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Abstract: Breast cancer is the foremost common cause of death in women, and its early diagnosis
will help treat and increase patients’ survival. This review article aims to look at the studies on the
recent findings of standard imaging techniques and their characteristics for breast cancer diagnosis
as well as on the recent role of nanoparticles (NPs) that are used for breast cancer detection. Herein, a
search was performed in the literature through scientific citation websites, including Google Scholar,
PubMed, Scopus, and Web of Science, until May 2023. A comprehensive review of different imaging
modalities and NPs for breast cancer diagnosis is given, and the successes, challenges, and limitations
of these methods are discussed.
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1. Introduction

Breast cancer (BC) has the highest incidence rate and is the foremost common cause
of death in women. BC is about 100 times more common in women than in men. The
risk factors for BC are alcohol intake, body mass index, hormone replacement therapy
with estrogen and progesterone, radiation exposure, early and late menarche, and late age
in first childbirth. Also, current age (increasing age increases the risk of developing BC),
history of BC, breast biopsy, cytology, family history, inherited mutation in the BRCA1
or BRCA2 gene [1], and the risk of BC and interval cancers is four to six times higher in
women with very dense breast (DB) tissue than in those with fatty breasts [2]. Countries
with an excellent human development index (HDI) have the highest incidence of BC due
to obesity, physical inactivity, and alcohol consumption. Still, the mortality rate from
BC is higher in countries with a small HDI, because in countries with an excellent HDI,
patients have a higher socioeconomic status, are usually diagnosed earlier, and have more
prolonged survival [3]. Recent advances in technology have transformed the landscape
of cancer detection, with digital pathology emerging as a game-changer in the field of
breast cancer detection and analysis [4]. Digital pathology is a dynamic, image-based
environment that enables the acquisition, management, and interpretation of pathology
information generated from a digitized glass slide. It leverages technologies such as whole-
slide imaging (WSI), image analysis algorithms, machine learning, and artificial intelligence
(AI) to enhance the accuracy and efficiency of pathological examinations [5,6]. In the context
of breast cancer, digital pathology offers several advantages over traditional pathology. It
allows for high-resolution imaging of tissue samples, enabling pathologists to examine
cells and tissues in unprecedented detail. It also facilitates quantitative analysis, providing
objective and reproducible measurements that can be crucial in determining the stage and
grade of the cancer. Moreover, digital pathology can harness the power of AI to automate
the identification of cancerous cells, potentially increasing the speed of diagnosis while
reducing the workload for pathologists [4,7]. However, the implementation of digital
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pathology is not without its challenges. Issues such as data management, interoperability,
and the validation of digital pathology systems and AI algorithms must be addressed.
Additionally, there are ethical and legal considerations regarding patient privacy and the
use of digital images.

Breast imaging is employed for cancer detection, diagnosis, and clinical manage-
ment [8]. Imaging can detect approximately 85% of BC cases [9]. Medical imaging methods
for BC diagnosis, as indicated in Figure 1, are categorized into three main imaging methods:
(1) mammography (MG) and its derivatives, including full-field digital mammography
(FFDM) or digital mammography (DM), tomosynthesis (TS), 3D mammography, digital
breast tomosynthesis (DBT), and contrast-enhanced mammography (CEM); (2) ultrasound
(US) imaging or sonography due to its application in soft tissue; and (3) magnetic reso-
nance imaging (MRI) and its derivatives, including dynamic contrast-enhanced breast MRI
(DCE-MRI), diffusion-weighted imaging (DWI), magnetic resonance spectroscopy (MRS),
and magnetic resonance elastography (MRE). Each of these modalities has its advantages,
successes, and limitations in BC diagnosis. These modalities have different imaging dura-
tions. Computed tomography (CT-Scan), with its rapid acquisition, proves indispensable
in emergency scenarios, ensuring swift diagnostic assessments. Conversely, MR imaging,
though providing detailed anatomical information, is associated with longer acquisition
times, necessitating careful planning to optimize workflow. Ultrasound, characterized by
its real-time capabilities, offers a quick and non-invasive option that is suitable for dynamic
assessments and procedural guidance. Radiography, widely employed for its rapid image
acquisition, stands out as an efficient choice in scenarios in which quick results are essential.
Recognizing the distinctive duration characteristics of each modality becomes pivotal in
clinical decision making, guiding the selection of the most appropriate imaging technique
based on specific clinical requirements and urgency.
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Figure 1. Common imaging modalities for BC diagnosis. Abbreviation: NPs: nanoparticles.

In recent years, nanoparticles have emerged as a promising tool for breast cancer
detection. Nanoparticles are tiny particles that have unique physical and chemical prop-
erties due to their small size. They can be engineered to target specific cells and tissues
in the body, including cancer cells. The use of nanoparticles for breast cancer detection
offers several advantages, such as high sensitivity, specificity, and non-invasiveness. This
topic has gained significant attention, and researchers are exploring different types of
nanoparticles and their potential applications in breast cancer detection.
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This review article aims to conduct comprehensive studies on the recent findings of
standard imaging techniques and their characteristics for breast cancer diagnosis and to
provide an overview of the recent role of nanoparticles in breast cancer detection.

2. Mammography (MG)

Mammography includes imaging the breast using low-energy X-rays, which detect
BC, benign tumors, and cysts before detection by touch. It has a sensitivity or true positive
of about 75%, but in middle-aged people with higher breast tissue density, the sensitivity
decreases to about 50% [10]. MG has some advantages. First, it is the gold standard
for diagnosing BC patients. Second, MG is suitable as a screening method for disease
prevention, as it helps in the finding and removal of premalignant precursors of cancer and
in the early detection of cancer for BC [11]. It is demonstrated that the risk of death from
BC in women who are invited for screening is reduced by 22% compared to women who
are not invited [12].

It should be noted that screening methods such as DM, DBT, and CEM should be
considered to have small or negligible risks of radiation-induced cancer or death. Still,
screening methods with radionuclide injection have significantly higher cancer risks unless
efficient detection systems and prescribed dose reductions are used [13]. Third, MG can find
mammary gland calcification. It is known that approximately 25 to 43% of non-palpable
cancers are detected in MG due to microcalcifications [14]. Of course, MG is not suitable
for people under 40 years of age, it cannot be undertaken more than twice a year [15], and
it is limited in imaging DB tissue [16].

2.1. Full-Field Digital Mammography (FFDM)

Mammography can be performed using screen film (SFM) or DM. The advantages of
SFM include its high contrast and the high spatial resolution of about 15–20-line pairs/mm.
Limitations include the limited dynamic range, and film display characteristics such as
brightness and contrast are fixed after the film is developed in a chemical processor. Com-
pared to SFM, DM has advantages such as a more comprehensive dynamic range and better
contrast resolution, especially for DB tissue. It is also possible to use post-processing on
the digital image to increase the quality of the image [17]. It has been found that DM has
similar accuracy, specificity, and sensitivity as SFM in diagnosing BC [18]. A comparison
of SFM and DM showed that digital MG has a statistically higher cancer detection rate,
an increase in recall and false positive screens, and no effect on interval cancer rates [19].
Digital mammography is also more accurate in women below 50 years of age, those with
DB, and premenopausal or postmenopausal women [20]. DM has a lower average radiation
dose than SFM without compromising diagnostic accuracy [20].

Posso et al. [21] led an investigation on reducing the masking effect of DM breast
density compared to SFM and improving cancer detection, especially in women with high
DB [22]. The study showed that high breast density harms DM, and its sensitivity and
positive predictive value decrease. Of course, the authors noted that although sensitivity
decreases, cancer detection increases.

Although FFDM is the gold standard for effective screening and diagnosis of BC in the
early stages because of its low cost, fast speed, and non-invasive technique, it leads to false
positives and negatives due to overlapping breast tissue. Therefore, DBT improves cancer
detection rates [23], because DBT can reduce the overlap of normal breast parenchyma and
reveal clinically obscure lesions [24]. One of the differences between FFDM and DBT is the
kVp values used. In MG, the kVp is chosen to provide high contrast, but contrast is not
required in tomosynthesis, because the DBT information is reconstructed in the images.
For this reason, more penetrating X-ray photons are used to achieve a high signal-to-noise
ratio and increase patients’ radiation doses [25].
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2.2. Digital Breast Tomosynthesis (DBT)

Digital breast tomosynthesis is a 3D mammogram with multiple projections rotating
through an arc of 15 and 60 degrees in a plane parallel to the chest wall. It should be
noted that by sampling a wide angular range, tomosynthesis has advantages such as
the obtainment of more information, superior depth resolution, and better contrast than
narrow-angle sampling. However, patient movement may occur due to the longer imaging
duration [26].

Compared to MG, DBT shows an increase in cancer detection and a decrease in the
recall rate, but it is associated with an increase in the radiation dose [27]. Østerås et al. [28]
showed that compared to DM, DBT can identify more cancers in all density and age
groups, and false positive findings due to asymmetric density are less frequent. Another
comparison between DBT and FFDM showed that DBT identified more cancers of all sizes,
grades, and hormone receptor statuses, with or without node involvement. Similarly, more
cancers were detected with DBT than FFDM regardless of age group, density classification,
or the presence or absence of prior examination [29].

In a study, Lee et al. [30] showed that DBT might be more effective in BC screening
in patients with DB. A comparison of DBT and FFDM has demonstrated that invasive
lobular carcinoma, lower histologic-grade HER-2-negative lesions, lesions presenting as
masses, or lesions with architectural distortion are better characterized in DBT images.
However, DBT has limitations due to surrounding glandular tissue in DB, and these types
of cancers are ignored in both methods. One of the essential issues in reducing the risk
of local tumor recurrence is the ability to predict the tumor margin. Still, FFDM provides
a two-dimensional image, so it cannot anticipate this. Romanucci G et al.’s work [31]
confirmed the ability of DBT to better visualize the lesion margin.

Heindel et al. and You et al. [32,33] compared DM and DBT with synthetic mammog-
raphy (SM gives a virtual 2D MG image obtained from DBT, which looks similar to that
from FFDM). According to their analysis, it was found that the detection rate of invasive
BC is significantly higher with DBT with SM. In another study, Choi et al. [34] showed that
SM might be slightly more sensitive than DM for detecting and characterizing microcalci-
fications. Also, SM plus DBT can replace DM plus DBT for detecting microcalcifications.
It was also shown that DBT with SM is a better method than FFDM for detecting mass,
calcification, and asymmetry [35], which is shown in Figure 2.
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Figure 2. A 36-year-old woman with a fibroadenoma in the left breast. (a) FFDM and (b) SM
mediolateral oblique images. Rows indicate benign lesion, which is asymmetric on SM and an
obscured mass on DBT. “Reprinted with permission from Ref. [35]. 2019, Springer”. More details on
“Copyright and Licensing” are available via the following link: https://link.springer.com/article/10
.1007/s12282-019-00992-1 (accessed on 1 December 2023).
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Furthermore, DBT increases cancer detection rates, reduces recall rates compared to
FFDM, and improves sensitivity and specificity. DBT with SM (instead of FFDM) has a
radiation dose similar to that of FFDM alone [36]. A comparison between the image quality
of SM and DM demonstrated that the spatial resolution and contrast detail curve in SM is
lower than that in DM. Still, SM has some advantages, like decreasing the radiation dose,
reducing imaging time [37], and improving diagnostic efficacy for detecting malignant
breast lesions [33]. Theoretically, DBT may show only a few calcifications of a clinically
significant micro-calcification cluster, but FFDM has a higher sensitivity in detecting and
characterizing calcifications. In the study of Murakami et al. [38], it was found that SM can
compensate for the disadvantages of DBT in underestimating calcification.

Adding DBT to FFDM has advantages such as increased sensitivity, specificity, and
positive predictive value, reducing the false positive rate in diagnostic and screening cases
and increasing the cancer detection rate [39]. Skaane et al.’s study has determined that
adding DBT to DM significantly increases sensitivity and specificity. Though using SM
instead of DM in combination with DBT causes a slight change in sensitivity or specificity,
it can be a suitable alternative to DM when using DBT [40]. The results of a study by
Yi et al. [41] showed that the tumor visibility and diagnostic performance of DBT added
to FFDM in the evaluation of women with T1 non-calcified invasive BC depend on the
composition of the breast and the probability of failed diagnosis in both DBT and FFDM
images in small isodense non-calcified cancer that is in the tissue, where dense fibro
glandular glands are hidden. Therefore, complementary imaging other than DBT should
be considered for screening women with very DB. A study by Alabousi et al. showed that
combined DBT and DM or combined DBT and SM resulted in higher cancer detection rates,
higher invasive cancer detection rates, and higher positive predictive value than DM alone.
The combination of DBT and SM reduced the recall rate for additional imaging and biopsy.
However, DBT alone has no advantage compared to DM alone [42]. Another study showed
that the diagnostic accuracy and sensitivity of DBT plus SM are higher than that of FFDM
alone, and its recall rate for DB is lower than that for FFDM [43].

Although DBT combined with DM can increase diagnostic accuracy and reduce the
recall rate, it leads to more extended time necessary for interpretation and a higher radiation
dose [44,45] due to two separate acquisitions. Hence, synthesized mammography (SM)
reconstructed from DBT images can be a potential alternative to DM, which leads to a
significant reduction in the total radiation dose [25] without compromising diagnostic
accuracy [46].

2.3. Contrast-Enhanced Mammography (CEM)

Contrast-enhanced mammography is an imaging procedure that combines digital MG
with copper filtration and additional software to perform dual-energy imaging at about
26–33 kVp and 44–50 kVp and administer intravenous nonionic low-osmolar iodinated
contrast media [47]. The reason for using contrast media in CEM is the low difference in
the absorption of X-rays between the tissues and, thus, the similarity of the image contrast
of the tumor tissue compared to the glandular tissue in DB [48]. Rasouli et al. (47) recently
demonstrated the advantages of iodine nanoparticles compared to gold nanoparticles.
In this study, they reported that iodine works better than gold nanoparticles, and the
cytotoxicity of gold nanoparticles is higher than that of iodine. Therefore, it was stated that
in general, iodine has a better performance than gold nanoparticles.

In CEM, two images of each view are obtained at two energy levels. The first image
is a low-energy image that shows breast morphology and is equivalent to a standard 2D
mammogram and another image provides low- and high-energy images showing areas
of contrast absorption [49]. Imaging breast tissue with one direction of X-ray exposure is
ineffective for BC detection. A dual-energy imaging technique can overcome this problem,
resulting in a high dose. Li et al. [50] investigated the use of CEM with photon counting
detectors (PCDs) using cadmium zinc telluride (CZT) and total variation (TV) denoising
algorithms. The study showed that CEM with PCD can be used to solve the problem of
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high doses in dual-energy imaging systems, and TV can improve the image quality for
BC diagnosis.

The studies’ results have shown that CEM’s morphological and physiological infor-
mation has higher sensitivity and specificity than DM alone. Also, CEM is significantly
more sensitive and specific than MG alone and has sensitivity and specificity comparable to
CE-MRI [51]. Another comparison of different imaging modalities for BC detection showed
that FFDM and 3D tomosynthesis rely on subtle morphologic and density differences
to detect BC, which can be obscured by dense glandular tissue overlap [52]. Sorin et al.
showed that CEM is more sensitive than MG for BC detection, and it has higher diagnostic
accuracy than MG alone and MG combined with US. However, CEM has less specificity
than MG and, as a result, increases false positive findings and recall rates [53]. Sudhir
et al. [54] compared DBT, SM, US, and CEM. According to their results, the sensitivity of
CEM was significantly higher than that of SM, DBT, and DBT plus US. CEM also showed
significantly higher specificity than SM and was comparable to DBT alone and DBT plus
US. The authors stated that although CEM has higher sensitivity than DBT, the description
of the margin and exact location of breast lesions is better evaluated in DBT.

Contrast-enhanced mammography in BC detection has advantages such as a per-
formance similar to breast MRI, a cost identical to conventional MG, and time imaging
similar to an abbreviated MRI protocol and inferior to MRI. Less time is needed by the
radiologist to perform the procedure and interpret the findings [55,56]. As mentioned, the
sensitivity and specificity of standard MG are affected by breast tissue density. The US
depends on the operator’s experience. Although MRI is the most sensitive breast imaging
method, it has a high rate of false positive results. Therefore, Bozzini et al. [57] evaluated
CEM in DB patients with histologically proven malignant breast lesions and compared
its diagnostic performance with US, FFDM, and MRI. According to the study, CEM had a
detection rate similar to US and MRI, and it was significantly higher than that of FFDM
(Figure 3). Invasive tumor size obtained by CEM matched pathological data in 64.6% of
lesions, similar to US and MRI but higher than FFDM.

Information 2024, 15, 10 6 of 28 
 

 

showed that CEM with PCD can be used to solve the problem of high doses in dual-energy 

imaging systems, and TV can improve the image quality for BC diagnosis. 

The studies’ results have shown that CEM’s morphological and physiological infor-

mation has higher sensitivity and specificity than DM alone. Also, CEM is significantly 

more sensitive and specific than MG alone and has sensitivity and specificity comparable 

to CE-MRI [51]. Another comparison of different imaging modalities for BC detection 

showed that FFDM and 3D tomosynthesis rely on subtle morphologic and density differ-

ences to detect BC, which can be obscured by dense glandular tissue overlap [52]. Sorin et 

al. showed that CEM is more sensitive than MG for BC detection, and it has higher diag-

nostic accuracy than MG alone and MG combined with US. However, CEM has less spec-

ificity than MG and, as a result, increases false positive findings and recall rates [53]. 

Sudhir et al. [54] compared DBT, SM, US, and CEM. According to their results, the sensi-

tivity of CEM was significantly higher than that of SM, DBT, and DBT plus US. CEM also 

showed significantly higher specificity than SM and was comparable to DBT alone and 

DBT plus US. The authors stated that although CEM has higher sensitivity than DBT, the 

description of the margin and exact location of breast lesions is better evaluated in DBT.  

Contrast-enhanced mammography in BC detection has advantages such as a perfor-

mance similar to breast MRI, a cost identical to conventional MG, and time imaging simi-

lar to an abbreviated MRI protocol and inferior to MRI. Less time is needed by the radiol-

ogist to perform the procedure and interpret the findings [55,56]. As mentioned, the sen-

sitivity and specificity of standard MG are affected by breast tissue density. The US de-

pends on the operator’s experience. Although MRI is the most sensitive breast imaging 

method, it has a high rate of false positive results. Therefore, Bozzini et al. [57] evaluated 

CEM in DB patients with histologically proven malignant breast lesions and compared its 

diagnostic performance with US, FFDM, and MRI. According to the study, CEM had a 

detection rate similar to US and MRI, and it was significantly higher than that of FFDM 

(Figure 3). Invasive tumor size obtained by CEM matched pathological data in 64.6% of 

lesions, similar to US and MRI but higher than FFDM.  

 

Figure 3. (A) FFDM showing a dense breast and (B) the same breast on CEM showing breast cancer 

[58]. “Reprinted with permission from Ref. [56]. 2020, Springer”. More details on “Copyright and 

Licensing” are available via the following link: https://link.springer.com/article/10.1007/s10549-020-

05881-2 (accessed on 1 December 2023). 

In malignancies, the contrast agent is absorbed more than in normal tissue due to 

high angiogenesis. Therefore, methods such as DCE-MRI and CEM have been given at-

tention. Contrast-enhanced mammography is superior to DM and DBT in terms of accu-

racy and is comparable to DCE-MRI in evaluating breast malignancy [58]. Based on 

Huang et al. [59], benign and malignant lesions showed the highest contrast enhancement 

Figure 3. (A) FFDM showing a dense breast and (B) the same breast on CEM showing breast
cancer [58]. “Reprinted with permission from Ref. [56]. 2020, Springer”. More details on “Copyright
and Licensing” are available via the following link: https://link.springer.com/article/10.1007/s105
49-020-05881-2 (accessed on 1 December 2023).

In malignancies, the contrast agent is absorbed more than in normal tissue due to high
angiogenesis. Therefore, methods such as DCE-MRI and CEM have been given attention.
Contrast-enhanced mammography is superior to DM and DBT in terms of accuracy and is
comparable to DCE-MRI in evaluating breast malignancy [58]. Based on Huang et al. [59],

https://link.springer.com/article/10.1007/s10549-020-05881-2
https://link.springer.com/article/10.1007/s10549-020-05881-2
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benign and malignant lesions showed the highest contrast enhancement at 3 and 2 min,
respectively. Therefore, to observe the maximum contrast enhancement of BC in CEM,
2 min is the best interval to differentiate between benign and malignant breast lesions.

About BC, it should be noted that not completely removing cancer cells leads to the
creation of disease-resistant cells. These cells are undetectable and can unpredictably lead
to recurrence and metastasis. Such drug resistance prevents anti-cancer treatments, so
it is necessary to improve diagnostic methods [60]. Studies have been conducted that
investigate the ability of different imaging methods in the diagnosis of residual disease. For
example, the study of Molly P. Hogan et al. has shown that CEM is an acceptable alternative
to breast MRI for the diagnosis of residual disease after neoadjuvant treatment [61].

Bicchierai et al. [62] investigated the potential of using CEM before surgery. The study
showed the excellent diagnostic performance of CEM in the correct preoperative staging of
BC. The authors stated that this method has a high sensitivity in the preoperative staging of
BC compared to DM, even when combined with the US. They also noted that this method
has a low rate of false positives and false negatives as a preoperative imaging method. In
this study, false negative results were not cancers missed by CEM but cases with positive
surgical specimen margins.

Despite all the mentioned advantages of CEM in patients with lesions, it is not suitable
in patients with spreading of unifocal disease, ductal carcinoma in situ histotypes, lesion
size less than 10 mm, and index lesion with micro-calcification [63]. This method also
has some disadvantages, such as the need to inject contrast agents, which can lead to
allergic reactions, and CEM-guided biopsy is unavailable. There may be a low rate of
false positive and false negative results, and benign tissues can be associated with contrast
enhancement, which leads to unnecessary imaging and biopsy [64]. CEM does not have
sufficient sensitivity to detect poorly advanced cancers. In addition, it does not show
cancers with increased parenchyma in the background or near the chest wall [51].

2.4. Nanoparticles in Mammography

The use of nanoparticles (NPs) in medical imaging and mammography is fast becom-
ing a key instrument in cancer detection and treatment. A large and growing body of
literature has investigated the use of different NPs in mammography. Surveys such as that
conducted by Naha et al. [65] have shown that gold–silver alloy NPs (GSAN) can be used
as a contrast agent for cancer detection with dual-energy mammography and computed
tomography (CT). It has been demonstrated that [66] a high biocompatibility of silver
telluride NPs (Ag2Te NPs) results in their use in mammography and as a CT contrast agent
for cancer detection. Karunamuni et al. [67] found that silver NPs are an effective contrast
agent for cancer detection and screening with dual-energy mammography. In a study
that set out to increase the sensitivity and specificity of mammography for cancer detec-
tion, Cole et al. [68] found that bisphosphonate-functionalized gold NPs (BP-Au NPs) im-
proved sensitivity and specificity for the detection of microcalcifications. In another study,
Cole et al. [69] points out that BP-Au NPs can be used for dense mammary tissue imaging
with high sensitivity and specificity.

3. Ultrasound Imaging (US)

Ultrasound is a screening method that does not require ionizing radiation or intra-
venous contrast. US has advantages such as its portability, lower cost than MG, and
versatility. It is the perfect imaging tool for biopsy, as it distinguishes cystic masses from
solid masses. Choudhery et al. [70] investigated the adequacy of the US to detect masses.
According to their study, most masses recalled from DBT screening can be evaluated with
just an US. A diagnostic MG should be performed if the recalled mass is not seen. A
handheld US (HHUS) or an automatic breast US (ABUS) can be used [71]. Both have 100%
sensitivity, and their specificity is 85% and 95%, respectively. One of the advantages of the
automatic type is its higher diagnostic accuracy than the manual type [72], and it overcomes
limitations such as being operator-dependent, time-consuming, and unrepeatable [73]. It
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has been made clear that the US has low specificity and false positive risk [74], and a
double reading of the ABUS can solve this problem. This was investigated in a study by
Lee et al. [75]. The study showed that double reading could increase diagnostic efficiency
and decrease false positives. The authors also stated that adding ABUS can improve the
recall rate of FFDM and DBT screening. Based on a meta-analysis by Rupali et al. [76],
the US has a sensitivity and specificity of 80.1% and 88.4% for BC diagnosis; hence, the
authors showed that it incorporates a high potential for BC diagnosis and can be uti-
lized as an early diagnosis tool. Even though the studies the authors checked were het-
erogeneous, this demonstrated a limited impact on their conclusions. In another study,
Badu-Peprah et al. [77] showed that the sensitivity of the clinical diagnosis is 50.5%, MG
73.0%, and US 100%, and the specificity of MG and US is 80.0% and 80.4%, respectively.
In this manner, they proposed that the US be utilized as the primary line of imaging for
diagnosis. In addition, a study conducted by Harada-Shoji et al. [78] compared the sensi-
tivity of MG and US and found that the sensitivity of MG and US alone is lower than the
combined sensitivity of these methods, that is, if US is utilized as a supplement to MG, the
sensitivity increases. In addition, the authors indicated that the adjuvant US increases the
detection of early invasive cancers in dense and non-DB.

In a study by Yi et al. [79], the authors investigated the value of adding US after
DM/DBT. According to their research, the addition of the US led to the detection of three
extra cancers in 925 women with negative DM/DBT results, and all other cancers were
detected in women with DB. Still, US screening in women with non-DB who experienced
DM/DBT is useless. Another study compared the utilization of US after DM and after
DMT in women with DB. This study showed no difference in diagnosis when US is utilized
after DM or after DMT, and the utilization of DMT does not remove the additional US
in women with DB [80]. Comparing CEM and US showed that axillary and lymph node
lesions might not be seen in CEM, but the US can show these regions’ anomalies [81].
Moreover, a study by Lu et al. [82] compared the performance of CEM and US in patients
with DB. The sensitivity, specificity, positive predictive value, negative predictive value,
and accuracy of CEM were 93.8%, 88.1%, 88.2%, 93.7%, and 90%, respectively, and 90.6%,
82.1%, 82.9%, 90.8%, and 86.3% for the US. The authors stated that the ability of the US to
detect benign lesions is higher than that of CEM, and misdiagnosis with CEM can delay
the treatment of benign lesions. A comparison between MG and US also showed that MG
is not a viable diagnostic method for DB [83], because dense tissue and BC are seen as
white in MG, whereas in US, dense tissue is echogenic, and BC is hypoechoic (Figure 4).
It has been found that the addition of US screening can increase the BC detection rate by
1.9–4.2% [84].
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The drawbacks of the US profoundly depend on the experience of the radiologist [85].
It has unsatisfactory false positives and false negatives in asymptomatic women [86]. The
trouble in recognizing between a cyst and a solid tumor can be remedied by Doppler and
Power Doppler methods [87]. In women with a background of BC, there is a possibility of
recurrence on the same side of the breast or chest wall, regional lymph nodes, or far-off
organs; because MG has a limited field of view, the diagnosis of regional recurrences in
MG is debated. Therefore, the US can be utilized as a complementary screening method.
This has been investigated by Shin et al. [88]. Their study showed that axillary recurrence
after BC and axillary treatment is rare in asymptomatic women with negative MG results.
US screening of the whole breast after surgery does not assist in detecting axillary recur-
rence. Kim et al. [89] showed that complementary US had a lower interpretation rate of
abnormalities and higher specificity (in women aged 50 years and older and in women two
years after surgery) in women with a personal history of BC compared to women without
a personal history of BC. Even though anti-hormonal treatment or aromatase inhibitors can
decrease benign breast disease and false positive findings in the US [90], they did not affect
the results of this study.

Nanoparticles in US

The low specificity of breast US for cancer detection is a classic problem that requires
the use of a contrast agent [91]. Recent evidence suggests that NPs can be used for cancer
detection and treatment as an US contrast agent. In an analysis of mesoporous silica NPs
(MSNs) functionalized with the monoclonal antibody Herceptin®, Milgroom et al. [91]
showed the potential of MSNs as a stable, biocompatible, and effective therapeutic and di-
agnostic (“theranostic”) agent for US-based breast cancer imaging, diagnosis, and treatment.
Another study [92] has considered the usage of metal oxide NPs for cancer detection with
US. In a major advance in 2021, Cao et al. [93] developed nanocarriers for sonodynamic
therapy (SDT) of breast cancer.

4. Magnetic Resonance Imaging (MRI)

Magnetic resonance imaging has advantages such as its high sensitivity and specificity,
and it is suitable for patients who have breast-conserving surgery. Its limitations include
the high cost and time of scanning [94], false positive results, its limited use in patients
with claustrophobia, and its hypersensitivity to contrast agents. Also, this method provides
false positive results for extensive screening and the ideal BC stage [15]. According to the
guidelines, MRI screening for high-risk populations is recommended, such as for women
with BRCA mutations, women with Li-Fraumeni and other high-risk syndromes, women
who received chest radiation between the ages of 10 and 30 years, and women with 20–25%
or greater lifetime risk of developing breast cancer [95,96]. One of the critical issues with
high-density breast imaging, particularly for small tumors, is reducing sensitivity below
40% [97]. However, magnetic resonance mammography (MRMG) has high sensitivity in
diagnosing BC regardless of breast density [98]. The cost-effectiveness of MRMG compared
to MG in patients with high breast density was evaluated by Kaiser et al. [99]. Their
preliminary study showed that MRMG is a more accurate and less expensive modality
than MG in patients with an intermediate risk of BC. They indicated that MR techniques
such as parallel imaging and abbreviated protocols offer assistance in diminishing time and
increase cost-effectiveness. According to their study, two-year screening with MRMG can
be cost-effective for patients with DB tissue. In a study by Sippo et al. [100], the screening
performance of breast MRI was evaluated. The authors’ research showed no difference in
breast MR imaging screening performance for cancer detection rates among women with
BRCA mutation or history of chest radiation therapy, women with a personal history of
breast cancer, and women with a history of high-risk lesions. Women with a family history
of breast cancer were found to have a lower cancer detection rate and positive predictive
value compared to those with a BRCA mutation or previous chest radiation. Kim [101]
conducted a retrospective study to compare abbreviated breast MRI with full-protocol MRI.
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According to their investigation, abbreviated MRI has higher sensitivity and specificity
than full-protocol MRI in women with an individual history of BC.

According to the obtained results, the sensitivity of breast MRI for breast carcinoma
is between 88 and 100% in the diagnostic environment, and the characteristics of breast
MRI reach 87% in the screening environment [102,103]. In other words, breast MRI is more
sensitive than MG, US, or physical examination.

Vreemann et al.’s study [104] evaluated the complementary value of MG in women
under and over 50 years of age and in BRCA mutation carriers. Their research shows that
MG has restricted value when breast MRI is accessible. Still, it has an advantage over age
50 and in women without BRCA mutations who are more vulnerable to radiation-induced
cancers. In another study, Gu et al. [105] examined molybdenum MG and MRI together to
distinguish BC from benign tissue. The results of their research showed that MG with a
molybdenum target is sensitive to calcification, but its detection rate by MRI is lower. On
the other hand, MRI can show DB tumors well if MG is not appropriate for these patients.
Hence, the authors showed that both methods increase sensitivity and diagnostic accuracy
and decrease the hazard of non-diagnosis or misdiagnosis. In a study, the performance of
breast MRI was compared with MG alone in women with a personal history of BC. The
sensitivity of breast MRI in this study was different from previous studies. The authors
stated that if cancer is detected on MG, multimodality breast imaging can lead to more
false negative findings on breast MRI [106].

There have been studies comparing MRI with other breast imaging modalities, re-
ported in a meta-analysis by Xiang et al. [107], in which 13 studies comparing CEM and
MRI were reviewed. The study showed that the diagnostic sensitivity of the two methods
is high, but their diagnostic specificity is relatively low. According to the authors’ research,
CEM and MRI are both effective methods for BC diagnosis, but the diagnostic performance
of CEM is more effective than that of MRI. However, it has been determined that CEM has
a smaller FOV than MRI, so it is less valuable for identifying chest wall invasion, internal
breast metastasis, and axillary lymph node disease in patients with known BC [108]. Re-
cently, the authors performed novel MRI modalities for a breast cancer diagnosis study,
and they have reported that DTI, DWI, and DCE-MRI parameters can help diagnose breast
cancer in the early stages [109]. In another study, Comstock et al. [103] compared abbrevi-
ated breast MRI and DBT to diagnose invasive BC in women with DB. These two methods
were taken into consideration because DBT can increase the sensitivity and specificity of
MG, and abbreviated MRI can reduce the complexity and cost of MRI. The study showed
that abbreviated breast MRI has a higher BC detection rate than DBT. Another study [110]
investigated MG, MRI, and US modalities as breast cancer screening methods. According
to the authors’ research, MRMG is a cost-effective technique for women with a high risk of
breast cancer, but US is not; in other words, they showed that MRMG is more cost-effective
than MG plus US.

In the study of Monika Graeser et al. [111], the ability of US and MRI to determine
residual tumor size was investigated. The results of the study showed that in hormone
receptor (HR)+/human epidermal growth factor receptor 2(HER2)+ and HR+/-HER2
breast cancer, MRI is less prone to underestimation than ultrasound, and ultrasound is
associated with a lower risk of overestimating the size of the tumor.

Recently, positron emission tomography/magnetic resonance imaging (PET/MRI)
has been considered a promising imaging method for breast cancer evaluation. Cancer is
a very heterogeneous disease, and moreover, each patient is unique in terms of disease
behavior and prognosis. Therefore, imaging methods that provide morphological data as
well as functional data are very valuable. In the study of Valeria Romeo et al. [112], the role
of PET/MRI in the evaluation of breast cancer was investigated. In this study, technical
aspects of hybrid PET/MRI, new developments in MRI and PET, descriptions of new PET
detectors, and clinical applications of hybrid PET/MRI of the breast are described. In this
study, it is stated that despite the high costs and limited availability of PET/MRI, this
imaging method is useful for morphological and functional assessment of breast cancer.
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Furthermore, in a study by Janna Morawitz et al. [113], the results of CT, MRI, and [18F]-
fluorodeoxyglucose positron emission tomography ([18F]-FDG PET/MRI) in determining
the correct status of nodes in axillary (level I–III), supraclavicular, and internal mammary
lymph nodes in patients with newly diagnosed breast cancer were compared. The results
of this study showed that PET/MRI performs better in diagnosing lymph node metastasis,
with higher speed and accuracy in all lymph node stations than CT or MRI. It has the
highest sensitivity, and CT has the lowest sensitivity.

4.1. Dynamic Contrast-Enhanced MRI

The DCE-MRI technique is a non-invasive and three-dimensional imaging technique
that can show tumor angiogenesis and lymph node metastasis in BC [114]. Unlike MG,
this technique is not limited by breast tissue density, but the main limitation is its non-
specificity [115]. Other disadvantages are its long imaging time, high cost, high false
positive rates, poor patient tolerance, contraindications such as a pacemaker or claustropho-
bia, the worry of gadolinium deposition in the brain [116–118], and the overlap between
morphological features and kinetic patterns of benign and malignant lesions [119]. Also,
the menstrual cycle can lead to a non-specific increase in breast parenchyma in DCE-MRI
and, thus, false positives. Therefore, it is better to perform DCE-MRI between days 7 and 13
of the menstrual cycle [120]. In DCE-MRI, a pre-contrast T1-weighted image is first taken,
and then a sequence of T1-weighted images after contrast is taken.

Although DCE-MRI has a high sensitivity for detecting BC, using gadolinium-based
contrast agents is still a concern, so using non-contrast MR-based conductivity imaging has
been considered. The result of Suh’s et al. study [121] showed that the current performance
of this method is lower compared to T2WI, DWI, and MG. Still, conductivity imaging can
reduce biopsy caused by DCE-MRI due to low conductivity values in benign lesions. In a
study by Jochelson et al. [49], a comparison was made between bilateral CEM, conventional
DM, and MRI in women with BC. The study showed that the DCE contrast agent persisted
for at least 10 min after the infusion was complete, in contrast to the quick washout seen
with MRI. In this manner, the arrangement in which the images are obtained is not essential.
The authors demonstrated, moreover, that DCE could show lesions regardless of size;
despite being sensitive to MR imaging, it presents fewer blunders.

In some studies, CEM and DCE-MRI were compared; for example, Maria Adele
Marino et al. [122] conducted a retrospective study to compare the potential radiomic
analysis of CEM and DCE-MRI of the breast for the non-invasive differentiation of inva-
sive and non-invasive BC. Based on their conclusion, MR is costly and time-consuming
and is contraindicated in cases such as claustrophobics and people with pacemakers or
other implanted metallic materials. Therefore, they stated that CEM could replace MRI if
MRI is unavailable or is contraindicated. In another study, Kamal et al. [123] compared
these two methods. The authors found that DCE-MRI has advantages, such as fewer
side effects of contrast agents and no ionizing radiation, which is better for examining
inflammatory/malignant lesions. Broad breasts, deep-seated lesions, and lesions in hidden
areas of MG should be identified. Though CEM is more accessible, shorter, and requires
less training, it is better used for preoperative staging of breast cancer, post-treatment
monitoring, and follow-up of patients receiving neoadjuvant chemotherapy. Also, in a
study by Pötsch et al. [124], CEM and DCE-MRI were compared. The study showed that
although CEM performs well for BC diagnosis, DCE-MRI has a higher sensitivity, and the
ratio of negative probability to its pre-test probability is more elevated than CEM.

In other studies, DCE-MRI was compared with other breast imaging modalities. In
a survey, Mann et al. [125] compared DCE-MRI, MG, and US. The authors stated that
DCE-MRI is better than MG and US for the early detection of BC. They also noted that the
complementary use of MG leads to an increase in BC diagnosis and a decrease in specificity.
The complementary use of the US only causes a reduction in specificity, so it should not
be used. The only disadvantage of MRI diagnosis is its high sensitivity for all types of BC,
which can lead to overdiagnosis. Also, in a study [126], the sensitivity of MG with CE-MRI
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was compared in women with different degrees of breast density. Based on the findings of
this study, CE-MRI sensitivity is not affected by breast density due to the use of gadolinium.
It is independent of breast density, whereas MG sensitivity decreases by approximately
20% with increasing breast density. In other words, the study showed that the sensitivity of
CE-MRI in women with DB is higher than the sensitivity of MG.

In a study by Ramona Woitek et al. [127], the authors investigated the potential
of hyperpolarized carbon-13 (13C) MRI and DCE in detecting early treatment response
in breast cancer. The results of their study showed that after one cycle of neoadjuvant
chemotherapy, a 34% decrease in the ratio of lactate to pyruvate labeled with 13C led to
the correct identification of the patient, but DCE MRI showed an increase in the mean
pharmacokinetic parameter transfer constant (Ktrans) (132%) and mean washout parameter
(Kep) (31%). The results could be misinterpreted as a poor response to treatment. Therefore,
the authors stated that 13C hyperpolarized MRI in combination with conventional multi-
parameter MRI improves response prediction.

4.2. Diffusion-Weighted Imaging (DWI)

Although DCE-MRI is recommended for breast screening, this method is costly and
time-consuming and requires the injection of a contrast agent. An abbreviated breast MRI
can reduce time and cost, but a contrast agent still needs to be injected. Therefore, the
potential of DW as a screening tool has been investigated [115]. The findings of this study
showed that although DW is less sensitive than DCE MRI but higher than MG and US, it
works better than MG and US and can be effective as a method for identifying malignancies
hidden by MG. A study by Moy et al. [128] showed that DCE-MRI has been found to have a
higher resolution in soft tissues than MRDW, and the positive predictive value of DCE-MRI
is higher than the positive predictive value of MRI alone. Also, it is demonstrated that the
sensitivity of DWI in diagnosing malignancy is higher compared to MRS and DCE, and it
can also detect malignancy in all cases of indeterminate DCE [119].

It has been found that MRI often fails to distinguish between malignant and benign
breast lesions. In contrast, DWI can identify breast lesions better than conventional MRI.
The only significant issue related to DWI is finding the appropriate ADC value for diagnos-
ing malignant and benign breast lesions. The value of the apparent diffusion coefficient
(ADC) in normal tissue is higher than that in benign tissue, and in benign tissue, it is more
heightened than in malignant tissue, so tissues can be diagnosed using MRDW and ADC
measurement [129]. According to a meta-analysis study [130], the average ADC of benign
breast lesions is more than 1.00 × 10−3 mm2/s, and most malignant lesions have ADC
values less than 2.0 × 10−3 mm2/s. The authors of the study stated that 1.00 × 10−3 mm2/s
could be used as a threshold value to distinguish malignant and benign breast lesions. The
main limitation of DWI is that small cancer foci may not be seen on ADC maps [131].

In a study [132], the use of DWI as an independent parameter and multiparametric
(mpMRI) using DCE-MRI and DWI for breast cancer diagnosis was investigated. Based on
the authors’ findings, DWI cannot be used as an independent and alternative parameter
of DCE-MRI, because its spatial resolution is still very low. mpMRI has high sensitivity
and specificity in diagnosis. The authors also showed that DCE-MRI is the most sensitive
method for breast cancer diagnosis. Research has shown that DWI with a reduced field
of view can create images with better quality and higher resolution than typical bilateral
DWI, and this can also be used instead of DCE-MRI [133]. It should be noted that bilateral
DWI has disadvantages such as magnetic susceptibility, chemical shifts, low signal-to-noise
ratio, and low resolution [134].

4.3. Magnetic Resonance Spectroscopy

In MRS, increased choline-containing compounds (the peak of Choline is 3.23 ppm [135])
in malignant breast lesions differentiate these from benign lesions and increase MRI speci-
ficity [136]. A study investigated in vivo 1H-MRS to distinguish malignant from benign
breast lesions using the high choline (Cho) peak. Based on the findings of this study, the
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choline peak has a suitable sensitivity and specificity for detecting malignant breast lesions.
This study showed that malignant tumors with a Cho-positive peak were significantly
larger than Cho-negative tumors. It was also stated that the sensitivity and specificity of
the Cho peak are considerably lower than the multi-parametric MRMG, but placing the
spectra located in the tissue around the tumor and the analysis of lipid peaks can increase
this [137].

In some studies, MRS was compared with mpMRI. For example, in a retrospective
study by Uma Sharma, multi-parametric MR combining DCE-MRI, DWI, and MRS data was
evaluated to increase the sensitivity of breast lesion detection. The authors’ research showed
that mpMRI could improve the detection of breast malignancies, and the approaches could
complement each other. They also showed that the sensitivity to detect malignancy was
the highest for DWI compared to MRS and DCE-MRI [119]. In another study by Sodano
et al. [138], the use of MRS for suspicious lesions in mpMRI was investigated. The study
showed that the quantitative assessment of tCho from 1H-MRS can diagnose malignancy
in breast lesions that are considered suspect by evaluating mp breast MRI using DCE, T2W,
and diffusion-weighted images. They also stated that a low concentration of tCho indicates
the absence of metastasis to the lymph nodes.

4.4. Magnetic Resonance Elastography

The MRE imaging technique is a non-invasive method used to measure tissues’
stiffness or elasticity. This method uses sound waves in the range of 100 to 1000 Hz,
and the imaging is performed using motion-sensitive MRI sequences. Breast MRE is a
cross-sectional imaging method that quantifies the viscoelastic properties of breast tis-
sues [139,140]. Due to the increased number of cells, collagen, and proteoglycans, BC has
a higher stiffness than the surrounding normal tissues and benign lesions [140]. Manual
touch lacks specificity and sensitivity, and MRE can overcome this limitation [141]. The
most critical limit of MRE in BC is low spatial resolution and the detection of small focal
lesions [142].

Today, MRE of the breast is in the research stage, and efforts are being made to
reduce the scanning time and improve the spatial resolution. Also, the use of MRE to
evaluate breast cancer and its ability to be used as a marker in malignant lesions needs
more studies [141].

4.5. T2 and T2* Mapping

T2 and T2* relaxation time values are intrinsic properties of tissues. A considerable
amount of literature has been published on the T2 and T2* relaxation time values of different
tissues. These studies showed that tumors have significantly different T2 relaxation time
values compared with normal tissues. Recent developments in MRI have led to a voxel-vice
color map display of T2 and T2* relaxation time values of certain tissues as T2 and T2* map
MRI sequences. T2 and T2* mapping is typically performed using a series of breath-hold
spine-echo (SE) and gradient-echo (GRE) images at progressively increasing echo times
(TE). For each pixel, the signal intensity curve is fitted to a simple exponential, resulting in
an estimate of pixel T2 and T2* relaxation time and T2 and T2* map reconstruction. The T2
and T2* map provides a more objective detection and evaluation than standard anatomical
images such as T2-weighted and STIR images, which may be limited by susceptibilities or
slow-motion artifacts and have a limited quantitative evaluation.

In a major advance, Liu et al. [143] studied the lesion T2 relaxation time change in
breast cancer in response to neoadjuvant chemotherapy (NAC). The authors demonstrated
that the lesion T2 relaxation time was reduced in response to the NAC. It has been suggested
that T2 mapping is a potentially useful MRI protocol to assess the response of breast cancer
tumors to NAC. In [144], the authors investigated T2* relaxation time in breast cancer and
the association between lesion T2* values and pathological, clinical, and imaging data.
They showed that the T2* relaxation time is significantly higher in invasive breast cancer
than in ductal carcinoma. These results demonstrate that T2* mapping seems to be a useful
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approach in the characterization and classification of breast cancer. Previous research [145]
has indicated the classification of breast cancer as malignant and benign with lesion T2
relaxation time, with an area under the curve (AUC), sensitivity, and specificity of 0.731,
0.857, and 0.587, respectively.

In their groundbreaking paper, Meng et al. [146] used a novel quantitative MRI method,
the synthetic MRI (syMRI), for breast cancer classification. The term syMRI has been used
by Meng et al. [146] to refer to simultaneous T1 and T2 map generation and reconstruction
(Figure 5) in one MRI scan within a few minutes and without requiring a gadolinium
contrast agent injection. The authors point out that breast cancer has significantly higher T1
relaxation time and lower T2 relaxation time than benign breast lesions. Further analysis by
Meng et al. [146] showed that the combination of T1 map and T2 map data for benign and
malignant breast lesion classification could increase the AUC, sensitivity, and specificity to
0.978, 0.958, and 0.931, respectively.
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Figure 5. A 42-year-old female with malignant breast lesion. (A) Enhanced lesion is shown using
white arrows in the image; (B) T1-weighted images; (C) T2-weighted images; (D) T1 map; (E) T2

map. The T1 and T2 values are shown in (F) [147]. “Reprinted with permission from Ref. [146].
2020”. More details on “Copyright and Licensing” are available via the following link: https:
//cancerimagingjournal.biomedcentral.com/articles/10.1186/s40644-020-00365-4 (accessed on 1
December 2023).

4.6. Nanoparticles in MRI

In their review of recent inorganic NPs for breast cancer detection, Núñez et al. [148]
identified different characteristics and benefits of superparamagnetic quantum dots and
gold NPs in MRI imaging. Much work on the potential of iron oxide NPs as T2-weighted
contrast agents has been carried out. In her investigation into using fourth-generation
dendrimer-coated iron oxide NPs (G4@IONPs) for cancer detection with MRI and treatment
with hyperthermia, Salimi et al. [147] showed that G4@IONPs significantly improved
transverse relaxivity (r2), and they can be used as a T2-weighted contrast agent. A review
of the literature on using iron-oxide NPs in MRI [149] found that with a change in their
structures, these NPs can also be used as a T1-weighted MRI contrast agent. In a study that
set out to determine the characteristics of poly(ethylene glycol) (PEG)-coated, manganese-
doped iron oxide nanocomposites (Mn-IONPs@PEG), Xiao et al. [150] found that Mn-
IONPs@PEG have good transverse and longitudinal relaxivity properties, and they are
a reasonable candidate for T1/T2 dual-contrast MRI. Huang et al. [151] conclude that

https://cancerimagingjournal.biomedcentral.com/articles/10.1186/s40644-020-00365-4
https://cancerimagingjournal.biomedcentral.com/articles/10.1186/s40644-020-00365-4
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ultrasmall MnO nanoparticles that are PEGylated via catechol-Mn chelation and conjugated
with cRGD have a great potential for use as a T1-weighted MRI contrast agent for the
diagnosis of tumors. Surveys such as that conducted by Yao-Jiang Ye et al. [152] have
shown that hybrid NPs co-loaded with copper sulfide (CuS) NPs and glucose oxidase
(GOD) (CuS@GOD NPs) have in vivo feasibility for use in multiparametric MRI, including
intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) and R2* mapping
for cancer detection and treatment response. It has been demonstrated that [153] Fe3O4@PD
NPs result in T1 MRI darkening and brightening contrast enhancement at tumor sites, and
the relative signal-to-noise ratio of the tumor can be used for distinguishing normal and
tumor tissues.

5. Discussion

Different modalities used for breast imaging have successes and limitations. These
have been evaluated by various researchers. The results showed that MG’s sensitivity
decreases with increasing breast density [10]. A comparison of results between FFDM and
DBT has demonstrated the following: An overlap of breast tissue in FFDM can be reduced
with DBT [24]. Unlike FFDM, DBT can visualize the margin of the lesion [31]. DBT with SM
is a better method than FFDM for detecting mass, calcification, and asymmetry [36]. DBT
can detect more cancers than DM in all age and density groups. False positive findings
due to asymmetric density are lower except in very dense breasts [28]. The results of a
study showed that adding DBT to FFDM can lead to increased sensitivity, specificity, and
positive predictive value, decreased false positive rate, increased cancer detection rate, and
increased sensitivity and specificity. Though using SM instead of DM in combination with
DBT causes a slight change in sensitivity or specificity, it can be concluded that SM can be a
good substitute for DM when using DBT [40].

From the point of view of comparison among different modalities for BC diagnosis,
the summary of results is illustrated in Table 1, and they have different criteria as follows:
EM and DM showed that CEM has higher sensitivity and specificity than DM [49,51]. Its
comparison with MG has shown that CEM is more sensitive than MG for detecting BC,
and it has higher diagnostic accuracy than MG alone and MG combined with US [62].
Still, CEM has less specificity than MG [53]. Another study has shown that CEM has a
higher sensitivity than DBT, but the description of the margin and exact location of breast
lesions is better evaluated in DBT [54]. Another comparison has shown that CEM has
a detection rate similar to US and MRI and significantly higher than FFDM [57]. CEM
is more accurate than DM and DBT and is comparable to DCE-MRI in evaluating breast
malignancy [58]. A comparison between CEM and US showed that axillary lesions and
lymph nodes might not be seen on CEM, but the US can show abnormalities in these
areas [81]. Also, it showed that the ability of the US to detect benign lesions is higher than
CEM [82]. Ultrasound imaging is better than MG for detecting dense breasts, because
dense tissue and breast cancer are seen as white in MG, whereas dense tissue is echogenic
in US, and BC is hypogenic [84]. The magnetic resonance imaging method has higher
sensitivity than MG, US, or physical examination and is more cost-effective than MG plus
US [110]. A comparison of CEM and MRI has shown that CEM is less valuable than MRI for
detecting chest wall invasion, internal breast metastasis, and axillary lymph node disease in
patients with known BC due to its smaller FOV [108]. One of the advantages of DCE-MRI
is that unlike MG, it is not limited by breast tissue density [126], but the main limitation
is its non-specificity [115]. Another is that the menstrual cycle can lead to a non-specific
increase in breast parenchyma in DCE, resulting in false positives. Therefore, it is better
to perform DCE between days 7 and 13 of the menstrual cycle [120]. Findings show that
DCE-MRI is suitable for investigating inflammatory/malignant lesions, broad breasts, deep
lesions, and lesions in hidden areas of MG compared with CEM. On the other hand, CEM
is better for preoperative staging of breast cancer, post-operative monitoring, treatment,
and follow-up of patients receiving neoadjuvant chemotherapy [123]. Also, DCE-MRI is
better than MG and US for early detection of BC, and its sensitivity is independent of breast
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density and higher than MG [126]. Indeed, a comparison was made between DW and
other imaging modalities, showing that although DW is less sensitive than DCE MRI, it
performs better than MG and US and can be effective as a method for identifying hidden
MG malignancies [115]. It has also been shown that the sensitivity of DWI in diagnosing
malignancy is higher compared to MRS and DCE, and it can detect malignancy in all
cases of indeterminate DCE [119]. The only significant issue related to DWI is finding the
appropriate ADC value; 1.00 × 10−3 mm2/s can be used as a threshold value to distinguish
between malignant and benign breast lesions [130]. It has been reported that the sensitivity
and specificity of the Cho peak in MRS are significantly lower than that of multi-parameter
MRMG. Still, including spectra located in the peri-tumor tissue and the analysis of lipid
peaks can increase sensitivity and specificity [137]. Moreover, an imaging modality that is
still in the research stage is MRE. MRE can overcome the limitations of manual touch, such
as the lack of specificity and sensitivity [142], and due to the increase in the number of cells,
collagen, and proteoglycans in BC compared to surrounding normal tissues and benign
lesions, MRE can distinguish areas of BC due to their higher stiffness [141].

Table 1. Summary of successes and limitations in recent studies of breast diagnosis modalities.

Modality Advantages Disadvantages

Diagnostic Performance

Ref.
AUC Sensitivity Specificity

Diagnostic
Performance

for:

MG

- Detects BC, benign tumors,
and cysts

- Finds mammary gland
calcification

- Not suitable for people
under 40 years

- Cannot be undertaken
more than twice a year

- Limited in imaging
DB tissue

N/A 97% 64.5% Breast cancer
detection [14–16]

DBT

- An increase in cancer
detection and a decrease in
the recall rate compared
to MG

- Better characterizes
invasive lobular carcinoma,
lower histologic-grade
HER-2-negative lesions,
lesions presenting as
masses, or lesions with
architectural distortion
compared to FFDM

- Visualizes the lesion
margin better than FFDM

- DBT with SM is a better
method than FFDM for
detecting mass,
calcification, and
asymmetry

- Limited in imaging
DB tissue

N/A 95.5% 78.8% Malignancy
detection

[27,30,31,
35]

CEM

- Higher sensitivity and
specificity than MG and
DM alone

- Has sensitivity and
specificity comparable to
CE-MRI

- Has sensitivity higher than
SM, DBT, and DBT plus US

- Has a detection rate similar
to US and MRI and
significantly higher than
FFDM

- Has a high sensitivity in
preoperative staging of BC
compared to DM

- Has less specificity
than MG

- Visualizes the lesion margin
less compared to DBT

- Not suitable in patients
with spreading of unifocal
disease, ductal carcinoma
in situ histotypes, lesion
size less than 10 mm, and
index lesion with
microcalcification

- Need to inject contrast
agents

- CEM-guided biopsy is
unavailable

- Does not have sufficient
sensitivity to detect poorly
advanced cancers

- Does not show cancers
with increased parenchyma
in the background or near
the chest wall

(0.768–0.924) (86.2–98%) (57.9–94.1%)

Cancer
detection and
breast cancer
classification
into malignant
and benign

[49,51,53,
54,57,62–

64]
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Table 1. Cont.

Modality Advantages Disadvantages

Diagnostic Performance

Ref.
AUC Sensitivity Specificity

Diagnostic
Performance

for:

US

- Does not require ionizing
radiation or intravenous
contrast

- Portability, lower cost than
MG, the perfect imaging
tool for biopsy, and
versatility, as it
distinguishes cystic masses
from solid masses

- Can be utilized as an early
diagnosis tool

- Shows axillary and lymph
node lesions that might not
be seen in CEM

- Detect benign lesions is
higher than that of CEM

- Can distinguish dense
tissue from breast cancer,
unlike MG

- Depends on the experience
of the radiologist

- Has unsatisfactory false
positives and false
negatives in
asymptomatic women

N/A (49–90.6%) (34–88.4%)

Screening of
dense breast
and breast
cancer
classification
into the
malignant and
benign

[76,81,82,
84–86]

MRI

- High sensitivity and
specificity; suitable for
patients who have
breast-conserving surgery

- High sensitivity in
diagnosing BC regardless
of breast density

- Breast MRI is more
sensitive than MG, US, or
physical examination

- More valuable for
identifying chest wall
invasion, internal breast
metastasis, and axillary
lymph node than CEM

- Abbreviated breast MRI has
a higher BC detection rate
than DBT

- MRMG is more
cost-effective than MG
plus US

- High cost and time
required for scanning

- False positive results, not
suitable in patients with
claustrophobia

- Not suitable for
hypersensitivity to contrast
agent

0.93 (51–100%) (94.9–96.1%) Breast cancer
detection

[15,94,98,
102,103,
108,109,

122]

DCE-
MRI

- Not limited by breast tissue
density, unlike MG

- Can show lesions
regardless of size

- Has fewer side effects of
contrast agents and no
ionizing radiation vs. CEM

- Has a higher sensitivity
than CEM

- DCE-MRI is better than MG
and US for the early
detection of BC

- Non-specificity
- Time-consuming
- Costly
- High false positive rates
- Poor patient tolerance
- Has contraindications
- Requires the injection of a

contrast agent
- Overlap between

morphological features and
kinetic patterns of benign
and malignant lesions

- Menstrual cycle can lead to
a non-specific increase in
breast parenchyma

N/A (81–100%) ~97% Breast cancer
detection

[49,115–
120,123–

125]

DWI

- Works better than MG and
US

- Highest sensitivity of
detection compared to
DCE-MRI and MRS

- Can identify breast lesions
better than
conventional MRI

- Less sensitive than DCE
MRI but more sensitive
than MG and US

- Less resolution in soft
tissues than DCE MRI

- Spatial resolution is still
very low

- Small cancer foci may not
be seen on ADC maps

0.85 (63–100%) (46–97%)

Breast cancer
classification
into malignant
and benign

[115,119,
128,129,
131,132]

Abbreviations: AUC: area under the curve; Ref: references; MG: mammography; DBT: digital breast tomosynthesis;
CEM: contrast-enhanced mammography; US: ultrasound imaging; MRI: magnetic resonance imaging; DCE-MRI:
dynamic contrast-enhanced MRI; DWI: diffusion-weighted imaging.

The review of literature indicates that researchers have used NPs for breast cancer
detection with different imaging modalities, and a strong relationship between image
contrast, SNR, etc. and using NPs has been reported. Table 2 presents an overview of some
NPs and their application in breast cancer detection with different imaging modalities. MRI
is a major area of interest within the field of using NPs for breast cancer detection. Fe, Cu,
and Mn NPs are some of the most widely used NPs for breast cancer detection by MRI with
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T1, T2, and DWI image weights. Overall, the use of nanoparticles for breast cancer detection
offers several advantages over contrast agents such as iodine and gadolinium, including
improved contrast, targeted delivery, better imaging, longer retention time, and reduced
toxicity. Nanoparticles can produce a much stronger signal compared to conventional
contrast agents, which makes them better at enhancing contrast and improving the accuracy
of breast cancer detection. Nanoparticles can be designed to target cancer cells specifically,
which means they can be used to deliver drugs or other therapies directly to the cancer cells,
reducing the risk of side effects and improving treatment efficacy [154]. Nanoparticles can
be engineered to emit light or magnetic signals, which can be detected using specialized
imaging techniques such as MRI and optical imaging [155]. This allows for better imaging
of breast tissue and more accurate detection of cancer. Nanoparticles can remain in the
body for longer periods of time compared to contrast agents, which means they can be
used for longer imaging sessions and can provide more comprehensive information about
the breast tissue [156,157]. Some contrast agents such as gadolinium have been associated
with toxicity in certain patients, whereas nanoparticles are generally considered safer
and less likely to cause adverse effects [156,158]. The major limitation of NP studies for
cancer detection includes the studies’ data, which are presented, as they are based on
in vivo studies. Optical and photoacoustic imaging techniques are commonly employed in
preclinical investigations. Optical and photoacoustic imaging are limited in their ability
to penetrate deep into the breast tissue. The resolution of these methods is limited by
the wavelength of the light used, which can make it difficult to distinguish between
small tumors and healthy tissue and does not provide specific information about the
molecular and cellular characteristics of tumors [159]. Further research might investigate
the clinical use of NPs and preclinical imaging such as optical and photoacoustic imaging for
human imaging.

Table 2. Summary of recent studies using nanoparticles for breast cancer detection.

Authors and Ref. Nanoparticles Imaging Modality
Application

Conclusion
Imaging Therapy

Naha et al. [65]
Gold–silver alloy

nanoparticles
(GSAN)

DEM and CT ✓
GSAN produces strong DEM and CT
contrast in images and has potential

for breast cancer screening.

Nieves et al. [66] Silver telluride NPs
(Ag2Te NPs) DEM and CT Strong X-ray contrast for breast

cancer screening.

Karunamuni et al. [67] Silica-encapsulated
silver NPs DEM ✓

Silver nanoparticles produce strong
contrast in vivo using DEM imaging
systems for breast cancer detection.

Cole et al. [68]
Bisphosphonate-

functionalized gold
NPs (BP-Au NPs)

CT and
X-ray imaging ✓

Targeted BP-Au NPs enabled
improved sensitivity and specificity

for the detection of microcalcifications
in breast cancer with CT imaging.

Cole et al. [69]
Bisphosphonate-

functionalized gold
NPs (BP-Au NPs)

CT and X-ray
imaging ✓

Improved sensitivity and specificity
for microcalcification detection in

radiographically dense
mammary tissues.

Milgroom et al. [91]

Mesoporous silica
nanoparticles

(MSNs),
functionalized with

the monoclonal
antibody Herceptin®

US ✓ ✓

The results demonstrated that MSNs
are a stable, biocompatible, and

effective diagnostic and therapeutic
agent for US breast cancer imaging,

diagnosis, and treatment.

Cao et al. [93] Exosome-based NPs US ✓
Exosome-based NPs could serve as

effective nanosonosensitizers for safe
and targeted cancer treatment.
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Table 2. Cont.

Authors and Ref. Nanoparticles Imaging Modality
Application

Conclusion
Imaging Therapy

Salimi et al. [148]

Fourth-generation
dendrimer-coated

iron-oxide
nanoparticles
(G4@IONPs)

MRI ✓ ✓
The results showed that G4@IONPs

improved transverse relaxivity
(r2) significantly.

Xiao et al. [150]

Poly (ethylene glycol)
(PEG)-coated,

manganese-doped
iron oxide

nanocomposites
(Mn-IONPs@PEG)

MRI ✓

The Mn-IONPs@PEG exhibited good
properties for MRI imaging as a T1/T2
dual-contrast MRI contrast agent for

cancer detection.

Huang et al. [151] PEGylated ultrasmall
MnO NPs MRI ✓

MnO NPs showed a great potential
for the T1-weighted MRI diagnosis

of tumors.

Tao et al. [153] Small Fe3O4 NPs MRI ✓ ✓

Fe3O4@PD-based system has the
potential to be a multifunctional
nanodrug delivery system and a

smart theragnostic platform for cancer
detection and treatment.

Abbreviations: CT: computed tomography, DEM: dual-energy mammography, NP: nanoparticles, US: ultrasound,
MRI: magnetic resonance imaging.

6. Conclusions

Breast cancer imaging modalities are of great importance at early stages. Based on the
literature, different imaging modalities have different abilities and successes in depicting
the breast tissue. For instance, with DB, US and DCE-MRI are appropriate, whereas MG is
inappropriate. It has been determined that the DCE-MRI technique is suitable for examining
DBT tumor margins and axillary lesions. On the other hand, US is useful for examining
lymph nodes, inflammatory/malignant lesions, broad breast, deep lesions, lesions in
hidden areas of MG, and the stage before postoperative monitoring and treatment.

The evidence from this study suggests that using NPs for breast cancer detection with
different imaging modalities, especially MRI, can increase the SNR and image contrast
of breast images. This research extends our knowledge of using NPs for breast cancer
detection with different imaging modalities. Therefore, considering the purpose of breast
tissue imaging, the appropriate modality should be selected.

This review article could prove useful from a tutorial and educational point of view
for all radiologists, medical students, and researchers who are interested in breast cancer
diagnosis. The limitation of this article is that it may not have covered all recent findings in
all parts of the world.
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