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Abstract: Bioinformatics and genomics are driving a healthcare revolution, particularly in the domain
of drug discovery for anticancer peptides (ACPs). The integration of artificial intelligence (AI)
has transformed healthcare, enabling personalized and immersive patient care experiences. These
advanced technologies, coupled with the power of bioinformatics and genomic data, facilitate
groundbreaking developments. The precise prediction of ACPs from complex biological sequences
remains an ongoing challenge in the genomic area. Currently, conventional approaches such as
chemotherapy, target therapy, radiotherapy, and surgery are widely used for cancer treatment.
However, these methods fail to completely eradicate neoplastic cells or cancer stem cells and damage
healthy tissues, resulting in morbidity and even mortality. To control such diseases, oncologists
and drug designers highly desire to develop new preventive techniques with more efficiency and
minor side effects. Therefore, this research provides an optimized computational-based framework
for discriminating against ACPs. In addition, the proposed approach intelligently integrates four
peptide encoding methods, namely amino acid occurrence analysis (AAOA), dipeptide occurrence
analysis (DOA), tripeptide occurrence analysis (TOA), and enhanced pseudo amino acid composition
(EPseAAC). To overcome the issue of bias and reduce true error, the synthetic minority oversampling
technique (SMOTE) is applied to balance the samples against each class. The empirical results over
two datasets, where the accuracy of the proposed model on the benchmark dataset is 97.56% and on
the independent dataset is 95.00%, verify the effectiveness of our ensemble learning mechanism and
show remarkable performance when compared with state-of-the-art (SOTA) methods. In addition,
the application of metaverse technology in healthcare holds promise for transformative innovations,
potentially enhancing patient experiences and providing novel solutions in the realm of preventive
techniques and patient care.

Keywords: artificial intelligence; machine learning; feature representation; classification; ensemble
classifier; bioinformatics; metaverse; digital healthcare; sequence-based model; anticancer peptide

1. Introduction

Healthcare is paramount for global well-being and crucial in fostering services and
contributing to economic growth [1]. Technological advancements such as blockchain,
augmented reality (AR), and virtual reality (VR) have transformed patient-physician
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interactions [2]. At the same time, the healthcare system in the metaverse integrates
Al telepresence, digital twinning, and blockchain to facilitate affordable treatments and
improve patient outcomes [3]. Figure 1 illustrates the different applications of metaverse
in healthcare. The metaverse also delivers personalized, immersive care by integrating
real and virtual worlds [4]. Cancer remains a major global health threat, causing millions
of deaths annually [5]. Although conventional treatments such as radiotherapy, target
therapy, and chemotherapy can effectively target cancer cells, they also impose significant
financial burdens and affect healthy cells [6]. To address these challenges, there is a
growing need for an automated system to accurately identify ACPs from complex biological
sequences, ensuring timely diagnosis and management before the condition worsens.
Peptides have been recognized as effective cancer treatments due to their minimal impact on
normal physiological activities and have been extensively studied in preclinical research for
multiple purposes, including cardiovascular disease, diabetes, and other types of cancer [7].
In studies by ljaz et al. [8], an early cervical cancer prediction model was developed using
the CCPM. Saha et al. [9] studied different prognostic characters of GLS and GLS2 in cancer,
showcasing their variance impact on clinical results across diverse cancer types. Figure 2
illustrates different cancer treatment options that involve targeting peptides.

Metaverse
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Medical
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Visualization
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Medical
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Figure 1. Several applications of the metaverse in healthcare and education for peptides visualization.

An ACP is a small sequence typically containing fewer than 50 amino acids [10]. A
new direction for cancer treatment has been opened by determining ACPs because they
have cationic properties that can easily target cancer-affected cells without interacting with
normal cells [11]. However, ACPs have some potential drawbacks in the drug development
process, i.e., high production costs and low stability [12]; despite this, they have some
unique merits. ACPs are biological substances that naturally exist in a living organism;
hence, they are more harmless than synthetic drugs and have better efficacy [13]. Over the
last decade, peptide-based techniques have been used in numerous clinical trials for disease
prevention and treatment [14], including heart disease, diabetes, and tumors. Experimental
identification process of ACPs is very costly and time-consuming which is rarely utilized
in clinical practice.
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Figure 2. Peptide sequences offer a range of potential treatment options for cancer, which can be
explored and evaluated for their effectiveness.

Therefore, in this study, a new computational-based framework is presented for the
classification of ACPs that are mainly composed of trustworthy numerical descriptors
which consists of AAOA, DOA, TOA, and EPseAAC. These descriptors are applied to
extract salient and prominent patterns from peptide sequence. Additionally, to evaluate the
performance of the proposed framework, various combination of machine learning tech-
niques, such as support vector machine (SVM), naive Bayes (NB), and random forest (RF),
are used for classification purpose. This study contains the following key contributions:

e A computational framework is proposed that extracts significant information from
complex biological sequences, improving therapy for critical diseases. Leveraging the
metaverse’s immersive features, it enables precise identification of potential cancer
treatments, revolutionizing disease management.

e  Existing models face overfitting problems caused by class imbalances. To this end, we
contribute by employing the synthetic minority oversampling technique (SMOTE) for
preprocessing, reducing error scores, and fostering equitable feature learning. Addi-
tionally, we enhance overall model performance through a majority-voting ensemble
decision-making technique in the final output, collectively advancing the robustness
of our approach.

o  Werefined the existing pseudo amino acid composition (Pse AAC) method for sequence
classification by systematically incorporating additional physicochemical properties,
addressing limitations arising from heterogeneous peptide patterns. This enhancement
aims to generate context-rich features, improving the robustness and informativeness
of obtained features and ultimately enhancing the methodology’s effectiveness in
capturing the complexity of peptide sequences.

e  Comprehensive results from tests are obtained through analyses conducted on two
sets of benchmark datasets, proving that the recommended trustworthy framework
achieves new SOTA accuracy. Furthermore, ablation research is conducted to measure
the effectiveness of each feature descriptor technique separately and evaluate the
complementary strength produced from the diverse combinations of information.

The remaining paper consists of the following sections. Section 2 will explain a study
of the literature on cancer peptide prediction, while the technical details of the proposed
method are described in Section 3. Similarly, Section 4 contains the comprehensive experi-
mental results with implementation details and comparisons; and in the final Section 5, our
work concludes followed by future research direction.
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2. Literature Review

Several intelligent models for identifying ACPs have been proposed by different
researchers. For example, a silico model was proposed by [15], where AAC and binary
profile-based information are used as a feature extraction method, obtaining 91.44% accu-
racy for binary classification. Similarly, Hajisharifi et al. [16] developed a novel approach,
where PseAAC and local alignment kernel techniques are explored for feature extraction
and achieved the outcomes of 89.7% and 83.82%, respectively. Next, this work is further
boosted by Chen et al. [17], who introduced a sequence-based model that utilizes g-gap
dipeptide composition and cross-validation techniques for superior performance; there-
fore, 94.77% accuracy was obtained for the discrimination of peptides. Akbar et al. [18]
utilized an ensemble classifier for the discrimination of various peptides to obtain robust
features: amphibolic PseAAC, reduced AAC, and g-gap DPC were considered, and a
96.45% classification score was obtained. Xu et al. [19] developed a model that considers
ACP composition by incorporating binary encoding and physicochemical properties to
obtain meaningful information but the performance is 91.86% which is a low discrimination
score as compared to the other models. The sequence-based models have successfully
identified novel ACP but due to technological advancement substantial work has been
presented in the metaverse specifically for human healthcare.

Recent research has explored the metaverse’s potential in healthcare, covering various
applications and challenges. Bansal et al. [20] outlined its uses in immersive training
experiences, telemedicine, and clinical care, emphasizing extended reality (XR) technologies
and hardware. Another study [21] focused on ophthalmology, utilizing VR and digital twins
(DTs) for personalized care. Next, Ali et al. [22] proposed a secure metaverse architecture
with blockchain and eXplainable Al (XAI) for transparent disease prediction. Moreover,
Razdan and Sharma [23] proposed a comprehensive metaverse architecture, emphasizing
big data processing and security measures, while a reference architecture with distinct
layers is also presented for metaverse applications, ensuring robust governance and quality
of service.

Moreover, some researchers have used alternative methods such as the generalized
chaos game representation [24] short-term memory models with binary profile features
and k-mer sparse matrices using two novel benchmark datasets (ACP740 and ACP240) [25].
Chen et al. introduced an ACP-DA model, composed of DL and augmentation approaches,
resulting 82.03% and 88.33% on ACP740 and ACP240 datasets, respectively [26]. Next,
Ye et al. [27] proposed an ensemble learning model using numerous datasets [16,28] with
which 95.4% and 92.4% accuracies were obtained after comprehensive experiments. More-
over, in [29] ETree classfier and AAC feature extractor are used for the discrimination of
different biological sequences. Akbar et al. also explored ensemble classification for ACPs
and attained 96.45% accuracy using an evolutionary genetic algorithm (iIACP-GAEnsC) [18].
Shahid Akbar et al. developed cACP-DeepGram by utilizing three statistical feature rep-
resentation schemes and achieved satisfactory outcomes of 96.94% accuracy [30]. Shahid
Akbar et al. also introduced cACP, a discriminatory computational technique employing
diverse statistical feature representation schemes, and feature selection PCA, and achieved
a tremendous classification score of 96.91% [31]. Shahid Akbar et al. made a notable
contribution with their proposed cACP-2LFS, a novel sequential discriminative model
designed for ACP classification. In addition, their model utilizes the K-space amino acid
pair (KSAAP) for extracting correlated descriptors and incorporates a two-level feature
selection (2LFS) method, resulting in impressive accuracy rates of 94.11% and 93.72% using
independent and LEE datasets, respectively. These achievements highlight its potential
applications in the fields of medicine, proteomics, and research academia [32]. Despite
these attempts, some recent studies have explored DL models for the efficient classification
of ACPs from complex biological sequences. Ahmed et al. presented a novel multi-head
deep CNN by extracting discriminative physicochemical properties from diverse peptides,
followed by evolutionary-based features, leading 83.0%, 86.0%, and 91.0% accuracies lev-
els on ACP-240, ACP-740, and a combination both datasets, respectively [33]. Hulam
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et al. proposed DL-based method that uses dipeptide deviation from the expected mean
(DDE) as a feature extractor for precise predictions of ACPs, outperforming the 85.88% and
84.8% accuracies score using ACP240 and ACP740 datasets [34]. Advanced DL methods
such as MLACP 2.0 [35] incorporate seven distinctive classifiers and multiple feature en-
coding methods. In addition, other mainstream approaches applied neural networks and
multitask learning, where they incorporate hybrid sequencing information [36,37].

Recently, ensemble classifiers have gained popularity in ACP classification, where a
decision has been made based on the majority vote of multiple machine learning algorithms,
such as an SVM, an RF, and AdaBoost. Ensemble classifiers leverage individual algorithms
for their strengths and mitigate their weaknesses for improved performance. The results
obtained with this approach are superior to those from a single algorithm [38]. Multi-
algorithm ensemble clustering aggregates the results of different clustering algorithms
to produce more accurate and robust consensus clustering results. Ensemble cluster-
ing has many applications, such as image segmentation and gene expression analysis,
and can make the clustering process more robust and accurate by embracing ensemble
methods [39]. Various integrated methods have been used to evaluate regression [40,41]
and classification [42,43] problems in the literature, including weighted averaging [44],
weighted voting [45], simple averaging [46], and majority voting [47]. Other techniques
can also be used for protein analysis, such as combining individual sequence-based models
to generate a final prediction. To predict the biological functions and properties of peptides
and proteins, sequence-based statistical predictors require machine learning algorithms
and feature extraction techniques. Predictors of protein—protein interactions, protein sub-
cellular localization, and ACPs have shown promising results in several applications, and
developing new therapeutics requires the development of such predictors [48].

Several computational methods have been developed to classify ACPs and non-ACPs,
but there is still room for improvement. To overcome the research gap mentioned later in
the paper, this study proposed a new collection of computational approaches to improve
the classification performance for new biological sequences. The suggested system could
lead to a better understanding of ACPs and aid in the development of new therapeutics.

e  The imbalanced nature of datasets in anticancer peptide classification poses a signifi-
cant hurdle for many existing machine learning methods. Biased models can emerge,
favoring classes with a higher number of instances, thereby compromising the model’s
ability to accurately identify and classify less-represented classes. This imbalance
issue is particularly critical in the context of anticancer peptides, where a thorough
understanding of diverse instances is crucial for effective classification.

e  Prevailing methods often lean towards simplicity, employing single-feature extractions
and classifiers. While this simplicity aids in model interpretability and computational
efficiency, it may fall short of capturing the intricate and nuanced patterns inherent in
anticancer peptides. The complex nature of these peptides demands more sophisti-
cated approaches that can discern subtle variations and relationships within the data,
enhancing the model’s discriminatory power.

o  Current strategies aimed at enhancing classification accuracy often resort to fusion
techniques. While these techniques offer potential improvements, they may inad-
vertently introduce homogeneity in the utilized information, leading to limiting the
model’s ability to discern diverse and subtle characteristics crucial for accurate anti-
cancer peptide classification. Striking a balance between fusion for improved accuracy
and preserving the diversity of information remains a key challenge in developing
robust models.

e  Some machine learning-based methods in anticancer peptide classification may ex-
hibit a tendency to overlook the expansive landscape of feature extraction models
and selection techniques. A more comprehensive exploration of this landscape is
imperative to ensure that potentially more effective approaches are not neglected. The
diversity among anticancer peptides demands a thorough examination of various
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feature extraction methods and selection techniques to uncover the most suitable
combination for accurate classification.

In this research, we experimentally verified in aspects of overcoming the limitations in
the previous studies. Our approach involves the generation of noteworthy features from
peptides through the incorporation of distinctive composite features, the SMOTE, PCA,
and ensemble classifiers.

3. The Proposed Framework

The following section provides information regarding data acquisition and prepro-
cessing. Next, we discuss techniques used to extract discriminative features followed by
a detailed explanation of ensemble learning, where multiple classifiers are integrated to
improve classification performance.

The technical details of the proposed method give a deeper understanding of the
methodology used and the justification for the decision-making. The entire steps of the
proposed methodology are shown in Figure 3. The complete procedure of the proposed
model for peptide classification is presented in Algorithm 1.

Algorithm 1: Pseudocode for the proposed framework for peptide classification

Input: Peptide Sequences (Set Train)» (éet,Test)—>('P§e q)—>(A)U(V)

//A and V represent anticancer and non-anticancer peptides
Output: Peptide Sequences (Set Test) = Y// represents the class label of the test dataset

(1) Pre-Initialization:

(Set Train)s (SetTest)— (CD-Hit) — D— Eliminate short and homogenous sequences

(2) Feature Extraction and Training Procedure:

(Set Train) —M1, M2, M3, My //M represents feature extraction methods
b— (Pg, q)%(A)U(V)/ /D represents the refined dataset

fori=1to L-1—+D//L represents samples in the dataset

Compare pattern (C)— (Pg,,)

Extract features(f) = (Pg,,)

Save features— (SF)

Repeat (/1) — My, M2, M3, My /// represents repeating step 2 for all methods
end

(3) Feature Selection Procedure:

Apply PCA— (P)—SF

Refine features— (f7)

(4) Class Balancing Procedure:

Apply SMOTE (8) = (51f1)—(Pg, )= (A)U(V)

Equal sample — () — (£1f5)

(5) Model Training Procedure:

(éet,Train) - (Hf 2)

(£1f) + class label (CL) — ensemble classifier (EC) —

(6) Model Testing Procedure:

Load (Set Test)—(Pgoq) = (A)U(V)

forj=1to L-1=D//L represents samples in the test dataset

Repeat step 2— feature extraction
Output: Binary classification with class label

end
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Figure 3. The proposed computational-based framework for discriminating ACPs and non-ACPs
from biological sequences.

3.1. Dataset and Preprocessing

In this section, a brief description of the benchmark dataset is provided followed
by the critical step for data refinement. Further information about these is given in the
subsections along with the dataset statistics.

3.1.1. Dataset

Datasets of anti-cancer peptides allow new cancer treatments to be discovered. Re-
searchers can take advantage of these datasets to gain a comprehensive and organized
overview of anti-cancer peptides compiled from various sources. A systematic analysis of
these datasets can identify common characteristics and features associated with specific
peptides that defend against cancer, leading to the design and development of new drugs
using peptides.

As a result, researchers can explore and test potential drug candidates using these
datasets, thus speeding up the drug discovery process. Our understanding of cancer biol-
ogy and the development of effective treatments for this devastating disease are greatly
enhanced when anti-cancer peptide datasets are publicly available and analyzed. A statisti-
cal report of the dataset samples is given in Table 1.

Table 1. Statistical information of both datasets used for the experiments.

Dataset Total Samples Training Samples Test Samples
Benchmark [17] 344 275 69
Independent [17] 300 240 60

Selecting or creating a valid benchmark dataset is essential for developing a computa-
tional predictor in machine learning or pattern recognition. Several datasets are available to
us for this purpose, but in this study, we used a standard dataset [17]. S* and S~ sets were
combined to create the benchmark dataset for this study. In the following Equations (1) and
(2),ST and S~ represent ACPs and non-ACPs, respectively. Using a widely recognized and
standardized dataset, our computational predictor can be validated and tested for validity
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and reliability, and our approach can be compared to previous studies. The selection of
common and uncommon samples is based on Equations (1) and (2).

S=stUS" )

It is essential to note that the intersection of the sets S™ and S~ in the dataset used in
this study should be empty. In other words, no peptides should exist in both S* and S™.
This is because any peptide that exists in both sets would be difficult to classify accurately,
as it would have characteristics of both ACPs and non-ACPs. As a result, we ensured that
the intersection of ST and S~ is null to provide our dataset’s integrity and reliability.

p=S" NS )

A benchmark dataset consisting of 138 anticancer peptide sequences and 206 non-
anticancer peptide sequences was utilized in this study. Furthermore, there were 150 non-
ACPs and 150 ACPs in the independent dataset. Both datasets were processed in the
same way.

However, a cluster database at high identity with tolerance (CD-HIT) program was
used to deal with any redundancies in the dataset [49]. Large datasets are frequently
clustered and redundant sequences are removed using this program. CD-HIT allowed us
to detect and eliminate duplicate sequences from the dataset so that we could use it for
further analysis after it was cleaned with CD-HIT. As a result, any patterns or relationships
identified should not be due to an overrepresentation of specific sequences but to the
representation of the underlying population.

3.1.2. Preprocessing Using the SMOTE

The preprocessing step plays a significant role in various computer vision [50,51] and
time series [52,53] tasks that show tremendous performance. To this end, imbalance is
one main issue that degrades the entire model’s performance. One of the most significant
problems is that the classifier may become biased towards the majority class, resulting
in deficient performance of the minority class. There are several approaches to handling
imbalances in datasets. Some of these approaches involve resampling the actual dataset,
while others involve giving different weights or costs to the training data. Resampling
techniques involve reducing the number of examples in the majority class (under-sampling)
or increasing the instances in the minority class (oversampling) to accomplish a balanced
distribution of examples across all classes in the training dataset. However, oversampling
with replacement has been found to have irrelevant prediction improvement in the mi-
nority class; this approach might pinpoint more specific regions within the minority class,
potentially leading to overfitting of the classifier.

To address this issue, Chawla et al. [54] proposed a powerful method known as the
synthetic minority oversampling technique (SMOTE) for balancing the samples of each
class. In this paper, we also applied SMOTE as a solution to address the dataset’s class
imbalance issue. The authors demonstrated the performance of various techniques, both
with and without the SMOTE, showcasing their accuracies. The authors found that, even
without the SMOTE, different methods exhibited effective performance. However, the
dataset’s imbalance led to overfitting. Nevertheless, this problem was resolved when the
SMOTE was applied to all four feature extraction techniques utilized in this paper. This
approach involved concatenating the feature vectors, leading to significantly improved
and consistent accuracies across all assessment methods. Overall, machine learning and
deep learning applications [55] have benefited from the SMOTE algorithm as a solution to
imbalanced datasets.
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3.2. Computational Methods for Discriminative Features

Since machine learning algorithms only work with numerical vector data, they cannot
be trained directly on biological sequences in the genomic era. No machine learning tech-
nique deals with sequence samples, as previously noted in a comprehensive review [56].
Our study utilized different protein encoding techniques in order to resolve this issue. A
machine learning algorithm can process biological sequences by converting them into nu-
merical vectors. In order to accurately classify peptides into anticancer and non-anticancer
classes, we used these encoding techniques to extract meaningful features from the biologi-
cal sequences. As a whole, protein encoding techniques hold great potential for improving
our understanding of the underlying biology of diseases such as cancer, since they enable
machine learning approaches to be applied to biological sequence data.

3.2.1. Amino Acid Occurrence Analysis (AAOA)

AAOA is a method that characterizes peptide sequences by analyzing amino acid
occurrences; it is also referred to as AAC. By dividing each amino acid frequency by the
length of the peptide sequence for a given peptide sequence, this method determines how
frequently each amino acid occurs in each peptide sequence. AAC provides a simple and
informative representation of the underlying sequence knowledge by decomposing peptide
sequences into twenty-dimensional vectors. Each dimension represents how often each
amino acid occurs in the sequence.

Researchers have used AAC to solve different biological problems, such as predict-
ing mitochondrial proteins [57] and predicting subcellular localization [58]. An essential
component of AAC’s effectiveness is its ability to capture sequence features that are associ-
ated with peptide functions or activities. Structural or functional indications of peptide
properties may be based on the frequency of specific amino acids, such as hydrophobicity
or charge.

AAC is easily calculated using a mathematical formula. As f1, f2, f3,. .., fu represents
the frequency of each amino acid occurring in the sequence, we can determine how often
that amino acid appears within a sequence of length L. An amino acid composition vector
of the peptide sequence is generated by normalizing these frequency values to sum to 1:

AAOA:(fl’fZ/fS/"'/fn)/L (3)

This method can provide machine learning models with information about pep-
tides” anticancer and non-anticancer properties using informative features extracted from
their sequences.

3.2.2. Dipeptide Occurrence Analysis (DOA)

Among various prediction problems such as subcellular localization [58] and deoxyri-
bonucleic acid (DNA)-binding proteins [59], dipeptide occurrence analysis, also known
as dipeptide composition (DPC), is widely used. DCP assesses peptide sequences by
estimating how often two adjacent amino acids occur together, versus AAC, which only
calculates the frequency of each amino acid. For each peptide, this method creates a four
hundred-dimensional vector whose elements represent the frequency of its dipeptides.
It is advantageous to use DPC because it captures global information about the peptide
sequence, whereas AAC does not. DPC primarily determines the peptide pattern. DPC is
calculated by multiplying the frequency of all possible dipeptides in the sequence by the
length of the peptide. Equation (4) can be used to represent DPC mathematically:

DOA(,j) = f(i,j)/N 4)

An amino acid sequence is defined by the peptide sequence length N and the frequency
f(i,j) of the dipeptide formed by the ith and jth amino acids. Feature vectors for DOA are
400 dimensions long, each element representing the frequency of individual dipeptides.
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3.2.3. Tripeptide Occurrence Analysis (TOA)

Tripeptide occurrence analysis is also referred to as tripeptide composition (TPC).
Encoding peptide sequences with numerical values captures deeper information about
them. A feature vector of 8000 dimensions is generated after computing the frequency
of every tripeptide in the peptide sequence. Elements of the vector represent tripeptide
frequencies. The TPC analysis provides a more in-depth picture of peptide composition
when compared to the AAC and DPC methods because it considers three consecutive
amino acids. TPC generates new patterns based on three collective amino acids (i, j, k),
revealing more peptide sequence information.

These studies demonstrate that TPC can be used to extract critical patterns from
peptide sequences that indicate specific biological functions or characteristics. Equation (5)
can be used to express TPC mathematically (5):

TOA(i,j, k) = f(i,j,k)/N ®)

An amino acid sequence is defined by the peptide sequence length N and the frequency
f(i,jk) of the tripeptide formed by the ith, jth, and kth amino acids. Feature vectors for TPC
are 8000 dimensions long, each element representing the frequency of individual TPC.

3.2.4. Enhanced Physicochemical Property-Based Features

EPseAAC is an expansion of AAC that incorporates physicochemical properties such
as side chain mass, polarity, and hydrophobicity in the feature vector. These properties
can further elucidate peptide sequence—structure relationships. Among the wide variety
of biological prediction tasks performed with EPseAAC are: subcellular localization of
proteins [44], protein structural class prediction [45], and allergenic protein prediction [46].
As part of EPseAAC, the physicochemical properties of the amino acids in the peptide
sequence are used to construct a series of descriptors. Consequently, the sequence’s descrip-
tors and amino acid frequencies are combined to produce a more informative feature vector.
As EPseAAC is mathematically formulated, each amino acid is described according to a set
of properties, including side chain mass, polarity, and hydrophobicity. Combining these
descriptors and amino acid frequencies creates a final feature vector. As a result, EPse AAC
can boost peptide classification performance by extracting powerful features. This tech-
nique captures the physicochemical properties of peptide sequences, allowing for a more
precise representation and the possibility of discovering new bioactive peptides [60-63].

P=ay,a,...a20,a041,82042 a0 (A=1,2,...... 21) (6)

Furthermore, EPse AAC considers the correlation factor of each amino acid in addition
to the frequency of each amino acid. Several factors must be considered, including charge,
irreplaceability, polarizability, polarity, surface area, flexibility, hydrophilicity, solvent
accessibility, rigidity, and hydrophobicity. Feature extraction methods incorporating these
properties can improve the accuracy of peptide predictions as they play a key role in peptide
classification. The parameter A in Equation (6) represents various addition techniques for
the physiochemical properties. In other words, different values of A can be used to weigh
the different properties” importance when computing the feature vector for a peptide
sequence. In this study, the researchers tried different A values and realized that A =1
gave optimal outcomes for their classification task. EPseAAC is a powerful system for
encoding peptide sequences that incorporates the amino acid frequency and its physical
properties. In our study, A represents a tuning parameter that influences the weighting of
certain features or aspects within our proposed technique. Specifically, we experimented
with different values of A, including 1, 2, and 3, to assess their impact on the performance
of our model. The choice of A reflects the balance between several factors, and through
empirical testing, we found that A = 1 yielded the most favorable results.
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This allows for a more comprehensive and informative representation of the peptides,
which can be used for various computational proteomics tasks, such as the prediction of
membrane types, DNA-binding proteins, and peptide classification.

The variables ¢1,¢2, and ¢A in the EPseAAC equation correspond to the peptide
¢A sequence length and the ranks of the correlation factors. Specifically, ¢1 is the pep-
tide sequence length, ¢2 is the first correlation factor rank, and ¢A is the last correlation
factor rank.

3.3. Ensemble Learning for Model Training

In machine learning, bioinformatics and data mining classification play an essential
role. An algorithm for classifying new instances is trained in predefined classes and then
used to categorize new cases based on the training data. Classifiers can perform better in
prediction by using ensemble classification. Multiple classifiers combined into an ensemble
deliver a more precise prediction than a single classifier.

Several computational models use ensemble classification to decrease discrepancies
due to inconsistent training sets. In addition to improving the model’s generalization,
combining several classifiers also improves its strength. To further enhance the performance
of an ensemble classifier, the authors propose combining three classifiers, namely SVM, NB,
and RE.

In many classification problems, an SVM is commonly used as a machine learning
algorithm. Data with high dimensions can be handled using SVMs, as can small datasets.
An RF is an algorithm based on decision trees that combines the output of several trees to
create better accuracy. In naive Bayes classification, features are assumed to be independent
according to the Bayes’ theorem, which is known as probabilistic technique. Large datasets
can be easily processed since they are simple and efficient.

Due to each individual classifier’s strengths complementing each other, SVM, RF, and
NB algorithms should provide better performance in an ensemble classifier. The RF is
robust to noise and outliers, while the NB effectively handles high-dimensional datasets.
The SVM is efficient when handling complex datasets with non-linear decision boundaries.
Therefore, ensemble classifiers could increase classification model accuracy and robustness.

Eensemble =SVM & RF & NB (8)

Multi-classifier ensembles are used to create a final classification by combining mul-
tiple classifiers. By reducing bias and variance in the classification process, ensemble
classifiers aim to improve overall classification performance. Voting algorithms can be used
to merge the outputs of multiple classifiers. Voting algorithms involve predicting the input
classification of each classifier and determining the final classification through a majority
vote among them. For example, if three classifiers predict that an input belongs to class A
and two classifiers predict that it belongs to class B, the final classification would be class A.
The & symbol in Equation (8) likely represents a margin operation, which is a way to adjust
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the output of each classifier before the voting algorithm is applied. The margin operation
can help to improve classification performance.

(C1,C2,C3) € (Al,A2) ©)

Here, (C1,C2,C3) represent individual classifiers, and Al and A2 represent predefined
classes of ACPs and non-ACPs.
In the end, the outcome of the Eq,cemple Using a voting algorithm is attained.

Eensemble = Maxi(wl x 1,w2 x 2,w3 x 3) (10)

In this equation, Eepsemple represents the ensemble classifier with the voting algorithm,
Maxi represents the maximum achievement, and w1, w2, w3 are the best weights of the
classifiers for the class that receives a high vote.

4. Experimental Analysis

This section presents an analysis of the experimental results, a comparison of our
computational-based model to SOTA techniques, and an examination of the experimental
results obtained from three peptide sequence datasets. The results obtained are analyzed in
depth to provide insights into the performance and effectiveness of our model.

4.1. Implementation Setup and System Specifications

The proposed peptide discrimination system has specific software and hardware
requirements. TensorFlow version 2.5.0, Keres framework V2.5.0, and Python programming
language V3.8.5 are required. These software components provide the necessary tools and
libraries for training and developing machine learning models that are utilized in the
classification system. In addition, advanced micro devices (AMDs) Ryzen 9 3900X central
processing units (CPUs) with 12 cores, GeForce RTX 3090 graphics cards, and 48.0 GB RAM
are required, along with Windows 10. These hardware components are essential for the
machine learning models to train and run efficiently. For validation, the dataset was split
between 80% training and 20% testing to prepare the data for the experiment. Machine
learning models are often evaluated by leaving out a part of the training data to determine
their capability to generalize to novel, untried data.

4.2. Ablation Study

In the first step, we evaluated a single extractor’s performance for discriminating
complex peptides. Each component was evaluated to determine whether it could identify
complex peptides and differentiate them accurately. To implement the proposed strategy,
the optimal components are selected based on the results from the analyses. Every compo-
nent of the model must be evaluated to ensure it is working as intended and participating in
the model’s overall effectiveness. Additionally, we examined whether imbalanced samples
affected the results. Imbalanced datasets can affect machine learning models, which is an
essential part of the experiment. In Section 1, we mentioned the second contribution, which
we were capable of showing by assessing the effects of imbalanced samples on the results.
This means that the proposed strategy addresses the problem of imbalanced datasets.
Overall, this part of the experiment highlights the importance of analyzing and evaluating
the components used in a machine learning model to ensure optimal performance. You
can create a more effective and accurate model by thoroughly evaluating each component
and assessing its impact on the results. Additionally, evaluating the impact of imbalanced
samples is critical in addressing this common issue in machine learning and improving
the model’s accuracy in real-world applications. In our extensive experimental analysis,
we deduce that the performance of the proposed model significantly improves with the
application of the SMOTE to rearrange the samples of classes within the dataset. However,
it becomes evident that training the model over a variable number of samples for each class
leads to convergence towards the dominant class, resulting in predominantly incorrect pre-
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dictions. Acknowledging this issue, it becomes apparent that the crucial step of balancing
samples is indispensable for achieving enhanced performance in the model’s predictions.

4.2.1. Analysis of Benchmark Dataset

To find the optimal model, it is necessary to evaluate each component and its possible
fusions. Therefore, this study applied the same strategy where various feature extractor
methods integration are assessed for discriminating ACPs and non-ACPs.

As in the proposed framework, four machine learning computational sequence fea-
tures are used, each with one functionality and way of extracting information from complex
biological sequences. Initially, the experiments were conducted over the first five compu-
tational methods, where the best result was obtained through TOA with 95.17%, 93.05%,
97.26%, and 89.96% accuracy, sensitivity, specificity, and Matthews correlation coefficient
(MCC), respectively. The reason for the best result is that it maintains a strong correlation
among different peptides as compared to the other techniques. Next, various dual-feature
fusions were examined, wherein diverse/informative patterns from the biological sequence
are extracted, and the ensemble classifier learns more discriminative information. Moreover,
like the previous empirical analysis, we also investigated different A values to check the
complementary power of the physicochemical properties and their way of addition. The
dual-feature fusion mechanism boosted our model’s discriminative peptide performance
by using TOA + EPseAAC (A = 3), where a high score was attained, including 97.24%,
95.83%, 98.63%, and 94.33% levels of accuracy, sensitivity, specificity, and MCC, respectively.
Inspired by such feature representation fusion performance, we tried multi-feature fusion,
wherein experiments are conducted through various components. After comprehensive
experimental analysis, we concluded that AAOA + TOA + EPseAAC (A = 3) achieved an
accuracy of 96.55%, sensitivity of 95.83%, specificity of 97.26%, and MCC of 93.02%. Com-
pared to the previous component collection, the discriminative performance is worsened
here due to the redundant features that confuse the classifier during classification. All of
the results of these various feature fusion descriptors are reported in Table 2. Furthermore,
the proposed model was also deeply evaluated using three A values and then selecting the
most optimal one. The best results were achieved with the usage of PCA, which can pick
the most prominent, robust, and representative features. The empirical results are given in
Figure 4, while Figure 5 represents the confusion matrix of the benchmark dataset.

ACP ACP

20

True label
True label

NACP o NACP

o3 A o3 o3 B o3
‘?("J $?‘(’ VQJ é?‘(’

Predicted label Predicted label
Figure 4. Confusion matrix analysis of hybrid feature extraction methods utilizing an ensemble

classifier on a benchmark dataset: PCA and SMOTE. (A) shows the results of the benchmark dataset
without the SMOTE, while (B) displays results with the SMOTE on the benchmark dataset.
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Table 2. Performance evaluation over several feature descriptors using the SMOTE, PCA, and
ensemble classifier.

Method Accuracy Sensitivity Specificity MCC
Benchmark Dataset
AAOA 88.27 86.84 89.85 76.02
DOA 92.41 91.66 93.15 84.62
TOA 95.17 93.05 97.26 89.96
EPseAAC (A =1) 86.89 83.33 90.41 71.83
EPseAAC (A =2) 88.96 86.11 91.78 76.69
EPseAAC (A =3) 87.58 84.72 90.41 73.73
AAOA + DOA 93.79 91.66 95.89 87.11
AAOA + EPseAAC (A =1) 88.27 84.72 91.78 74.84
AAOA + EPseAAC (A =2) 83.57 76.92 s 86.13 62.04
AAOA + EPseAAC (A =3) 88.27 84.72 91.78 74.84
AAOA + TOA 90.90 96.20 83.01 79.17
DOA + EPseAAC (A =1) 91.72 84.72 98.63 80.33
DOA + EPseAAC (A =2) 94.48 90.27 98.63 87.89
DOA + EPseAAC (A =3) 93.83 90.27 97.29 86.70
DOA + TOA 91.03 94.44 87.67 82.45
TOA + EPseAAC (A =1) 96.55 95.83 97.26 93.02
TOA + EPseAAC (A =2) 95.86 95.83 95.89 91.71
TOA + EPseAAC (A =3) 97.24 95.83 98.63 94.33
AAOA + DOA + TOA 94.48 98.61 90.41 89.10
AAOA +DOA + EPseAAC (A =1) 93.10 88.88 97.26 84.93
AAOA + DOA + EPseAAC (A =2) 92.41 90.27 94.52 84.24
AAOA + DOA + EPseAAC (A =3) 93.79 93.05 94.52 87.43
AAOA+ TOA + EPseAAC (A =1) 95.86 93.05 98.63 91.22
AAOA + TOA + EPseAAC (A =2) 94.48 93.05 95.89 88.07
AAOA + TOA + EPseAAC (A =3) 96.55 95.83 97.26 93.02
DOA + TOA + EPseAAC (A =1) 95.17 91.66 98.63 89.59
DOA + TOA + EPseAAC (A =2) 95.86 94.44 97.26 91.52
DOA + TOA + EPseAAC (A =3) 93.79 91.66 95.89 87.11
Proposed (without SMOTE) 95.65 95.55 95.00 91.16
Proposed (with SMOTE) 97.56 97.55 97.54 95.12
100
95
0
85
80
75
65
60
Accuracy ( Sensitivity (%) = Specificty (%) MCC(®
m hybrid(A=1) 97.56 97.55 97.54 93.12
hybrid(A=2) 97.51 97.572 97463 95.044
hybrid(A=3) 90.98 96.602 82.609 79.089

Bhybrid(A=1) ®hybrid(A=2) W hybrid(A=3)

Figure 5. Graphical representation of the prediction rate of hybrid feature patterns methods using an
ensemble classifier on a benchmark dataset: PCA and SMOTE.
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4.2.2. Analysis with Independent Datasets

We conducted experiments on independent datasets to check the generalizability of
the proposed model and different combination of feature extraction methods for classifica-
tion and discrimination of ACPs and non-ACPs. Therefore, this study applied the same
strategy where various feature extraction methods are integrated to utilized fairly compare
outcomes with other recent approaches that have contributed a lot to the discrimination
of peptides. Four feature descriptors are combined into the final hybrid feature strategy
and then forwarded to the PCA to choose the most refined information. The initial exper-
iments were conducted using the first five computational methods, and the best results
were obtained through DOA, which achieved 91.11%, 95.91%, 85.36%, and 81.46% accu-
racy, sensitivity, specificity, and MCC, respectively. This result is because DOA considers
two mutual peptides; therefore, dual-peptide patterns are more common than the others.
Subsequently, various dual-feature fusion mechanisms were examined to extract diverse
and informative patterns from biological sequences and enable the ensemble classifier to
learn more discriminative information. After deeply analyzing the dual-feature fusion of
AAOA + DOA we achieved good classification scores including 92.22%, 95.91%, 87.80%,
and 83.90% for accuracy, sensitivity, specificity, and MCC, respectively. After a compre-
hensive experimental analysis, we concluded that the optimal combination was AAOA +
DOA + TOA, which achieved an accuracy of 92.22%, sensitivity of 93.87%, specificity of
90.24%, and MCC of 84.27%. However, its discriminative performance was slightly lower
than that of the previous component combination due to redundant features confusing the
classifier during classification. All of the results of these various feature fusion descriptors
are reported in Table 3, while the graphical outcomes of the proposed model with a diverse
value of A are represented in Figure 6, and Figure 7 shows the confusion matrix of an
independent dataset.

100

95

90

85

80

75

70

65

60 ,
hybrid(A=1) hybrid(A=2) hybrid(A=3)

m Accuracy (%) 95.00 93.333 94444
Sensitivity (%) 96.55 95.918 93.876
Specificity (%) 93.55 90.244 95.121
MCC (%) 90.05 86.313 88.91

B Accuracy (%) Sensitivity (%) Specificity (%) MCC (%)

Figure 6. A graphical representation of the prediction rate of hybrid feature extraction methods using
an ensemble classifier on an independent dataset.
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Figure 7. Confusion matrix analysis of hybrid feature extraction methods utilizing an ensemble classifier
on an independent dataset: PCA and SMOTE. (A) shows the results of the independent dataset without

the SMOTE, while (B) displays the results with the SMOTE on the independent dataset.

Table 3. Performance evaluation over several feature descriptors using the SMOTE, PCA, and

ensemble classifier.

Method Accuracy Sensitivity Specificity MCC
Independent Dataset

AAOA 88.88 93.87 82.92 77.14
DOA 91.11 9591 85.36 81.46
TOA 84.44 77.55 92.68 64.55
EPseAAC (A =1) 89.13 92.15 85.36 77.84
EPseAAC (A =2) 86.66 89.79 82.92 73.13
EPseAAC (A =3) 86.06 89.79 82.92 73.13
AAOA + DOA 92.22 95.91 87.80 83.90
AAOA + EPseAAC (A =1) 90.00 93.87 85.36 79.55
AAOA + EPseAAC (A =2) 90.00 93.87 85.36 79.55
AAOA + EPseAAC (A =3) 88.88 91.83 85.36 77.53
AAOA + TOA 90.00 87.75 92.68 79.63
DOA + EPseAAC (A =1) 9222 95.91 87.80 83.90
DOA + EPseAAC (A =2) 88.88 93.87 82.92 77.14
DOA + EPseAAC (A =3) 88.88 91.83 85.36 77.53
DOA + TOA 91.11 93.87 87.80 81.92
TOA + EPseAAC (A =1) 90.00 87.75 92.68 79.63
TOA + EPseAAC (A =2) 87.77 89.79 85.36 75.41
TOA + EPseAAC (A =3) 87.77 87.75 87.80 75.34
AAOA + DOA + TOA 92.22 93.87 90.24 84.27
AAOA + DOA + EPseAAC (A =1) 91.11 9591 85.36 81.46
AAOA + DOA + EPseAAC (A =2) 88.88 91.83 85.36 77.53
AAOA + DOA + EPseAAC (A = 3) 90.00 93.87 85.36 79.55
AAOA+TOA + EPseAAC (A =1) 93.33 93.87 92.68 86.60
AAOA + TOA + EPseAAC (A =2) 88.88 91.83 85.36 77.53
AAOA + TOA + EPseAAC (A =3) 87.77 89.79 85.36 75.41
DOA + TOA + EPseAAC (A =1) 91.11 9591 85.36 81.46
DOA + TOA + EPseAAC (A =2) 90.00 93.87 85.36 79.55
DOA + TOA + EPseAAC (A =3) 90.00 93.87 85.36 79.55
Proposed (without SMOTE) 93.75 92.00 94.87 86.87
Proposed (with SMOTE) 95.00 96.55 93.55 90.5
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4.3. Comparative Analysis

This section compares the performance obtained from the proposed model on bench-
mark and independent datasets with current SOTA methods, which utilized the same
datasets for training and testing.

4.3.1. Performance Comparison with SOTA over Benchmark Dataset

In the field of ACP and non-ACP classification, various feature extraction mechanisms
and machine learning classifiers have been used by researchers. However, the performance
of these models varies based on the quality of the features extracted and the machine learn-
ing algorithm utilized. For example, some prior research, such as Hajisharifi et al. [64] and
Chen et al. [17], used computational-based techniques that did not sufficiently extract fea-
tures, resulting in limited performance. Other studies, such as those by Hajisharifi et al. [16]
and Wang [65], explored the composite peptide encoding technique but still captured re-
dundant features, leading to some inaccuracies. Meanwhile, some researchers, such as
Akbar et al. [18] and Xu et al. [19], practiced ensemble classifiers with hybrid feature
spaces without optimizing the peptide information or investigating their performance. [27].
Li et al.’s lightweight model [66] minimizes the time-consuming nature of the process by
taking into account low feature dimensions. Fazal et al. [67] employed a kernel sparse
representation classifier for the classification of ACPs and non-ACPs.

However, They still faced a deficiency in generating more optimal features for accurate
prediction in their model. In this particular scenario, researchers examined individual
feature extraction components in this study. Subsequently, they assessed the hybrid models’
efficacy using an ensemble classifier algorithm along with an extra optimal selection method.
The proposed model showed significant improvements in classification accuracy compared
to other SOTA approaches, as demonstrated in Table 4. The authors attribute this success
to the deep investigation of feature extraction components, optimal selection techniques,
and the use of ensemble classifiers, which helped generate more optimal features for
precise prediction. The proposed model attained an amazing classification accuracy (A = 1),
representing potential for improving ACP and non-ACPs classification.

Table 4. Comparison assessing the proposed model’s performance against SOTA methods on a
benchmark dataset, with emphasis on highlighting the superior outcome in bold.

Model/Year Accuracy Sensitivity Specificity MCC
SPAP [64] 2013 87.00 92.00 86.00 74.0
LAK [16] 2014 92.68 89.70 85.18 78.0
iACP [17] 2016 95.06 89.86 98.54 89.0
IAP [65] 2016 93.61 89.86 96.12 86.0
iACP-GAEnsC [18] 2017 96.45 95.36 97.57 91.0
SAP [19] 2018 91.86 86.23 95.63 83.0
LDEM [66] 2020 92.73 87.70 96.10 84.0
ACP-KSRC [67] 2023 93.02 97.07 86.87 85.0
Proposed (A = 1) 97.56 97.55 97.54 95.12

4.3.2. Performance Comparison with SOTA using Independent Datasets

We accomplished an exhaustive review of the literature and identified four research
articles that assessed their models using the same dataset as ours. This allowed us to
establish a fair basis for comparing our model with the existing techniques. The initial
effort by Tyagi et al. [15] utilized silicon model for the classification of ACPs and non-
ACPs. Ge et al. [24] proposed a novel analysis of peptide information using the chaos
game representation, which generates a multidimensional feature vector that maintains
the bijection property while generating a feature vector with higher dimensions. However,
this technique has limitations when the sequence length is not uniform. Akbar et al. [31]
proposed a cACP model to improve classification accuracy based on Geary autocorrelation,
conjoint triad, and quasi-sequence alignment. Their results showed accuracy, sensitivity,
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specificity, MCC, and sensitivity scores of 96.91%, 77.32%, 98.12%, and 79.0, respectively,
for various classifier algorithms predicting ACPs and non-ACPs. We compared our em-
pirical findings with those of Ahmed et al. [62], using a convolutional neural network to
distinguish ACPs from non-ACPs. They did not have sufficient data to train the model,
which resulted in low accuracy. In the cACP-DeepGram study, Akbar et al. [30] utilized
a deep neural network (DNN) and a skip-gram-based word embedding model for ACP
classification. Although their findings were efficient, additional improvements are required
to improve performance.

In our paper, we introduced three models with varying A values, and through compre-
hensive experiments, we found that our proposed model with A =1 achieved a significantly
higher score than other existing approaches, as shown in Table 5. It is essential to compare
our results with SOTA techniques that use similar datasets to ensure a fair comparison. Our
findings highlight the effectiveness of our proposed method and demonstrate its potential
for improving peptide classification accuracy.

Table 5. Comparison of the performance of our proposed model with SOTA methods using the
independent dataset, highlighting the best result in bold.

Model/Year Accuracy Sensitivity Specificity MCC
NT5CT5 [15] 2013 92.65 74.67 94.44 61.0
GCGR [24] 2018 96.36 69.33 99.07 76.0
cACP [31] 2019 96.91 77.32 98.12 79.0
ACP-MHCNN [33] 2021 91.0 97.6 84.2 82.0
cACP-DeepGram [30] 2022 94.02 91.18 95.47 88.0
Proposed (A =1) 95.00 96.55 93.55 90.05

5. Conclusions and Future Research Direction

The metaverse exhibits significant potential for a range of medical applications, es-
pecially when combined with virtual reality (VR), augmented reality (AR), and artificial
intelligence (AI). A larger number of cancer patients may benefit from this integration’s
potential to greatly improve medical education, advance telemedicine, encourage diversity,
and boost medical literacy. This work presents a novel feature selection-based multi-voting
classification algorithm specifically tailored for anti-cancer peptides. AAOA, DOA, TOA,
and EPseAAC are four sequence-based feature extraction techniques that are used to iden-
tify highly discriminative characteristics that are essential for classification. The synthetic
minority oversampling technique (SMOTE) algorithm is used to solve the problem of
unbalanced datasets, when one class contains significantly fewer samples. By creating
artificial samples for the minority class, the SMOTE balances out the unequal distribution of
classes and reduces the possibility of biased categorization. An ensemble classifier is used
to evaluate the extracted features, with a training set containing 80% of the data and the
remaining 20% being reserved for testing. The ensemble classifier uses a voting mechanism
to combine three different classifiers—support vector machine (SVM), random forest (RF),
and naive Bayes (NB)—to provide the final prediction.

The suggested model is evaluated using performance metrics such as Matthews
correlation coefficient (MCC), sensitivity (SN), specificity (SP), and overall accuracy (ACC).
The experimental results provide a remarkable 97.56% success rate, 97.55% sensitivity,
97.54% specificity, and 95.12% MCC. These results highlight how well the suggested
approach categorizes anti-cancer peptides, outperforming other methods currently used
in the area. As a result, the suggested model has potential uses in academic research and
fields pertaining to drugs.

There are, however, certain limitations. Due to its current focus on binary classification,
the model might not function as well in situations involving multiple classifications. Fur-
thermore, because of the limited size of the training dataset, its effectiveness may decline
when faced with larger datasets. This study intends to solve these constraints in further
work by concentrating on deep learning (DL) models and reviewing larger datasets. It is
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ACP Anticancer peptide
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cACP-2LFS Classification of anticancer peptides with two-level feature selection
CCPM Cervical cancer prediction model

CD-HIT Cluster database at high identity with tolerance
cACP Classifying anticancer peptides

CPUs Central processing units

CNN Convolutional neural network

DOA Dipeptide occurrence analysis

DNA Deoxyribonucleic acid

EPseAAC Enhanced pseudo amino acid composition
MLACP Machine learning anticancer peptide prediction
NB Naive Bayes

NACP Non-anticancer peptide

MCC Mathews correlation coefficient

RF Random forest

RTX Ray tracing texel
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