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Abstract: Universal adversarial perturbations are image-agnostic and model-independent noise
that, when added to any image, can mislead the trained deep convolutional neural networks into
the wrong prediction. Since these universal adversarial perturbations can seriously jeopardize the
security and integrity of practical deep learning applications, the existing techniques use additional
neural networks to detect the existence of these noises at the input image source. In this paper, we
demonstrate an attack strategy that, when activated by rogue means (e.g., malware, trojan), can
bypass these existing countermeasures by augmenting the adversarial noise at the AI hardware
accelerator stage. We demonstrate the accelerator-level universal adversarial noise attack on several
deep learning models using co-simulation of the software kernel of the Conv2D function and the
Verilog RTL model of the hardware under the FuseSoC environment.

Keywords: universal adversarial perturbations; deep learning accelerator; AI hardware security
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1. Introduction

The last decade has been a conspicuous success in the history of AI. Using deep
neural networks (DNN), AI has superseded human intelligence in many applications. For
example, Deepmind’s AlphaGo has defeated the world’s best human Go player, AlphaFold
can successfully predict the 3D protein fold structure, which had been a challenge for the
past 50 years [1], and, since 2015, ImageNet classifier models have been outperforming
humans in object recognition [2]. The rapid advancement in model building and their
promising accuracy in particular tasks have led DNN models to be frequently deployed
in a wide range of applications, including many safety-critical areas such as biometric
security, autonomous vehicles, cyber security, health, and financial planning. To withstand
the overarching AI-based applications, which require massive computations, the demand
for specially optimized hardware for these extremely power-hungry and data-driven
computations has also surged both in the data centers (for training) and edge devices (for
inference) [3,4]. As these AI accelerator devices are being used in several safety-critical
applications, ensuring their security and integrity is essential.

While AI and deep learning have become pervasive in all aspects of our lives, we
should not disregard the fact that the DNN models are highly vulnerable to adversarial
examples [5]. An adversarial example is an example that is intentionally created to be
misclassified by a DNN model by adding adversarial perturbation to the input data [5]. The
addition of this adversarial perturbation to clean inputs makes the inputs falsely classified
by state-of-the-art DNN models while retaining credibility with humans. Adversarial
samples are obtained by adding imperceptibly small perturbations to a correctly classified
input image so that it is no longer classified correctly. The adversarial samples expose
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fundamental blind spots in the DNN training algorithms. The adversarial examples
represent low-probability (high-dimensional) “pockets” in the input space, which are
hard to efficiently find by simply randomly sampling the input around a given example
[5,6]. By using a simple optimization procedure, adversarial examples can be found. The
generalization (i.e., adversarial perturbation created for a model trained with one data
distribution is also harmful to the models that are trained over different sets of data
distribution) and transferability (i.e., the adversarial examples computed for one model are
also valid for every other model with completely different architectures, hyperparameters,
and training data) properties of adversarial examples have doubly contributed to this
stealthy nature of DNN models [5–8].

The existence of the above-described features of DNN provides enough opportunity
to an attacker to intrude on an AI model to inflict massive damage in his intended domain.
Depending on the extent of information (such as model parameters, input, or output)
available to the adversary and in which phase the attack has been launched, various
types of attacks have emerged in the last several years. In a poisoning attack, a malicious
model is developed during the training phase either by training the model on adversarial
data distribution, altering the training procedure, or manipulating the model’s weights
or architecture [9,10]. In contrast, in an evasion attack, an adversary discovers malicious
inputs on which the model will make unexpected errors [9]. When the adversary has access
to all sorts of necessary information about the model, such as model architecture, model
parameters, and weights, the attack scenario is termed a white-box attack [11]. Contrarily, in
a black-box attack, an attacker cannot access any model information other than the model’s
response to the chosen input [11]. Upon its discovery, it has been shown that the adversarial
examples can be exploited to successfully attack all kinds of deep learning applications [12].
However, all these attacks are software-based and mainly focus on devising innovative
techniques to generate adversarial examples. It is assumed that the hardware where the
DNN models are computed (training and inference) is always reliable and trustworthy.
Unfortunately, this assumption is no longer valid in the current semiconductor industry,
and security vulnerabilities in the hardware, as well as software malware, call for serious
attention from the research community [13,14].

AI/deep learning hardware can be compromised from methods based on both hard-
ware (e.g., trojans) and software (e.g., malware). Because of ASICs’ complex and intricate
structure, semiconductor industries involve design outsourcing and globalization of fab-
rication. In most cases, the designed GDSIIs travel overseas, from designer to foundry,
before they are finally deployed in the target device. This whole supply chain flow has
become one of the most prominent causes of the infiltration of untrusted hardware in the
semiconductor industry [13]. Anyone with an evil intent engaged in this flow is capable of
any malicious alteration of the target product. Because of this reason, hardware security
has received attention in the past decade. However, very few works have been completed
regarding an AI-specialized hardware platform. From the software perspective, malicious
code in the form of malware [15–17] can compromise deep learning/AI computing systems.
Although malware protection techniques and computer system security have significantly
improved over the past decade, attackers are consistently coming up with new evasive
and sophisticated strategies to breach the software- and hardware-level malware detection
techniques to execute malicious functions [15–17]. Preventing attackers from installing
malicious programs to gain privileged access to the system is practically impossible as they
can exploit various techniques, such as web browser vulnerabilities, social engineering
(e.g., phishing), email attachments, flash drives, etc. Symantec reported that 246,002,762
new malware variants emerged in 2018 [15]. Adversarial noise can be injected into deep
learning AI hardware by compromising its operating system and execution software with
various malware attacks similar to Stuxnet [18].

In this work, for our attack strategy, we exploit the recently discovered phenomenon
that there exists a universal adversarial perturbation (UAP) noise that, when added to the
inputs of the DNN model, can severely compromise their prediction accuracy [8,19]. The
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following scenario can be pictured as an example. An inference-only device is used for
the inference tasks of a pre-trained AI model in an autonomous vehicle. The task of the
model is to provide an appropriate decision about surrounding objects and road signs to
the vehicle. The DNN model is authentic. However, the device that is performing the
computation has a severe security flaw: it has a universal adversarial noise image stored
in its memory, which can be augmented to the input image captured by the vehicle’s
camera and is capable of fooling almost all DNN models irrespective of their architecture
and training data distribution. The model will then decide on the perturbed image and
provide a disastrous decision for the car based on its misclassified output. The existing
fault-injection- and bit-flip-based attacks [20–24] require a fair amount of knowledge about
network architectures and parameters to materialize an attack by careful manipulation
of the network. These constraints make these attacks hard to implement in real time. In
contrast, the UAP attacks are more generic and, hence, more destructive.

In this paper, we present a novel accelerator-based DNN attack that exploits the UAP
noise, which does not need any information about the model’s architecture and parameters.
The attacker only needs to have the scope of planting malware or software/hardware
trojans. The key contributions and highlights of this paper are

• To the best of our knowledge, this work, for the first time, proposes and demonstrates
an accelerator-based DNN attack that requires little to no knowledge about the target
DNN model by exploiting universal adversarial perturbation (UAP). The proposed attack
is sneaky enough to obscure its existence yet powerful enough to cause massive
damage.

• We propose a novel technique to interleave the UAP noise with the actual image to
mislead the trained DNN model when the attack is activated with malware or soft-
ware/hardware trojans. Since our technique avoids the usual methods of adversarial
noise injection at the sensor or camera level and directly injects at the accelerator
hardware stage, it is more stealthy.

• We provide a detailed comparative analysis of the complexity, stealth, and implemen-
tation challenges of the existing Trojan, fault injection, bit-flip-based, and proposed
UAP-based attacks on the AI/deep learning hardware.

The rest of the paper is organized as follows. Section 2 presents the background on
DNNs, accelerators, and adversarial noise attacks. Section 3 presents the threat model
of the UAP attack. Section 4 presents the details of the UAP interleaving method. The
stealth of the proposed UAP attack is discussed in Section 5. The experimental results are
presented in Section 6 and related work in Section 7.

2. Background
2.1. AI/Deep Learning Neural Networks

The backpropagation-based NN and CNN are the essence of AI/deep learning al-
gorithms. As shown in Figure 1a, a deep NN consists of an input layer, followed by
several hidden layers and a final output layer. Depending on the data size, complexity
of training, dropout, and pruning rate, some layers in the NN are fully connected, and
others are sparsely connected [2]. The connection strengths between the adjacent layers
are represented by a weight matrix W, and the matrix parameters wi are learned by the
backpropagation-based learning equation, ∆wi = −α× ∂Error

∂wi
, where α is the learning rate,

and Error is the prediction error. During the forward pass of training and inference phases,
the output activation of a layer, Xo, is obtained by multiplying the input activation vector
with the weight matrix followed by the addition of a bias term, and finally passing the
result through a non-linear function, such as ReLU, Xo = ReLu(W × Xi + b).

Due to their higher accuracy, deep CNNs have become the standard for image and
pattern recognition [2]. The operation of a deep CNN is briefly shown in Figure 1b. During
training and inference, each image or pattern is convolved successively with a set of filters
where each filter has a set of kernels. After ReLU activation and pooling, the convolution
operation is repeated with a new set of filters. Finally, before the output stage, fully



Information 2023, 14, 516 4 of 17

connected NNs are used. The convolution operation is shown in Figure 1c and consists
of dot products between the input feature maps and filter weights (h), mathematically,
fout(m, n) = ∑j ∑k h(j, k) fin(m− j, n− k).
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Figure 1. (a) Deep NN; (b) deep CNN; (c) convolution in CNN.

2.2. AI/Deep Learning Accelerator Architecture

Since the computations in deep NN/CNN are mostly dominated by Multiply and
Accumulate (MAC) operations, the AI accelerators are primarily occupied with arrays
of Processing Elements (PE) optimized for fast MAC function [2]. As shown in Figure 2,
the accelerator architectures can be categorized into two domains: (i) tightly coupled
2D systolic arrays (e.g., Google’s TPU) [2,3] and (ii) loosely coupled spatial arrays with
independent PEs interconnected with NoC/mesh and using SIMD architecture [2].
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Figure 2. AI accelerator with PE/MAC arrays. (a) Systolic architecture; (b) SIMD architecture.

2.3. Adversarial Perturbation to Mislead Trained AI Models

The well-trained state-of-the-art deep learning models can be fooled to misclassify
inputs by augmenting the input images with adversarial patterns. Adversarial samples
are created by adding imperceptibly small and non-random perturbations to the correctly
predicted original input images to cause the trained deep learning models to classify
the input images falsely [5–8]. Because of the small magnitude of the perturbation, the
adversarial samples are often imperceptible to the human eye and correctly classified by a
human observer but fail at the trained deep learning model level. The adversarial samples
are distinct from randomly distorted samples. In most cases, the randomly distorted image
samples—where the magnitude of the random noise is not too large compared to the actual
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image—are classified correctly by the state-of-the-art deep learning networks. However,
the adversarial samples are almost always misclassified [5–8]. Two important properties of
adversarial perturbations are as follows [6].

- Generalization Property: Deep learning models demonstrate consistency in misclassi-
fying adversarial samples. Adversarial images created for one deep learning model
are often erroneously classified by other models with different hyperparameters (i.e.,
different model architecture, number of layers, initial weights, regularization, etc.)
and a different subset of training data [5–8].

- Transferability Property: The adversarial samples are robust and demonstrate transfer-
ability property [5–8]. Adversarial samples crafted to mislead a specific deep learning
model are also effective in misclassifying other deep learning models, even if their
architectures greatly differ.

These two properties make adversarial attacks more pervasive and stealthy. The
adversarial patterns can be maliciously augmented with the input data at the AI hardware
level and cause the trained deep learning model to fail.

Adversarial Sample Crafting

There are two classes of methods for generating adversarial samples.

- Image-based Adversarial Perturbation: In this method [5–7], adversarial samples are
created on a per-image basis by adding carefully crafted noise to the original image
along the gradient directions. Once a particular image is augmented with this noise,
it can show its adversarial efficacy across different neural network models. However,
to achieve a successful adversarial goal, the perturbation needs to be generated
separately for each image [5,6].

Using the Fast Gradient Sign Method (FGSM), adversarial samples can be created in
this approach [6,7]. The adversarial input

−→
x∗ can be generated from the input pattern −→x by

adding a perturbation, i.e.,
−→
x∗ = −→x +−→η , The perturbation is obtained with FGSM using

the equation −→η = ε ∗ sign(∇−→x J(θ,−→x , y)), where θ is the model parameter, −→x is input to
the model, y is the target, and J(θ, x, y) is the cost function. The gradient is calculated using
backpropagation [5,6].

- Universal Adversarial Perturbations: In the second method [8], universal adversarial
perturbations are generated based on the input (i.e., image) data distribution rather
than individual images. In addition to being network-agnostic (i.e., transferable
among different state-of-the-art deep learning models), these universal perturbations
are image-agnostic and maintain their adversarial efficacy across different images
belonging to the same distribution (e.g., ImageNet dataset). For a classification
function f that outputs a predicted label f (x) for each image x ∈ Rd, a perturbation
vector v ∈ Rd is the universal adversarial perturbation vector that misleads the
classifier f on almost all data points sampled from the distribution of images in Rd

such that f (x + v) 6= f (x) for most x in the distribution [8]. The algorithm to find v
proceeds iteratively over a set of images sampled from the distribution and gradually
builds the universal perturbations. Due to their small magnitude, the perturbations
are hard to detect and do not significantly alter the data distributions. The universal
perturbations were shown to have generalization and transferability properties across
different architectures on the ImageNet dataset. This implies that, to fool a new
image on an unknown deep neural network, a simple augmentation of a universal
perturbation generated on AlexNet/VGG16 architecture is highly likely to misclassify
the image.

2.4. Adversarial Attack Strategy during Deep Learning Inference

The adversarial attacks on trained deep learning models can be broadly classified
as white-box and black-box types. In the white-box attack scenario, for a target deep
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learning model, the adversary has access to all the elements of the training procedure,
such as the model architecture, training data, training algorithm, weights, etc. With this
information, in a white-box attack scenario, the adversary can use arbitrary methods to
create the adversarial samples [7]. In a stronger black-box attack scenario, the adversary
only has access to the deep learning model’s input–output relationships. In the black-
box attack in [11], it was demonstrated that adversarial attacks could be manifested by
developing a surrogate model of the target DNN under attack by knowing only the output
class information of the model for various inputs (i.e., Oracle query [7]). In this black-box
attack mode—without truly knowing the architecture of the model being attacked—using
the surrogate model, the attacker can generate adversarial samples. The transferability
property (i.e., adversarial sample created on one deep learning model is also effective on
another) of adversarial perturbation ensures that the samples will be effective on the actual
DNN under attack [7].

For the case of universal adversarial-perturbation-based attacks [8], the attack strategy
becomes even more straightforward. Because of the image-agnostic universal nature of
the perturbation, the attacker can create the universal adversarial perturbations by only
knowing that the AI/deep learning model is completing image recognition/classification
tasks. For example, universal adversarial perturbations created based on the large Im-
ageNet dataset demonstrate its adversarial effectiveness across various state-of-the-art
image classification deep learning models by virtue of the generalization and transferability
properties of adversarial samples [8].

To counteract adversarial attacks of the deep learning models, adversarial training was
proposed where adversarial samples were used during the training procedure. However,
in [7], it was demonstrated that the adversarially trained models remained vulnerable to
multistep and elaborate black-box attacks where perturbations created on undefended
models were transferred to the adversarially trained models.

3. Threat Model

Attacker Knowledge: The attack model is BlackBox [11] as it is not required to know the
model parameters, training data, etc. The attacker only needs to know the deep learning
model‘s task category (e.g., image classifier) and use the appropriate universal adversarial
perturbation. In our threat model, to materialize the attack, it is not required for the trained
model to have back doors [11,25,26]. These make the attack more stealthy.

Adversarial Goal: Once the attack mode is activated with malicious means (e.g., malware),
the adversarial noise is injected into the AI hardware, and the attacker gains the ability to
fool the pre-trained AI/deep learning model into misclassifying the input samples during
inference.

Attack Strategy: The strategy for attacking AI hardware accelerator with universal ad-
versarial perturbation is shown in Table 1. To implement this attack in the AI accelerator
hardware, with heightened privilege (root access on Linux, or admin access in Windows),
the adversary can access and modify the target program‘s address space through the
/proc/[PID]/map and through .DLL (Dynamic Link Library) injection in Unix and Win-
dows operating systems, respectively [27–29]. Specific types of malware, such as trojan,
rootkit, and fileless, can covertly alter the system library to accomplish malicious program
execution [15,30]. Trojan-type malware such as Emotet uses functionality that helps evade
detection by some anti-malware products [15]. Fileless malware (e.g., the Astaroth mal-
ware) are unique as they are capable of altering files related to the operating system without
installing any files of their own [30]. As the targets of the fileless malware are part of the
operating system, they often appear as legitimate files to the antivirus/malware tools, and
this makes the attacks stealthy [30]. One of the most dangerous malware, Rootkit [31],
provides privileged access to the computing system to the attacker. Once the rootkit is
installed in the system, the adversary can maintain privileged access and full control over
the system without detection, as it can disable malware detectors. A rootkit can target
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specific applications and partially modify their execution behavior by injecting its own
code. Another approach to malicious code/function injection is to remap memory between
processes with a malicious kernel module, which has proved effective in many well-known
attacks like Stuxnet [18].

Table 1. Strategy for attacking AI hardware accelerators with universal adversarial perturbation.

Attack Type Attack Strategy (Details in Section 4)

Malicious Noise Interleaving and Convolution
(MNIC)

Universal adversarial noise is interleaved with
the original image, and the filter rows are
repeated before the first convolution operation
(see Figure 3). Malicious modification (e.g.,
with malware) of the inputs of the ‘Conv2D’
function can accomplish this task.
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Figure 3. Universal adversarial perturbation added with a clean image to deceive the trained deep
learning model.

4. Accelerator-Level Addition of Adversarial Perturbation

To fool the trained AI/deep learning models, the adversarial perturbation noise needs
to be added to the input image before it is processed with convolution filters. In a regular
setting, to superimpose the adversarial patterns on the image, modifications at the camera
or the input image source itself are required before the AI accelerator processes it. Since
this input alteration adversarial attack is well-known, the image capture sensors and
digitization modules are protected with security measures to prevent any adversarial noise
additions. In our hardware-level attack, we assume the image sources are protected and
clean, and in our attack model, the universal adversarial perturbations are added to the
clean images by the attacker at the SoC level by exploiting the internal memory system and
software with malware/trojan. A simplified block diagram of an AI accelerator hardware
system is shown in Figure 4. The host CPU receives the clean input images through the
input port or sensors and then sends those to the accelerator hardware through the DRAM
for efficient and fast processing. In our attack model, the universal adversarial pattern is
stored on the SoC at the ROM or some other on-chip non-volatile memory. The adversarial
pattern can also be transferred to the system externally as malware. Under malicious
attack, this adversarial pattern is added with each input image before it is processed at
the AI accelerator hardware. Because of the transferability and generalization properties
of universal adversarial perturbations (i.e., discussed in Section 2.3), a single well-crafted
pattern can fool many images with high efficiency [8].
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Directly adding the adversarial noise with the input image using the CPU‘s ALU
will require many additions, which may raise the security alarm, indicating a malicious
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attack. For example, for typical RGB images of 3 channels (e.g., from ImageNet dataset),
224× 224× 3 addition operations will be required at the ALU to add the adversarial noise
with the input before sending it to the AI accelerator. As a result, in our attack strategy, we
avoid directly adding the stored universal adversarial perturbation with the image at the
host CPU. We utilize the additive property (i.e., f ∗ (a + b) = f ∗ a + f ∗ b, where ∗ is the
convolution operator) of convolution operation to create the same effect as convolving the
filter with the image perturbed with adversarial noise without directly adding the noise to
the image. This operation is mathematically explained with the illustration of Figure 5. In
Figure 5a, Yjk is the noise-added image pixels, i.e., Yjk = Ijk + njk, and Ijk and njk are clean
image and noise, respectively, for pixel location jk. The output of convolution with filter F
is O. In Figure 5b, instead of directly adding the noise pixel njk with corresponding clean
image pixels Ijk, the noise pixel rows are interleaved with the image pixels. To produce the
exact same outputs of Figure 5b, Omn, two other adjustments are necessary in Figure 5b:
(i) duplication of filter rows and (ii) doubling the vertical stride of convolution, as shown in
Figure 5b. With this modification, we can produce the same effect of convolving the filter
with noise-added inputs without ever explicitly adding the noise. In Figure 6, an example
is shown where universal adversarial noise patterns are interleaved across rows with an
image from the ImageNet dataset.
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Figure 5. Using the additive property of convolution, the same output feature map can be generated
by noise interleaving without directly adding noise to the input. (a) Convolution with direct adver-
sarial noise addition with input; (b) noise interleaved with input, filter duplicated, and vertical stride
doubled to accomplish the same task.

We need to perform this (i) noise-interleaved and (ii) repeated filter-row-based convo-
lution only for the first layer of the deep learning model, and the rest of the layers follow the
regular convolution approach. Since we are doubling the filter rows in this approach, the
number of MAC operations will also double only for the first layer of the model. However,
in contrast to the ALU of the CPU, the AI accelerator is equipped with a large number of
MAC modules (e.g., Google TPU has 65K MACs [3]), and, hence, the extra MAC operations
will complete very fast without raising any security alarm. Moreover, because of zero-skip
(i.e., if any of the MAC inputs are zero, the operation is skipped), and the presence of a
variable number of zeros in digitized images and quantized filter weights, the number
of MAC operations is not deterministic (i.e., fixed) for clean images. As a result of the
presence of a large number of MAC arrays in AI accelerators and zero-skipping in modern
accelerators, the extra MAC operations (i.e., only in the first layer) of our noise-interleaved
convolution will become masked to the extent that they do not raise any security alarm.
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Figure 6. (a) Clean input image; (b) universal adversarial perturbation; (c) adversarial perturbation
interleaved with the input image.

The AI accelerator loads the input image in its global buffer memory from the
DRAM [2,3]. In the regular scenario, the input image rows are placed adjacently in the
Memory as shown in Figure 7a. In our proposed hardware-level attack scheme, the rows of
universal adversarial perturbation are placed adjacent to the image rows in the Memory
as shown in Figure 7b. This can be achieved by malware or software/hardware trojans.
As a result, during execution at the accelerator, the noise data are interleaved with the
clean image data, and ensuing convolution in the accelerator, in effect, convolves the filter
with images corrupted with universal adversarial perturbation as graphically shown in
Figure 5b.
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Figure 7. Input image data positioning in memory: (a) regular scenario; (b) under adversarial attack,
noise data are interleaved.

The hardware-level malicious addition of the adversarial perturbation attack can be
initiated with malware or software-controlled trojans [32–34]. Additionally, the attacker
can utilize the unused instruction in the instruction set to manifest the adversarial noise
injection attack.

5. Stealth against Adversarial Detection Techniques

Our attack strategy can evade conventional protections against adversarial attacks in
AI/deep learning systems, as discussed in detail in the following.

5.1. SGX Independence

Intel SGX [35] can only protect the data and code segments stored in the Enclave.
However, in our threat model, (1) the adversarial noise data (about 74KB) and (2) the
malicious “Conv2D” function (few lines of code) are generic and already known to the
attacker. As a result, the attacker adds these data and code segments to the original version
even before they are transferred to the protected Enclave. In our threat model, the attacker
does not need to modify data in Enclave; thus, the attack scenario is independent of SGX.

5.2. Rowhammer Independence

In the conventional bit-flip attack (i.e., where the attacker needs to modify the trained
model’s weights) [21], rowhammer-based weight bit flipping in DRAM is necessary to
materialize the attack. With rowhammer-protected DRAM circuit design and Intel SGX,
the DRAM-based bit-flip attacks can be thwarted. Our threat model is non-invasive to the
DNN model as we do not need to tamper with the original trained model parameters.
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5.3. Bypassing Conventional Countermeasures against Adversarial Noise

In conventional attack models, the adversarial noise is generally added at the image
source; hence, protective measures are taken accordingly. However, in our attack strategy,
adversarial noise is added internally at the AI accelerator level. As a result, it can bypass
the state-of-the-art adversarial detection techniques that assume adversarial noise is added
at the image source, making the attack stealthier. The SentiNet method presented in [26]
detects adversarial attacks, such as trojan triggers, backdoors, poisoning, and adversarial
patches, on test images. SentiNet first identifies the salient regions of an image that highly
influence its class labels and therefore are potential targets of adversarial noise addition. To
identify if the test image is compromised, these salient regions are superimposed on benign
golden samples and tested if they are misclassified upon overlaying. High misclassification
rates indicate the presence of adversarial noise or patches. The STRIP technique proposed
in [25] detects trojan images on the concept that, if an image is backdoored with adversarial
patches, it will always classify into a certain adversary-chosen class. The STRIP detection
algorithm adds perturbations to the test image and identifies if its class label changes and a
static class label indicates that the image was trojaned with an adversarial patch. However,
to implement these approaches at run time, additional AI accelerator hardware is needed
to execute these detection models in parallel to the original deep learning model, and this
incurs extra energy and latency. Moreover, these detection techniques are developed for
scenarios where the adversarial noise or trojan is localized to a patch, in contrast to our
threat model, where low-magnitude universal noise spans across the image.

In [36], a defense mechanism against UAP has been presented. First, a Perturbation
Rectifying Network (PRN) is trained and then used as the ‘pre-processing’ layer of the
targeted model. Next, a perturbation detector is separately trained as a binary classifier
to extract discriminative features from the difference between the inputs and outputs of
the PRN. However, this proposed method requires extra pre-trained models to be added
before the target model and also assumes a conventional scenario where the images are
compromised with UAP before they are processed at the accelerator. As in our proposed
attack, the UAP is interleaved with the images at the hardware accelerator stage; the
detection techniques of [36] can be evaded and the attack becomes stealth.

5.4. Non-Deterministic Execution

In our approach, because of duplicating the filter rows of the first layer, the number of
MAC operations in the first layer of the model can double. However, this may not raise any
security alarm because, in modern AI accelerators, zero-skipping is implemented [2] where,
if any of the ifmap or filter input is zero, MAC operation is skipped. Because of image
digitization and quantization before feeding to the accelerator, there are several zeros in
the input image pattern and this number varies from image to image. Moreover, there are
also zeros present in the filter. As a result, the number of MAC operations per image is not
deterministic, and, hence, the extra MAC required in our adversarial attack will vary from
image to image without showing any constant pattern that can raise the alarm.

6. Experimental Results

To generate the universal adversarial perturbations, we used the tools available
from [8]. The normalized maximum magnitude of the adversarial perturbation was kept
within 5% of the normalized maximum magnitude of the images. For our analysis, we used
the standard 50K validation image samples from the ImageNet database. After adding the
universal adversarial perturbations with these images, we used the pre-trained version
of several widely used deep learning models and analyzed the fooling rate of adversarial
noise with PyTorch [37]. In accordance with [8], we define the fooling rate as the percentage
of image samples that altered their labels under adversarial noise compared to clean images
(i.e., irrespective of ground truth). We used the same (i.e., a single pattern of 224 × 224 pix-
els with three channels) universal adversarial noise (i.e., transferability property as discussed
in Section 2) for our experiments with AlexNet, ResNet-50, VGG-16, and GoogleNet deep
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learning models. The fooling rates are shown in Table 2. We can observe that more than
80% of validation image samples altered their labels when adversarial noise was added.

Table 2. Adversarial fooling rate.

Network AlexNet VGG-16 ResNet-50 GoogleNet

Adversarial Fooling Rate (%) 90.8 88.9 84.2 85.3

The normalized Top-1 and Top-5 accuracy changes for ImageNet data under the
universal adversarial perturbation are shown in Figure 8. Additionally, to demonstrate the
efficacy of universal adversarial noise compared to random noise, we also ran two sets of
additional experiments where (i) the clean images were augmented with low-magnitude
random noise (i.e., noise magnitude within 5% of the original image, similar to the case
of the adversarial perturbation) and (ii) high-magnitude (i.e., maximum allowed noise
magnitude same as the image magnitude) random noise added with the clean images. The
results for AlexNet, VGG-16, ResNet-50, and GoogleNet are shown in Figure 8. From these
experiments, it can be seen in Figure 8 that random noise with an amplitude similar to
adversarial perturbation only slightly impacts the accuracy, implying that the sate-of-the-art
AI/deep learning models are highly immune to small random noise at the input. However,
carefully crafted universal adversarial noise of the same low magnitude range (i.e., 5% of
the original image) can drastically compromise the fidelity and accuracy of the models.
To achieve similar accuracy degradation effects, the random noise magnitude must be
large (i.e., in the same order as the image), as shown in Figure 8. However, compared to
the low-magnitude adversarial noise, augmenting high-magnitude random noise at the
AI accelerator level is a complex task because of the larger bit width and memory size
requirements (i.e., 4 bits per pixel for adversarial noise versus 8 bits for random noise), and
this raises practical implementatrion challenges from a hardware-based attack perspective.
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magnitude random-noise-augmented, and (iv) high-magnitude random-noise-added images for
ImageNet benchmark. (a) Top-1 accuracy; (b) Top-5 accuracy.
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With a large magnitude noise, the amount of non-zero bits in the digitized pattern will
be significant and comparable to the image itself. As a result, hardware accelerator-level
malicious addition of the noise pattern can raise security alarms. On the contrary, universal
adversarial patterns can induce significant accuracy degradation; however, because of their
much lower magnitude compared to the actual image, they can be injected more secretively.
For example, for images from the imageNet dataset with 224 × 224 × 3 pixels and 8 bits
per pixel, to achieve the same level of image misclassification as the adversarial noise with
high-magnitude (e.g., noise magnitude at least 50% of image magnitude) random noise,
90% more noise bits are required.

Moreover, because of the lower magnitude of the adversarial noise, the pattern mostly
consists of zeros, and the low number of non-zero bits only occurs in the lower-level bits
(e.g., LSBs) of the digitized adversarial pattern. For ImageNet benchmark images with 8 bits
per digitied pixel of the clean image, the pixels of the low-magnitude (i.e., noise magnitude
limited within 5% of the original image magnitude) universal adversarial perturbation
can be digitized with a maximum of 4 bits. Also, the low-bit-width adversarial noise can
be compressed using conventional sparse weight compression techniques of quantized
AI models [2] and easily hidden in the AI hardware for later malicious deployment in a
stealthy manner.

To demonstrate the hardware-level adversarial attack on AI/deep learning models
based on the interleaved augmentation of universal adversarial perturbation with images
(i.e., described in Section 3) on a SoC platform, we used the OpenRISC-based MOR1K
soft CPU core with FuseSoC platform [38]. The FuseSoC platform allows writing high-
level C and assembly code programs that can be compiled and executed on the MOR1K
CPU with other added hardware modules. First, we present the C programming code
example of the Conv2D function (i.e., the convolution function used in convolutional neural
networks) to demonstrate how input image and adversarial noise data interleaving, filter
row duplication, and convolution stride modifications can be accomplished. In Figure 9a,
the C code for a regular Conv2D task with Stride = 1 is shown. Filter row duplication and
interleaving of the adversarial perturbation with an image before feeding it to the Conv2D
task is shown in the C code of Figure 9b. After running the MOR1K toolchain [38] under
the FuseSoC environment, the C code is converted to equivalent machine code as shown
in the snippets in the bottom segments of Figure 9, where it can be seen how the Stride
parameter can be altered in the machine code.
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Figure 9. An example of Conv2D code. Under attack, the machine code can be compromised to
inject universal adversarial perturbation in the images. (a) Regular code. (b) Merging adversarial
perturbation by image interleaving and altering the stride.

The attack can be manifested both at the high-level C code kernel stage and at the com-
piled machine code stage. Based on the illustrative example of Figure 9, to implement the
attack strategy in C code, we can add i f -else command-based malicious jump instructions
to move the program counter to malicious code segments where the input image data are
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interleaved with the adversarial noise, filter rows duplicated, and Stride doubled before
performing convolution operation. Similarly, the attack can be accomplished by direct code
injection/alteration in the compiled machine code. We assume some external malware or
trojan [15,18] will initiate this malicious code alteration to activate the injection of adver-
sarial perturbations. In our experiment, we executed the software-level malware/trojan
attack by developing a custom script that altered (i.e., with root access [31]) the machine
code after compilation and before execution in the hardware. Please note that the details
of the software-level code injection mechanisms are outside the scope of this paper. Since
multiple prior studies in software security have demonstrated such code alteration and
injection attacks [15,18,30,31], we assume such malware attacks to modify code are also
practical in our context.

The universal adversarial perturbation requires only a single sample that has dimen-
sions similar to the input image (e.g., 224 × 224 × 3) but of a much lower bit size. This
common perturbation sample can be stored in the SoC’s ROM or other non-volatile memory
by the adversary. Once the adversarial attack is activated at the hardware level by the
attacker, the noise pattern bits are interleaved with the input image bits and stored in the
DRAM. From DRAM, this noise-interleaved image is supplied to the AI accelerator core.
In our experiment with FuseSoC, we used the RTL implementation of a Systolic array
of Multiply and Accumulate (MAC) units as the accelerator. We modeled the memory
holding the adversarial noise patterns with Verilog, the accelerator was written in Verilog
RTL, and the Conv2D kernels were written in C code. Verilog PLI routines were used for
cycle-accurate simulation. We used the Synopsys VCS tool along with the FuseSoC flow.

7. Related Work and Comparison

In this section, we present a literature review of the existing methods of compromising
the security and integrity of deep learning/AI models.

7.1. Trojan-Based Attacks

Trojan and fault injection are powerful tools for adversarial attacks [39]. In a trojan
attack, an attacker aims to discover ways to change the behavior of the model in some
circumstances so that existing behavior remains unchanged. Under the trojan attack, the
system works perfectly unless the trojan is being triggered [40]. The trojan backdoor can
be embedded in either the DNN model (e.g., the parameters), the hardware platform (e.g.,
CPU, GPU, or accelerator), or the software stack (e.g., the framework) [40]. Existing trojan
attacks are mainly algorithm-based or system-based [41,42]. In algorithm-based trojan
attacks, attackers leverage the intrinsic vulnerability of the DNN model and intercept the
training set in order to train the model in a specific structure or weight parameters so that
the DNN can be crashed when the triggering options (for example, input with specific
markers or patterns) activate the trojan [41,42]. In the system-based trojan attack, attackers
exploit hardware and software stack to hide and activate the trojan [41,43]. Trojans inserted
during training can force the AI model to deviate into adversarial mode.

7.2. Fault Injection Attack

Because of the distributed and redundancy structure of DNNs, they are usually robust
against noisy inputs, and therefore it is usually assumed that they are tolerant against fault
attacks [39]. However, these faults can occur in all major parameters of a DNN, such as
weights, biases, inputs, etc., and can significantly degrade NN accuracy. Liu et al. [44]
introduced a single bias attack to modify one parameter in DNN for misclassification
through fault injection. In their proposed work, they observed that some parameters
linearly control the DNN outputs. Venceslai et al. and Zhao et al. [24] proposed a fault
sneaking attack to modify model parameters and mislead the DNN. The effectiveness of
laser fault in DNN adversarial attack was demonstrated in [22]. They found that a laser
fault injection attack on DNN misclassification is as effective as other attacks. Liu et al. [23]
injected a glitch to fool the DNN by perturbing the clock signal to the PE array infrequently.
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This attack is stealthy because it does not leave any sign of attack. However, the attacker
must have the capability to perturb the clock signals.

7.3. Bit-Flip Attack

In bit-flip attacks [21], attackers deterministically induce bit flips in model weights
to compromise DNN inference accuracy by exploiting the rowhammer vulnerability [45].
The bit-flip-based un-targeted attack misclassifies all inputs into a random class [21]. On the
other hand, the bit-flip-based targeted attacks on weight parameters mislead selected inputs
to a target output class. However, for both un-targeted or targeted attacks, the attacker needs
the knowledge of DNN architecture. If the attacker does not know the DNN architecture
and other parameters, the bit-flip-based attack is ineffective [21].

Rowhammer is a circuit-level Dynamic Random-access Memory (DRAM) vulnerability
used to cause unauthorized memory changes. In the rowhammer attack methodology,
an attacker injects faults in the target memory cells through repeated access to the same
row (aggressor row) before the target DRAM row becomes refreshed. Lately, rowhammer
has also been investigated in adversarial AI attacks [21,44]. Although a bit-flip-based
attack from rowhammer shows promise, an actual attack in the real world is far behind
a proof-of-concept exploit performed in a research lab [46]. First, not all DRAM chips are
vulnerable to rowhammer attack [47]. Second, a successful rowhammer attack requires
exhaustive offline preparation (for example, knowing the exact physical layout [45] that
varies from manufacturer to manufacturer and model to model even if they are from
the same manufacturer). Third, the structure of physically adjacent rows impacts the
rowhammer attack. For example, we need to hammer more aggressor rows if a victim row
follows a half-row pattern than a victim row that is contiguous within a single physical
row [46]. Fourth, there have been numerous hardware-, and software-based approaches
to defend a system from rowhammer attack [46]. DRAM memory manufacturers also
claim that their DRAM chips/modules are robust against rowhammer attacks [46]. These
memory chips are mostly equipped with error-correcting code (ECC), higher refresh rate,
target row refresh (TRR), or partial TRR to make their DRAM robust against rowhammer
attack [48]. Fifth, recent studies suggest that most of the flips happen from one to zero, and
only a few of them flip from zero to one [46]. Therefore, a designer can distribute the weights
in DRAM cells in such a way that the flips from rowhammer will have minimal impact
on DNN classification accuracy. Sixth, spin-transfer torque magnetoresistive RAM (STT-
MRAM) that has the potential to replace DRAM has not shown vulnerable to rowhammer
yet. Therefore, the bit-flip-based adversarial attack is not possible for STT-MRAM-based
DNN accelerators [49].

7.4. Comparison of Universal Adversarial Perturbation Attack with Other Attacks

Black-box vs. White-box Attack: The fault injection and bit-flip attack (BFA) demands full
access to the deep learning model’s weights and gradients. Thus, these are considered as a
white-box attack. In contrast, the universal perturbation-based attacks are black-box type
and only need to know what type of data the deep learning model is analyzing [8]. Due
to the transferability property, a single adversarial pattern can be effective across multiple
deep neural networks that are classifying images.
Accuracy: In terms of accuracy degradation, since the BFA attack is tailored for each specific
deep learning model (e.g., white-box) and follows a defined weight bit-flip sequence,
the accuracy degradation of it is much more severe compared to universal adversarial-
perturbation-based attacks.
Complexity of Hardware Implementation: Practical implementation of BFA or fault in-
jection on the AI hardware‘s memory system is extremely complex due to the nature of
the deterministic sequence of bit patterns needed to be flipped [21,44]. The rowhammer-
based DRAM bit flip requires that the attacker is aware of the exact location of the target
weight (e.g., byte offset in DRAM) bits in DRAM and they can be hammered independently.
Moreover, the weight bits must reside in DRAM long enough such that the adversary can
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perform the rowhammer attack. However, with increasing on-chip buffer memory capacity
in modern AI accelerators/GPUs, the weight residence time in DRAM is very short. Es-
pecially, for modern pruned and AI models, the weights are sparse and compressed; as a
result, exactly identifying and confining each weight within DRAM pages is very complex.
In [21,44], the authors show that flipping non-target bits with fault injection or rowhammer
bit flip cannot impact the accuracy of DNNs. In contrast, our hardware-level universal
adversarial perturbation attack method is much simpler to implement. Our attack model
only requires that malware or trojans maliciously manipulate the Conv2D code for the first
layer of the deep learning model, and the rest of the deep learning layers run as usual.
Detectability: Practical rowhammer-based implementation of BFA is very challenging and
rowhammer must span over multiple bits over many layers of the deep learning model.
The extensive perquisite DRAM memory manipulation and consecutive access to the same
memory address in rowhammer can raise security alarms. In contrast, our proposed
hardware-level implementation of adversarial perturbation attack is much simpler and
relatively stealthy.

8. Conclusions

With the pervasive application of AI/deep learning, AI hardware systems are becom-
ing mainstream. Adversarial attacks are a popular and effective method to compromise
the fidelity of deep learning/AI models. This paper demonstrates an AI hardware-level
attack that can secretly add universal adversarial perturbation to clean input images and
fool the deep learning model to misclassify the data. The adversary can initiate the attack
with malware or Trojans to interleave a common adversarial perturbation (stored on-chip)
with input samples before processing at the AI accelerator hardware. By simple malicious
alteration of the program counter (e.g., jump to a malicious code segment of Conv2D),
the attack can be manifested without raising security alarms. We demonstrate the attack
using state-of-the-art deep learning models and an OpenRISC-based FuseSoC platform
with systolic-array-based accelerator hardware. As a future work, we plan to implement
this in actual AI accelerator hardware.
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