the intersection area
between the predicted segmentation and the ground truth, then dividing it by the sum of
pixels in both sets, as follows:

DSC =
2TP

2TP + FP + FN
(7)

Accuracy (Acc) is used to evaluate the overall pixel-level segmentation performance,
calculated as follows:

Acc =
TP + TN

TP + TN + FP + FN
(8)
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where TN (true negative) signifies the count of pixels accurately recognized as not belonging
to an entity.

Sensitivity (Sen) indicates the ratio of accurately segmented skin lesion pixels, calcu-
lated as follows:

Sen =
TP

TP + FN
(9)

Additionally, in the experiments, the parameter count (represented in millions, M)
and computational complexity (measured in billion floating point operations per second,
GFLOPS) were also used to compare the models. Parameter count refers to the number of
learnable parameters of a model. Large parameter counts generally result in higher memory
usage. Using GFLOPS as an estimation of the computational resources required by a model,
an inference can be made for the model’s efficiency across different hardware platforms.

4.4. Loss Function

In the experiments, a composite loss function was used, particularly the Dice-related
composite loss function, which often achieves better segmentation results and stronger
performance than a single loss function.

The BCE loss function [44] is a common and intuitive loss function. It is widely used in
binary classification tasks and is also suitable for binary segmentation (lesion/non-lesion)
in skin disease semantic segmentation. The BCE loss function measures the accuracy of
predictions by comparing the similarity between the predicted segmentation result and the
ground-truth labels. The gradient computation of the BCE loss function is relatively simple,
which aids in the training and optimization of a model. It can be used in conjunction
with commonly used optimization algorithms (such as stochastic gradient descent) and
exhibits good numerical stability. The advantage of the BCE loss function is that it can be
combined with other loss functions to further enhance the model’s performance. The BCE
loss function is defined in [44] as follows:

LBCE = −∑
i
(giln(pi) + (1− gi)ln(1− pi)) (10)

where gi represents the segmentation outcome of pixel i as determined by a medical
professional, and pi corresponds to the segmentation outcome of pixel i generated by
the network.

The DSC loss function [45] directly optimizes the evaluation metric of the segmentation
model, namely the Dice coefficient. The DSC loss function can better handle the severe
class imbalance between positive and negative samples that may exist in skin disease
images. The DSC loss function exhibits good smoothness during the optimization process.
Compared to other loss functions, such as cross-entropy loss, the DSC loss function can
optimize the model parameters more smoothly. This helps in avoiding the issues of gradient
vanishing or exploding, thereby stabilizing the training process of the model. By using the
DSC loss function for training, it is possible to directly optimize the model’s DSC during
the training process, thus improving the segmentation performance of the model on the
test set. The DSC loss function is defined in [45] as follows:

LDSC = 1− 2 ∑i gi pi

∑i gi + ∑i pi
(11)

In order to accelerate the network’s convergence, alleviate the issues of gradient
vanishing, address class imbalance concerns in the backpropagation process, and achieve
effective skin disease segmentation, we amalgamate these two loss functions during model
training, as in [46], as follows:

L =
1
2

LBCE + LDSC (12)



Information 2023, 14, 486 12 of 18

4.5. Results

The performance of the proposed GSCEU-Net model was benchmarked against well-
established medical image segmentation models through comprehensive experiments
conducted across the three aforementioned datasets, with the outcomes presented in this
subsection. The experimental configurations of the majority of compared models were
identical to those used for GSCEU-Net.

4.5.1. ISIC2018 Experiments

Table 3 showcases the comparative segmentation performance results derived from
experiments conducted on this dataset (the most outstanding outcome for each metric is
highlighted in bold). It can be clearly seen that GSCEU-Net achieves a balance between the
number of parameters, computational complexity, and segmentation performance, with
IoU, DSC, and accuracy evaluation metrics reaching the highest values. The sensitivity value
is lower than that of MALUNet by only 0.0132 points. The GSCEU-Net’s parameter count
and GFLOPS also reach the highest values across the compared models, with parameter
counts being more than 4 times smaller than that of the second-best model (MALUNet).
Figure 7 depicts the training process of the proposed GSCEU-Net model, showing the
number of epochs, loss function, and IoU for training and validation. Sample visual
contrasts in skin lesion segmentation results attained by various models on this dataset are
show-cased in Figure 8.

Table 3. Segmentation-performance-comparison results on the ISIC2018 dataset.

Model Parameters
(Million) GFLOPS IoU DSC Acc Sen

U-Net 7.770 13.780 0.7887 0.8784 0.9508 0.8760
U-Net++ 9.160 34.900 0.7952 0.8824 0.9528 0.8732

Attention-UNet 8.730 16.740 0.7967 0.8833 0.9533 0.8591
UNeXt_S 0.300 0.100 0.8057 0.8895 0.9557 0.8586

MALUNet 0.175 0.083 0.8120 0.8924 0.9532 0.8875
GSCEU-Net

(proposed model) 0.041 0.081 0.8145 0.8948 0.9571 0.8743
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(c) U-Net result; (d) U-Net++ result; (e) Attention-Unet result; (f) UNeXt_S result; (g) MALUNet result;
(h) GSCEU-Net result.
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4.5.2. PH2 Experiments

To assess the segmentation ability of a trained model on a novel dataset and validate
its ability to generalize and exhibit robustness, additional experiments were conducted on
the publicly available PH2 dataset, comprising a mere 200 images.

Table 4 illustrates the results of the segmentation performance comparison yielded
by these experiments (the most outstanding outcome for each metric is highlighted in
bold). Similarly to ISIC2018, the proposed GSCEU-Net model outperforms all mainstream
models with scores that are 0.0163, 0.0092, and 0.0083 points higher than the first runner-up
(MALUNet) in terms of IoU, DSC, and accuracy, respectively. Furthermore, in terms of
sensitivity, GSCEU-Net, although not the first, is only 0.0011 points behind the winner
(MALUNet).

Table 4. Segmentation-performance-comparison results on the PH2 dataset.

Model Parameters
(Million) GFLOPS IoU DSC Acc Sen

U-Net 7.770 13.780 0.8062 0.8916 0.9276 0.9224
U-Net++ 9.160 34.900 0.7929 0.8831 0.9238 0.8909

Attention-UNet 8.730 16.740 0.7458 0.8505 0.9090 0.8241
UNeXt_S 0.300 0.100 0.8077 0.8900 0.9277 0.8874

MALUNet 0.175 0.083 0.8278 0.9048 0.9351 0.9484
GSCEU-Net

(proposed model) 0.041 0.081 0.8441 0.9140 0.9434 0.9473

Comparative results of skin lesion segmentation achieved by different models on this
dataset are illustrated in Figure 9. Evidently, GSCEU-Net delivers marginally superior
lesion segmentation outcomes in contrast to other models. Notably, GSCEU-Net excels in
effectively segmenting larger lesions, whereas U-Net frequently struggles to encompass the
entirety of lesion areas and displays discernible divergences in shape when matched against
ground-truth images. These findings affirm that the supplementary modules incorporated
into U-Net effectively enhance segmentation performance and significantly contribute to
the model’s commendable generalization capabilities.
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(h) GSCEU-Net result.
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4.5.3. Private Dataset Experiments

Next, experiments were carried out on the private dataset. In contrast to the ISIC2018
dataset, this collection of data comprises fewer images, leading to reduced training duration
and quicker network convergence. However, the lesions in this dataset are shallower and
have blurred edges, making segmentation more difficult.

Table 5 showcases the outcomes of the segmentation performance comparison attained
through experimentation on this dataset (the most outstanding outcome for each metric is
highlighted in bold). Once more, the proposed GSCEU-Net model demonstrates superiority
over all other models on two main segmentation evaluation metrics, with higher scores
of 0.0053 and 0.0038 points on IoU and DSC, respectively, compared to the first runner-up
(UNeXt_S). Moreover, based on accuracy, GSCEU-Net also surpasses all mainstream models,
leaving the second place for U-Net++ which stays behind by 0.0042 points. Even though
the proposed GSCEU-Net model ranks only fifth in terms of sensitivity, this metric is not
prominent, as it indicates that a model considers some non-lesion regions as lesion regions
during predictions.

Table 5. Segmentation-performance-comparison results on the private dataset.

Model Parameters
(Million) GFLOPS IoU DSC Acc Sen

U-Net 7.770 13.780 0.6254 0.7635 0.9119 0.7868
U-Net++ 9.160 34.900 0.6283 0.7664 0.9171 0.7479

Attention-UNet 8.730 16.740 0.6308 0.7695 0.9109 0.8160
UNeXt_S 0.300 0.100 0.6397 0.7766 0.9143 0.7934

MALUNet 0.175 0.083 0.6301 0.7698 0.9150 0.7797
GSCEU-Net

(proposed model) 0.041 0.081 0.6450 0.7804 0.9213 0.7731

Comparative results of skin lesion segmentation achieved by different models on this
dataset are illustrated in Figure 10. It can be observed that GSCEU-Net is capable of predicting
the entire lesion more comprehensively and can accurately segment the lesion edges.
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4.5.4. Ablation Study Experiments

To ascertain the efficacy of each individually incorporated module on enhancing the
segmentation performance, ablation study experiments were conducted using the U-Net
model as a baseline for burn segmentation on the ISIC2018 dataset. The outcomes of these
experiments are depicted in Table 6 (the most outstanding outcome for each metric is
highlighted in bold). Given the complexities inherent in lesions with distinct shapes, colors,
and indistinct boundaries within the ISIC2018 dataset, the number of channels was kept
the same in U-Net and GSCEU-Net, for fair comparison. Additional modules, suggested in
this paper for incorporation into U-Net, were gradually added to it, which reflects changes
in parameters, floating-point operations, and evaluation metrics. The model obtained at the
final ‘U-Net + GSC + ECA’ step (i.e., the GSCEU-Net model), demonstrates the best results
on all four evaluation metrics used. Although the GSCEU-Net model has three times the
number of parameters and floating-point operations compared to the ‘U-Net + SConv’
combination, it outperforms it by 0.0401 and 0.0267 points on IoU and DSC, respectively,
which are the main metrics used for segmentation performance evaluation. Furthermore,
even though the inclusion of the ECA attention module resulted in almost no increase
in parameters and floating-point operations, yet it made a significant contribution to the
model’s segmentation performance.

Table 6. Ablation study results using U-Net as a baseline.

Model Parameters
(Million) GFLOPS IoU DSC Acc Sen

U-Net 0.12 0.220 0.7868 0.8758 0.9503 0.8692
U-Net + SConv 0.01 0.024 0.7744 0.8681 0.9463 0.8653
U-Net + GSC 0.04 0.081 0.7858 0.8763 0.9504 0.8586

U-Net + GSC + ECA
(i.e., proposed
GSCEU-Net)

0.04 0.081 0.8145 0.8948 0.9571 0.8743

5. Discussion

Segmentation of skin lesions requires rapid and accurate prediction, which can pro-
vide beneficial assistance to patients. Traditional methods are time-consuming and rely
heavily on parameter tuning. On the other hand, complex deep learning models have
high computational resource requirements and come with a significant time cost, making it
challenging to meet the practical needs of medical skin lesion segmentation. In light of this,
a lightweight encoder–decoder model, referred to as GSCEU-Net, has been proposed in this
paper by using the U-Net model as a basis with additionally incorporated modules. Firstly,
the lightweight idea of PConv [20] has been utilized to design a novel SConv module for
incorporation into U-Net, so as to avoid wasting a large portion of input features, utilize
1 × 1 convolutions to accelerate model prediction, and dynamically compute the scaled
output channel numbers at a very low cost to meet the requirements of the U-shaped
structure. Secondly, a GSC backbone network has been proposed, which combines up-
graded SConv paths with a Ghost module for residual connections, thereby absorbing
the features of both module types to enhance the model’s robustness and generalization
capability. Thirdly, the ECA attention mechanism has been added to the decoding part of
the model. After upsampling the output, more prominent features can be extracted for
skip connections, introducing minimal additional parameters and negligible computations
while achieving significant performance gains. For the loss function, the BCE and DSC
losses have been combined to tackle imbalanced samples. The conducted experiments
on respected datasets like ISIC2018 and PH2, along with a private dataset, have yielded
persuasive results, whereby GSCEU-Net has shown reliability, robustness, and adaptability
across tough images by outperforming widely used segmentation models, such as U-Net,
U-Net++, and Attention-UNet. Moreover, GSCEU-Net had a lower parameter count and
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fewer floating-point operations compared to recently proposed lightweight models, such
as UNeXt and MALUNet.

Compared to U-Net, GSCEU-Net was able to improve the IoU value by 0.0258, 0.0379,
and 0.0196 points on the ISIC2018, PH2, and private datasets, respectively, while also
increasing the DSC value by 0.0164, 0.0224, and 0.0169 points, respectively. At the same
time, the parameter count and floating-point operations were reduced by a factor of 190
and 170, respectively, compared to U-Net.

Compared to the recent skin lesion segmentation models, the proposed model has
also demonstrated competitive performance. Importantly, the modules employed by the
proposed model (some of which are newly designed ones) have a small memory footprint
of only 260 KB after training, compared to 806.5 KB and 1 MB for UNeXt and MALUNet,
respectively. This is a significant advantage in practical applications, since the proposed
model can be installed on compact mobile devices for standalone execution.

In future research, we plan to explore the following improvements. Firstly, although
the model has demonstrated outstanding segmentation results, its training process required
a relatively large number of epochs, resulting in slow convergence. If appropriate opera-
tions, such as learning rate adjustments or pretraining the model with other datasets, can
be incorporated, superior weights can be obtained during the initial training. Secondly,
we will explore even more lightweight convolutional modules that can result in state-of-
the-art network performance while having an extremely low parameter count and fewer
floating-point operations.

6. Conclusions

An improved U-Net network architecture, called GSCEU-Net, has been presented in
this paper; it achieves leading performance on various evaluation metrics while ensuring
a lightweight design. For this, GSCEU-Net combines newly designed SConv and GSC
modules, along with an ECA mechanism, allowing it to achieve IoU values of 0.8145, 0.8441,
and 0.6450, and DSC values of 0.8948, 0.9140, and 0.7804, on the ISIC2018 and PH2 public
datasets, and a private dataset, respectively.

Nevertheless, it is essential to acknowledge certain limitations inherent in the proposed
model. For instance, the model’s training convergence speed is low, and the floating-point
operations have not reached the fastest level. We believe that further parameter adjustments
to the proposed lightweight model can be made to meet the requirements of real clinical
environments.
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