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Abstract: Industrial radiography is a pivotal non-destructive testing (NDT) method that ensures
quality and safety in a wide range of industrial sectors. Conventional human-based approaches,
however, are prone to challenges in defect detection accuracy and efficiency, primarily due to the high
inspection demand from manufacturing industries with high production throughput. To solve this
challenge, numerous computer-based alternatives have been developed, including Automated Defect
Recognition (ADR) using deep learning algorithms. At the core of training, these algorithms demand
large volumes of data that should be representative of real-world cases. However, the availability of
digital X-ray radiography data for open research is limited by non-disclosure contractual terms in
the industry. This study presents a pipeline that is capable of modeling synthetic images based on
statistical information acquired from X-ray intensity distribution from real digital X-ray radiography
images. Through meticulous analysis of the intensity distribution in digital X-ray images, the unique
statistical patterns associated with the exposure conditions used during image acquisition, type
of component, thickness variations, beam divergence, anode heel effect, etc., are extracted. The
realized synthetic images were utilized to train deep learning models, yielding an impressive model
performance with a mean intersection over union (IoU) of 0.93 and a mean dice coefficient of 0.96 on
real unseen digital X-ray radiography images. This methodology is scalable and adaptable, making it
suitable for diverse industrial applications.

Keywords: non-destructive testing; synthetic data; deep learning; automated defect recognition
(ADR); digital X-ray radiography

1. Introduction

Non-destructive Testing (NDT) plays a pivotal role in maintaining the safety and
reliability of diverse structural components across multiple industries. This is achieved
in a manner that ensures inspected components are not damaged or impaired in terms of
their intended functionality. In safety-critical sectors like aerospace [1] and automotive [2]
sectors, NDT is crucial for identifying potential failures and defects and mitigating the
potential dangers that could arise from the failure of such components during service. Over
the years, diverse NDT methods have been developed and employed in the industry. These
methods include but are not limited to visual inspection, magnetic particle inspection, liquid
penetrant inspection, ultrasonic inspection, infrared thermography, X-ray radiography,
etc. However, X-ray radiography stands out due to its ability to provide details of the
internal structures of components, enabling the visualization of flaws such as cracks,
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voids, inclusions, shrinkage cavities, etc. [3], within inspected components, offering a
unique perspective that is unattainable using surface inspection methods. Digital X-ray
radiography presents a fascinating blend of simplicity and complexity, where its simplicity
lies in its basic operation: generated X-ray photons pass through an object under test and are
captured using a detector, producing a two-dimensional (2D) image [4]. Generated digital X-
ray radiography images are typically rendered in shades of gray, having gray values ranging
from 0 to 65535 for 16-bit images or 0 to 255 gray values for 8-bit images. The principal
factor influencing the noticeable gray value difference within acquired radiographic images
is X-ray beam attenuation [5], which is affected by factors such as differences in material
thickness, density, foreign material inclusions, and the geometry of the components being
inspected, among others [6]. The seemingly simple process of X-ray image acquisition
conceals the intricate physics and engineering that underpin the technique. The processes
of X-ray generation, exposure controls and effect on image quality, acquisition setup,
type of detectors that accurately capture X-ray photons (scintillation-based or direct X-ray
conversion digital detector arrays), conversion of detected signals to digital signals, digital
processing, etc., are all governed by very complex scientific principles [7]. Furthermore,
collapsing a three-dimensional (3D) test component into a 2D representation presents
a notable complexity and challenge with X-ray radiography because it can lead to the
superimposition of features such as porosities, shrinkage cavities, cold fills, and foreign
inclusions, which may occur at different depths within test components. As a result, the
interpretation of acquired images becomes more difficult and prone to misconceptions,
hence necessitating the services of trained experts for interpretation [8].

The challenges in interpreting digital X-ray images are additionally heightened by
the nuance of some defects, which may not be prominent, especially in low-contrast ra-
diographic images. According to ASTM 1316-17a [9], inspectors are typically tasked with
accurately identifying radiographic indications, determining their relevance (flaws or not),
evaluating if detected flaws constitute a defect, and reaching a decision on whether a
component is to be accepted for use or rejected. Despite the post-processing assistance
obtainable using computer-based operations, interpretations by experts are prone to human
error, especially in the face of the high inspection demand occasioned by the high produc-
tion throughput witnessed in manufacturing industries. This is especially evident in the
aluminum die-casting industry, where process automation facilitates high manufacturing
throughput [10].

1.1. Deep Learning in Digital X-ray Radiography Applications

The advent of deep learning, a subset of machine learning marked by algorithms
that can interpret and learn from data, has revolutionized industrial inspection. Tasks
involving feature recognition and image interpretation have witnessed the integration of
such machine learning-based solutions across different industrial sectors [11]. Expanding
beyond these, there are other industrial inspection solutions based on machine learning
solutions, such as anomaly detection in environmental sensor networks [12] and online
fault detection and classification in photovoltaic plants [13]. In non-destructive testing, deep
learning models have achieved remarkable success in flaw/defect detection tasks in digital
X-ray radiography applications [14]. Deep learning models, trained on extensive datasets of
annotated images, show a convincing ability to detect patterns and anomalies, even those
that are often difficult for the human eye. This cognitive capability of the algorithms is
especially promising in NDT digital X-ray radiography, recording successes as highlighted
by [15]. Hence, utilizing algorithms trained on large collections of digital X-ray images
proffers a means of automating the defect detection process. This automation has the
potential to improve the accuracy and efficiency of inspections and reduce human error [16].
Furthermore, automating image interpretation could boost the inspection throughput to
meet the rising demands witnessed in manufacturing industries and ultimately lead to safer
and more reliable outcomes. However, the application of deep learning in digital X-ray
radiography is not without its challenges. A primary challenge is the lack of large volumes
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of annotated datasets of digital X-ray images that are representative of the use case intended.
Owing to the sensitive nature of X-ray images, especially in safety-critical industries like
aerospace and automotive, stringent non-disclosure confidentiality agreements are often
reached between clients and the industry, which inadvertently limit the availability of X-ray
images for open research [17,18].

Without sufficient representative data for a given use case, the potential of deep
learning in enhancing automated defect detection in X-ray radiography would remain
largely untapped [8]. To ameliorate the notable scarcity of large volumes of annotated
datasets, synthetic data generation using computational models has sufficed as a viable
solution, offering a promising pathway to realizing a vast number of training data that
closely mimic real-world conditions [14,19]. This approach can utilize simulations of the
X-ray imaging process, incorporating different materials, defect types, and geometries in a
bid to produce diverse and realistic datasets. However, the question remains: how effective
is such an approach?

1.2. X-ray Radiography Simulation

X-ray radiography simulators have proven to be very useful in NDT radiography due
to the enormous values it brings, including enhancing NDT techniques, training experts,
improving reliability and capability of testing approaches, inspection planning to efficiently
analyze complex geometries, etc. [20]. The simulators play a crucial role in shortening
the development time of new NDT techniques, especially in industries like aerospace,
where structural integrity is very critical. The simulators are developed with varying
complexities, from ray-tracing-based simulators to Monte Carlo-based simulators [21,22].
At the core of the functionality of these simulators is an in-depth focus on the modeling of
X-ray generation and photon-matter interaction. The seeming realism that X-ray simulator
images present has spurred several research interests, especially within deep learning ap-
plications, to leverage such synthetic data to address the shortage of real X-ray radiography
datasets for training deep learning algorithms. This approach of using synthetic data as
a data augmentation strategy is not new, as there have been published successes in the
literature, covering applications not limited to autonomous vehicle development [23], facial
recognition technology [24], and even NDT digital X-ray radiography, which this study is
focused on. The primary objective of this research approach is for the model, trained on
synthetic data, to yield high performance in actual real-case scenarios. Therefore, the need
to have real-like synthetic data becomes critical, attracting notable research efforts aimed
at generating same. Studies conducted by [25], they took a data synthetization approach
that employs various image translation operations such as translation, rotation, zooming,
shearing, etc. However, because the original data were real X-ray radiography images,
certain operations such as shearing of the images, could significantly alter the essential
image parameters of the resultant images, potentially making them less useful in training.
In other studies, refs. [26,27] adopted the use of Monte Carlo simulation, which, in contrast
to our proposed approach, comes at an additional computational cost. Additionally, their
work adopts Lambert-beer’s equation to determine the primary intensity of the generated
synthetic images, assuming monochromatic energy source. Although gaussian noise ad-
dition at different levels was introduced, the primary intensity generation does not offer
the realism that is obtainable with polychromatic X-ray sources, which are mostly used
in industry. In another research by [28], they explored training a deep learning algorithm
using synthetic data, then fine-tuning the same on a real X-ray image data. The fine-tuned
model was then employed for defect detection and classification.

In contrast to the considered literature, our approach takes a distinctive stance by
modeling synthetic images using statistical distribution of intensity values from real X-
ray radiography images to enhance overall model performance. This is achieved via a
computationally less expensive solution, in contrast to, for instance, ray-casting or Monte
Carlo simulations considered in the reviewed literature. Additionally, the gray value
distribution from the real images is characteristic of the exposure conditions used to acquire
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such images. Furthermore, this study employs only synthetically generated data for
training the model to be tested on real digital X-ray radiography images.

2. Intensity Distribution: Real vs. Simulated Images

A radiography image is a 2D matrix of pixel intensities, which represents the X-ray
photons detected using a sensor during acquisition. Each pixel in this matrix corresponds to
a specific finite area on the detector, and its value corresponds to the intensity of the photons
detected at that specific area during image acquisition. When a test component is positioned
between the source and the detector, the detected signal, converted to pixel intensity, is
primarily indicative of the interactions that the X-ray photons have undergone while
transmitting through the test component. Higher pixel intensity implies more photons
were detected, which usually corresponds to areas in the test component that absorbed
fewer X-ray photons (like porosities or shrinkage cavities), while lower intensity indicates
fewer X-ray photons were detected, typically in areas where more X-rays were attenuated
(like regions with higher material thickness) [29]. In principle, the X-ray beam originates
from a small focal spot in the X-ray tube and assumes a divergent orientation as it travels
toward the detector. This beam divergence, or spread, makes it possible to attain beam
coverage over a wider 2D area of the detector [29]. Therefore, this divergence affects
the photon intensity detected by the sensor, where the highest intensities are recorded at
the central beam position, as this area receives the most direct and concentrated beam
of X-ray photons. If this position is at the center of the detector, an observation across
the entire detector should reveal a decrease in detected X-ray photon intensity that spans
radially away from the center of the detector towards its edges. This decrease in intensity
is attributed to the photons being more spread out and less concentrated towards the sides
of the detector [30].

Another phenomenon that further influences the distribution of photon intensity
across radiographic images is the anode heel effect [31]. In most X-ray tubes, the anode
(the component that emits X-rays) is positioned at an angle, leading to the generation of
X-ray beam intensity distribution that is not uniform when the X-ray photons are sensed
by the detector. This is because the angled anode partially absorbs some of the X-rays
on its side, resulting in a reduction in intensity towards the anode side of the beam. In
addition, the interaction of X-ray photons with a component could lead to scatter radiation,
which also influences intensity distribution in radiographic images [32]. This scattered
radiation can reach the detector and contribute to image formation, but it does not carry
useful information about the test component’s internal structure. Instead, it adds a level of
noise to the image, which can reduce image quality. Scatter radiation is more significant
in thicker and denser objects [33]. All the above image intensity altering factors discussed
assume a uniform detector response across all the pixels of a detector. Hence, it is possible
to theoretically model and implement the physics of X-ray imaging in such an ideal manner.
However, there are a lot of other factors that influence intensity distribution, as seen on
acquired X-ray radiography images.

2.1. Pixel Based Contributions

The response of these pixels may vary, even at the same level of X-ray photon exposure.
Furthermore, with continuous use of the detector, there is an increasing possibility of
degradation of the pixel performance across the detector over time [34]. Common pixel-
based defects of the X-ray detectors include noisy pixels, over-responding pixels, under-
responding pixels, dead pixels, non-uniform pixels, lag pixels, and bad neighborhood
pixels. Depending on the type of pixel defect, a single pixel or a cluster of pixels could be
affected. Detailed information on these mentioned pixel defects is offered in ASTM E2597
Standard Practice for Manufacturing Characterization of Digital Detector Arrays [35]. Ideal
practices employ correction for defective pixels via interpolation of neighboring pixels. In
addition, further processing of the acquired image is necessary, which includes averaging
of different raw images, flat fielding of the images to correct the anode heel effect and
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uneven detector panel response [30], application of lookup tables (where necessary) [31],
etc. Figure 1 shows an example of raw intensity distribution detected using the digital
detector array and the outcome after necessary pixel intensity correction processes have
been performed. Considering that the mentioned steps are unique to specific X-ray imaging
systems, it becomes daunting to obtain a single simulation solution that will be robust
enough to fully mimic all acquisition environments and image outputs.
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Figure 1. (a) shows a raw image that was acquired using a flat panel detector, showing inhomo-
geneous intensity distribution; (b) shows the final image after pixel corrections and flat-fielding
operations.

2.2. Bridging the Research Gap

This research aims to develop a pipeline for generating synthetic digital X-ray images
and utilizing these images to train a deep learning algorithm for the detection and seg-
mentation of flaws in NDT digital X-ray radiography. Our approach has the potential not
only to overcome the limitations posed by the scarcity of datasets but also to revolutionize
the way training data is curated, consequently enhancing flaw detection models. In effect,
the results offered by this study should influence the development of solutions that could
enhance the safety and reliability of various industrial components.

3. Materials and Methods

In our research, we employed aluminum plates for data collection purposes, each plate
measuring 300 mm × 300 mm × 6.5 mm. Distributed across each of the six plates used in
this study are 25 flat-bottom holes, resulting in a total of 150 flat-bottom holes. These holes
were drilled using an end milling machining procedure and varied in shape, being either
cylindrical or cuboidal. The cylindrical holes had a diameter ranging from 9 mm to 20 mm,
while the cuboidal holes had side dimensions ranging from 7 mm to 20 mm. The depth of
the holes also varied from a minimum depth of 0.5 mm, with 0.5 mm incremental steps, to
a maximum depth of 5.5 mm. Figure 2 shows examples of the plates used in the study. By
varying the depth of these flat bottom holes, the dataset captures a wide range of potential
defect presentations that are of interest in this study. This variability is crucial for training a
model capable of generalizing over a broad range of defect representations in real X-ray
images to be later considered.
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Figure 2. Examples of aluminum plates with cylindrical (a) and cuboidal (b) flat-bottom holes.

Furthermore, we utilized a digital X-ray radiography acquisition system with a maxi-
mum tube voltage of 150 kV and a maximum tube current of 0.5 mA. The system included
a scintillation-based 2D digital detector array (DDA) with an active detection area of
3098 × 3097 pixels (9,594,506 pixels) and a pixel size of 100 microns. Throughout the imag-
ing of the aluminum plates, we consistently used a Source-to-Detector Distance (SDD) of
600 mm, with each plate placed directly on the detector during acquisition. The idea of
using a consistent setup was to ensure similar gray value distribution across all plates for a
given exposure factor, particularly in areas of equal thickness. Due to the expansive size
of the DDA, the entire size of an aluminum plate (as considered in this study) could be
captured in a single acquisition. However, it is important to note that the diverging nature
of the X-ray beam from the tube’s focal spot to the detector results in an inhomogeneous
distribution of X-ray intensity across the detector. Reasons for this inhomogeneity include
the inverse relationship of the radiation intensity to the square of the beam’s travel distance
from the source [36]. Additionally, the anode heel effect earlier discussed contributes to the
inhomogeneity in gray value (GV) distribution. Therefore, by implication, the gray value
distribution we observed differed across the plate, even at regions with the same thickness.
Table 1 provides the exposure factors utilized for each plate. Varying the exposure factors
significantly varied the intensity distribution across each acquisition, altering the image
quality parameters such as the Signal-to-Noise ratio and Contrast-to-Noise ratio values
across the defective areas (flat-bottom holes) and non-defective regions of the plates [37].

Flat-bottom holes with different depths relative to the plate’s thickness show distinct
features representing higher signal intensity at their respective regions, demonstrating
the effect of differential X-ray beam attenuation. This can be seen in Figure 3. Given the
planner nature of the plate, the rendering of the 3D features (actual holes on the plate) on
2D X-ray images acquired using transmission X-ray radiography are described as follows:
the cylindrical holes appear as circular features, while the cuboidal flat-bottom holes appear
as square shaped features. This is particularly true when the central X-ray beam is parallel
and at the central axis of the holes. However, due to the divergent nature of the X-ray beam,
as discussed earlier, the resultant morphology of the rendered features is influenced by two
factors: the depth of the flat-bottom holes and their proximity to the central X-ray beam
path. Holes with more depth and positioned farther away from the central beam tend to
increase the deviation from the ideal morphology (circle or square). Additionally, the edges
are blurred due to effects such as X-ray beam scattering [38], the finite size of the focal spot,
and the geometry of the setup [39]. Figure 4 offers an example of these effects.
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Table 1. A list of 20 different exposure factors used during acquisition.

SN Kilovoltage (kV) Amperage (A) Time (s)

1 50 kV 100 µA 0.2

2 50 kV 100 µA 0.5

3 50 kV 200 µA 0.2

4 50 kV 200 µA 0.5

5 50 kV 450 µA 1

6 60 kV 100 µA 0.2

7 60 kV 100 µA 0.5

8 60 kV 200 µA 0.2

9 60 kV 200 µA 0.5

10 60 kV 400 µA 0.5

11 60 kV 450 µA 0.5

12 60 kV 450 µA 1

13 70 kV 100 µA 0.2

14 70 kV 100 µA 0.5

15 70 kV 200 µA 0.2

16 70 kV 200 µA 0.5

17 70 kV 400 µA 0.5

18 70 kV 450 µA 0.5

19 75 kV 450 µA 0.5

20 150 kV 50 µA 0.5
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Figure 4. A cropped X-ray radiography image showing the edge effect due to the geometry of the
cylindrical flat-bottom hole and the X-ray beam divergence.

Due to the inhomogeneity witnessed in the acquired images, it was important to
consider regions on each image that are statistically different. Hence, a total of 3000 cropped
images were realized: 25 × 20 × 6 (features per plate × number of exposures × number
of plates) to have a robust representation during synthetic image generation. However, it
was important to identify and isolate images with saturated pixels, where 698 implicated
images were isolated from the dataset, leaving a total of 2311 candidate real cropped digital
X-ray images (1411 circular features and 900 with square features).

3.1. Synthetic Image Generation

The generation of synthetic digital X-ray images forms the cornerstone of this research,
offering a viable approach to bridging the gap in the availability of data for training deep
learning models in NDT digital X-ray radiography applications. The first step in this
process involves a comprehensive analysis of real X-ray radiography images. This analysis
focused on understanding the statistical distribution of gray values within real digital
X-ray images considered. The intensity distribution of the 1411 digital X-ray images with
circular flaws was analyzed. Statistical measures were obtained of the gray values at the
background and at the features that represent areas with different plate thicknesses because
of the presence of flat-bottom holes. These statistical measures included the following:
Minimum GV, Maximum GV, Mean GV, Standard Deviation of GV, and Variance. The
background had a defined Region of Interest (ROI) for all the images. The ROI for each
feature within an image was determined using the maximum inscribed polygons within the
edges of annotated features in the ground truth masks. To obtain a statistical representation
of the actual remaining thickness of the plate, it was crucial to reduce the size of the
inscribed polygons by 6 pixels, considering the effect described in Figure 4.

Figure 5 shows a superimposed histogram plot of the mean gray values of the assessed
1411 real X-ray images with circular features measured at the regions of the features and
backgrounds. The distribution of the measured values stems primarily from the different
exposure conditions used and the varying thicknesses of the flat-bottom holes in the
imaged plates. Additionally, the inhomogeneity of the X-ray intensity further influences
the distribution of these measured values.

The box-and-whiskers plot in Figure 6. offers a unique presentation of the assessed
data that is relevant in understanding how robust, or not, our data is in terms of feature
representation. It could be observed that the interquartile ranges of the mean GV of the
features, which represent 50% of our data, lie around 7000 to 28,000 GV. The upper whisker,
which ranges between the 3rd quartile and the maximum (representing 25% of the data), has
values ranging from 28,000 to around 58,000 gray values. Outliers could be observed above
the 58,000 gray values. Depending on the expectations in a real scenario, this distribution
could be used strategically to build the dataset.
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Figure 6. Box-and-whiskers plot of the mean gray values measured in the considered 1411 real X-ray
radiography images with circular features.

The variations in gray value distribution are indicative of various material thicknesses
(normal plate thickness and plate thickness at regions with flaws). With the statistical data
extracted from the 1411 real digital X-ray images with circular features, we employed a
specialized algorithm to generate synthetic images. This algorithm randomly generates
gray values for the synthetic images but within the confines of the statistical distribution
that was sampled in the real digital X-ray images. This approach ensures that the synthetic
images, while randomly generated, still adhere to realistic patterns witnessed in the real X-
ray images. The pipeline employs techniques from computational modeling and stochastic
processes. It incorporates randomness to simulate the natural variability found in real-
world scenarios but remains guided by the statistical confines derived from the preceding
analysis of real images. The statistical parameters acquired are introduced into the synthetic
image generation pipeline through the key steps described as follows:
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Poisson distribution is used to model the pixel intensity values in a fixed interval. The
probability mass function (PMF) of the Poisson distribution is given by Equation (1).

P(X = k) =
⋋ke−⋋

k!
(1)

In the Poisson distribution formula, P(X = k) represents the probability of observing
k events. The symbol ⋋ stands for the average number of events in an interval, equivalent
to the mean gray value in this context. The term e refers to Euler’s number, approximately
2.71828, and k! denotes the factorial of k, which is the product of all positive integers up
to k.

f (x|µ, σ) =
1

σ
√

2π
e−

(x−µ)2

2σ2 (2)

In Equation (2), the context for introducing Gaussian noise, x refers to the variable or
pixel value. The mean, denoted as µ, is set to zero, and the standard deviation, represented
by σ, is set to 5% of the mean gray value.

Furthermore, the values are standardized and converted to a standard normal distri-
bution (mean = 0, standard deviation = 1) using the operation described in Equation (3).

Z =
X − µx

σx
(3)

where Z is the standardized value, x is the original value, µx is the mean of the original
values, and σX is the standard deviation of the original values.

To attain the desired mean and standard deviation for the synthetic image, the stan-
dardized values in the preceding step are recalled using Equation (4).

Y = Z · σdesired + µdesired (4)

Y represents the rescaled value, Z the standardized value, σdesired is the desired standard
deviation, desired µdesired is the desired mean. The minimum and maximum values are
clipped to ensure more representative simulated data for a given case. Although we did
not model the data using the measured values of variance as obtained from the real images,
this parameter remains crucial in optimization, as it is used to assess the textural similarity
between the real and synthetic data.

In our approach, we chose to use binary representation, as can be seen in the process
chart in Figure 7, to define the target regions of interest to be used by the simulation
pipeline for the determination of the feature and background. This is practicable because
only two thicknesses are considered in each image. This binary representation was realized
by thresholding a thickness map acquired from a CAD model with cuboidal features
representing flat-bottom holes.

A detailed description of the synthetic data generation pipeline can be found in
Figures A1 and A2. Our statistical modeling approach ensures that the synthetic images
reflect a realistic presentation of flaws, potentially enhancing the model’s applicability
in digital X-ray radiography images. Additionally, this method allows for the creation
of a large and diverse dataset, essential for the robust training of a deep learning model.
Boundary characteristics between features and background are crucial for deep learning
training. In real X-ray radiography acquisition, factors that worsen edge delineation include
scatter radiation effects [40], the geometric configuration of the acquisition setup, penumbra
formation resulting from the finite size of the focal spot [41], etc. To address this concern,
in our synthetic images, we implemented a methodology that successfully mimics the
edge characteristics observed in real X-ray images in our simulated images to potentially
improve model performance. This was achieved by feathering the boundaries between
features and background using the operations described as follows:
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The Gaussian function utilized in our approach is two-dimensional to cover an area
of 9 × 9 pixel dimension. It is mathematically expressed by Equation (5), where σ is the
standard deviation of the distribution, which controls the spread of the blur.

G(x, y) =
1

2πσ2 e−
x2+y2

2σ2 (5)Information 2024, 15, x FOR PEER REVIEW 11 of 21 
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The convolution process for a point (i, j) in the image is mathematically expressed in
Equation (6).

Iblurred(i, j) = ∑k
u=−k ∑k

v=−k G(u, v)·I(i − u, j − v) (6)

Here, I represents the original image, Iblurred (i, j) represents the intensity of the blurred
image at the pixel location (i, j), and K corresponds to the kernel size. G(u, v) indicates
the value from the Gaussian kernel at position (u, v), while I(i − u, j − v) represents the
intensity of the original image at a location offset by (u, v) from (i, j). The sums over u
and v iterate over the kernel size, which is defined by k. For the 9 × 9 kernel, k would be 4
(as the kernel extends 4 pixels in each direction from the center).

Furthermore, it was essential to scale the blurred image to a range between 0 and 1,
inversely for the background and directly for the feature. This was achieved as expressed
by Equations (7) and (8).

blurred_mask = 1 − blurred_mask
255

(7)

f eature_mask =
blurred_mask

255
(8)
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Finally, to achieve a blending of the background and feature regions of the synthetic
data using these masks, the approach is mathematically expressed in Equation (9).

Ioutput = bgvalues·background_mask + f eaturevalues· f eaturemask (9)

These operations ensure boundary transition between the background and feature
to mimic what is obtainable in real X-ray radiography images. A comparison of real and
synthetic data is described in Figure 8.

Information 2024, 15, x FOR PEER REVIEW 12 of 21 
 

 

sums over 𝑢 and 𝑣 iterate over the kernel size, which is defined by 𝑘. For the 9 × 9 ker-
nel, 𝑘 would be 4 (as the kernel extends 4 pixels in each direction from the center). 

Furthermore, it was essential to scale the blurred image to a range between 0 and 1, 
inversely for the background and directly for the feature. This was achieved as expressed 
by Equations (7) and (8). 

𝑏𝑙𝑢𝑟𝑟𝑒𝑑_𝑚𝑎𝑠𝑘 = 1 െ 𝑏𝑙𝑢𝑟𝑟𝑒𝑑_𝑚𝑎𝑠𝑘255  (7)

𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑚𝑎𝑠𝑘 =  𝑏𝑙𝑢𝑟𝑟𝑒𝑑_𝑚𝑎𝑠𝑘255  (8) 

Finally, to achieve a blending of the background and feature regions of the synthetic 
data using these masks, the approach is mathematically expressed in Equation (9). 𝐼௨௧௨௧ = 𝑏𝑔௩௨௦ ∙ 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑_𝑚𝑎𝑠𝑘 + 𝑓𝑒𝑎𝑡𝑢𝑟𝑒௩௨௦ ∙ 𝑓𝑒𝑎𝑡𝑢𝑟𝑒௦ (9)

These operations ensure boundary transition between the background and feature to 
mimic what is obtainable in real X-ray radiography images. A comparison of real and 
synthetic data is described in Figure 8. 

  
(a) (b) 

  
(c) (d) 

Figure 8. (a) Shows line profile pixel intensity readings represented by the yellow line across the 
edge of the zoomed-in X-ray radiography image presented in (c); while image (b) shows line profile 
pixel intensity readings represented by the yellow line in across the edge of the zoomed-in synthetic 
image in (d). 

3.2. Deep Learning Model Training 
YOLOv8, an acronym for You Only Look Once version 8, is a state-of-the-art deep 

learning model designed for real-time object detection, image segmentation, and classifi-
cation tasks [42]. It is known for its efficiency and speed in processing images. YOLOv8 
incorporates a deep neural network architecture, combining the advantages of the YOLO 

Figure 8. (a) Shows line profile pixel intensity readings represented by the yellow line across the edge
of the zoomed-in X-ray radiography image presented in (c); while image (b) shows line profile pixel
intensity readings represented by the yellow line in across the edge of the zoomed-in synthetic image
in (d).

3.2. Deep Learning Model Training

YOLOv8, an acronym for You Only Look Once version 8, is a state-of-the-art deep
learning model designed for real-time object detection, image segmentation, and classifi-
cation tasks [42]. It is known for its efficiency and speed in processing images. YOLOv8
incorporates a deep neural network architecture, combining the advantages of the YOLO
framework with advancements in model design and training strategies. The model utilizes
a single neural network to simultaneously predict bounding boxes, object classes, and
segmentation masks for each detected object within an input image. The architecture is
built upon a backbone of convolutional layers, enabling it to effectively capture hierarchical
features in images. To train the model, we utilized pre-trained weights from yolov8n with
about 3.4 million parameters, which was trained on the COCO dataset [43]. This implies
that the initial weights used for training were not random. This transfer-learning approach
was chosen in a bid to facilitate the training of the model with our purely synthetic data. A
single class, called FB_Hole, was used, which represented the square-shaped features in
both the synthetically generated dataset used for the training and the real X-ray radiog-
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raphy test data. A schematic description of the model training approach adopted in this
study is presented in Figure 9.
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Figure 9. Model training description, showing the neural network trained on only synthetic data and
tested two distinct times on both synthetic and real test data.

The model was trained for a total of 100 epochs, where the performance of the best-
trained model was tested on real X-ray radiography images that were not included in either
the training or validation datasets and compared the result with the model’s performance
on synthetic data not included in either the training or validation data. Relevant training
metrics are presented in Figures 10 and 11.

From the charts provided in Figure 11, the model achieved near-perfect precision and
recall across the dataset, which indicates that it can correctly identify and segment the
target flaws (FB_Hole) with high reliability. It could also be observed that the F1 score
remains high across all confidence levels, indicating a strong balance between precision and
recall. Furthermore, the mean Average Precision scores are extremely high (around 0.995),
demonstrating the model’s ability to accurately predict bounding boxes and segmentation.
Additionally, our model trained relatively quickly, completing 100 epochs in 0.825 h, which
is a considerably rapid training time that is indicative of an efficient training process, likely
aided by the powerful Tesla T4 GPU used for training. A look at the loss metrics reveals a
steady decrease over training epochs, reflecting the model’s learning efficacy and stability,
and suggesting robustness against overfitting. Another striking observation is the model’s
inference time, averaging at about 8.0 ms per image, hence making it remarkably fast
and suitable for real-time applications. Moreover, the striped-down trained weight file
is only 6.8 MB, which is small and further adds to the practicability of integrating the
trained model into systems that require fast, accurate object detection and segmentation.
A potential example is real-time automated defect recognition (ADR) solutions for digital
X-ray radiography applications.
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Figure 12 shows a cross-section of the results of the model performance on real
X-ray radiography images. Apart from the prediction results and associated original
images, corresponding color spectrum images are also presented to appreciate visually the
inhomogeneous gray value distribution in the images.
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Figure 12. A cross-section of results of the model performance on real X-ray radiography images.
Images on the same row represent a single entry, with columns (a), representing prediction, (b) the
original input image, and (c) a conversion of the input images to color spectrum for easier visualization
of the pixel intensity distribution.
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4. Discussion

One of the noteworthy offerings of this research work is the ability of our model,
trained exclusively on synthetic data, to demonstrate remarkable generalization capabilities
when applied to real-world digital X-ray radiography image data. Our approach of building
a synthetic image generation pipeline that incorporates the statistical characteristics of real
X-ray images ensures that the synthetic data not only mimics these statistical properties of
the real-world X-ray radiography images but also the nuances and complexities present in
such real X-ray radiography images. Since the generalization of our trained model is at the
core of our interest, for the synthetic data, we used a different morphological representation
(square-shaped features) compared to the circular features of the dataset analyzed for the
extraction of statistical parameters. Additionally, for the real X-ray radiography test images
that were used to evaluate the model’s performance, a random selection of images was
made from a dataset of 900 cropped images that were acquired with 20 different exposure
conditions. These images had square feature representations that varied in gray values
due to the differing thicknesses of the flat-bottom holes in the imaged aluminum plates.
Notwithstanding the measures employed, the trained model attained a mean IoU of 0.93
and a mean dice coefficient of 0.96, showcasing the effectiveness of our synthetic data
generation approach and underscoring the adaptability of the same in industrial contexts,
particularly those involving manufactured components of similar dimensions.

5. Conclusions and Future Work

In conclusion, our research contributes to the growing body of evidence supporting
the efficacy of synthetic data in training deep-learning models. The unique integration of
the statistical distribution of intensity values, as seen in real X-ray radiography images, into
the simulation pipeline in the manner expressed in this work represents a unique approach
that enhances the deep learning model’s ability to generalize to real-world scenarios. By
adopting our approach to industries that fabricate components with similar dimensions
(such as the aluminum die-casting industry), we envision a revolution in quality assurance
processes involving digital X-ray radiography inspections. As industries continue to
embrace automated defect recognition (ADR), our methodology has the potential to become
pivotal in ensuring consistent and high-quality assessment of digital X-ray radiography
images of manufactured components.

While our approach has demonstrated promising advancements, it is essential to
acknowledge its current limitations, particularly in terms of the generalizability of our
synthetic X-ray radiography image generation pipeline to very complex geometries. This
recognition of constraints lays the foundation for future research and improvement. As part
of our future work, we intend to focus on addressing these limitations by incorporating
methodologies specifically designed to accommodate complex geometries. This includes
the further exploration of modeling techniques to address edge variations and geometry-
induced scattering effects in curved structures.
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4. Beránek, L.; Kroisová, D.; Dvořáčková, Š.; Urban, J.; Šimota, J.; Andronov, V.; Bureš, L.; Pelikán, L. Use of Computed Tomography

in Dimensional Quality Control and NDT. Manuf. Technol. 2020, 20, 566–575. [CrossRef]
5. Baur, M.; Uhlmann, N.; Pöschel, T.; Schröter, M. Correction of Beam Hardening in X-ray Radiograms. Rev. Sci. Instrum. 2019, 90,

025108. [CrossRef] [PubMed]
6. Aral, N.; Amor Duch, M.; Banu Nergis, F.; Candan, C. The Effect of Tungsten Particle Sizes on X-ray Attenuation Properties.

Radiat. Phys. Chem. 2021, 187, 109586. [CrossRef]
7. Ou, X.; Chen, X.; Xu, X.; Xie, L.; Chen, X.; Hong, Z.; Bai, H.; Liu, X.; Chen, Q.; Li, L.; et al. Recent Development in X-ray Imaging

Technology: Future and Challenges. Research 2021, 2021, 9892152. [CrossRef]

https://doi.org/10.2514/1.J060860
https://doi.org/10.33564/IJEAST.2022.v07i01.054
https://doi.org/10.1016/j.engappai.2022.105636
https://doi.org/10.21062/mft.2020.108
https://doi.org/10.1063/1.5080540
https://www.ncbi.nlm.nih.gov/pubmed/30831707
https://doi.org/10.1016/j.radphyschem.2021.109586
https://doi.org/10.34133/2021/9892152


Information 2024, 15, 16 20 of 21

8. Say, D.; Zidi, S.; Qaisar, S.M.; Krichen, M. Automated Categorization of Multiclass Welding Defects Using the X-ray Image
Augmentation and Convolutional Neural Network. Sensors 2023, 23, 6422. [CrossRef]

9. Standard Terminology for Nondestructive Examinations. Available online: https://www.astm.org/e1316-17a.html (accessed on
5 December 2023).

10. Luo, A.A.; Sachdev, A.K.; Apelian, D. Alloy Development and Process Innovations for Light Metals Casting. J. Mater. Process.
Technol. 2022, 306, 117606. [CrossRef]

11. Mazzei, D.; Ramjattan, R. Machine Learning for Industry 4.0: A Systematic Review Using Deep Learning-Based Topic Modelling.
Sensors 2022, 22, 8641. [CrossRef]

12. Fascista, A.; Coluccia, A.; Ravazzi, C. A Unified Bayesian Framework for Joint Estimation and Anomaly Detection in Environ-
mental Sensor Networks. IEEE Access 2023, 11, 227–248. [CrossRef]

13. Lazzaretti, A.E.; Costa, C.H.D.; Rodrigues, M.P.; Yamada, G.D.; Lexinoski, G.; Moritz, G.L.; Oroski, E.; Goes, R.E.D.; Linhares,
R.R.; Stadzisz, P.C.; et al. A Monitoring System for Online Fault Detection and Classification in Photovoltaic Plants. Sensors 2020,
20, 4688. [CrossRef] [PubMed]

14. Lindgren, E.; Zach, C. Industrial X-ray Image Analysis with Deep Neural Networks Robust to Unexpected Input Data. Metals
2022, 12, 1963. [CrossRef]

15. García Pérez, A.; Gómez Silva, M.J.; De La Escalera Hueso, A. Automated Defect Recognition of Castings Defects Using Neural
Networks. J. Nondestruct. Eval. 2022, 41, 11. [CrossRef]

16. Tyystjärvi, T.; Virkkunen, I.; Fridolf, P.; Rosell, A.; Barsoum, Z. Automated Defect Detection in Digital Radiography of Aerospace
Welds Using Deep Learning. Weld World 2022, 66, 643–671. [CrossRef]
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