Measuring Trajectory Similarity Based on the Spatio-Temporal Properties of Moving Objects in Road Networks
Abstract
:1. Introduction
2. Review of Literature
3. Methodology
3.1. Trajectory Pre-Processing
3.1.1. Noise Detection
3.1.2. Map Matching
3.1.3. Filtering
3.2. Spatial Similarity Measure
3.3. Temporal Similarity Measure
3.4. Spatio-Temporal Similarity Measure
4. Implementation
4.1. Data
4.2. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, R.; Rong, Y.; Wu, Z.; Zhuo, Y. Trajectory Similarity Assessment On Road Networks Via Embedding Learning. In Proceedings of the 2020 IEEE Sixth International Conference on Multimedia Big Data (BigMM), New Delhi, India, 24–26 September 2020; pp. 1–8. [Google Scholar]
- Yao, D.; Zhang, C.; Zhu, Z.; Huang, J.; Bi, J. Trajectory clustering via deep representation learning. In Proceedings of the 2017 international joint conference on neural networks (IJCNN), Anchorage, AK, USA, 14–19 May 2017; pp. 3880–3887. [Google Scholar]
- Sharif, M.; Alesheikh, A.A. Context-awareness in similarity measures and pattern discoveries of trajectories: A context-based dynamic time warping method. GIScience Remote Sens. 2017, 54, 426–452. [Google Scholar] [CrossRef]
- Sharif, M.; Alesheikh, A.A.; Tashayo, B. CaFIRST: A context-aware hybrid fuzzy inference system for the similarity measure of multivariate trajectories. J. Intell. Fuzzy Syst. 2019, 36, 5383–5395. [Google Scholar] [CrossRef]
- Alizadeh, D.; Alesheikh, A.A.; Sharif, M. Prediction of vessels locations and maritime traffic using similarity measurement of trajectory. Ann. GIS 2020, 27, 151–162. [Google Scholar] [CrossRef]
- Cleasby, I.R.; Wakefield, E.D.; Morrissey, B.J.; Bodey, T.W.; Votier, S.C.; Bearhop, S.; Hamer, K.C. Using time-series similarity measures to compare animal movement trajectories in ecology. Behav. Ecol. Sociobiol. 2019, 73, 151. [Google Scholar] [CrossRef]
- Keatley, D.A.; Clarke, D.D. Crime Linkage: Finding a Behavioral Fingerprint Using the “Path Similarity Metric”. J. Police Crim. Psychol. 2020, 35, 240–246. [Google Scholar] [CrossRef]
- Bayat, S.; Roe, C.M. Driving assessment in preclinical Alzheimer’s disease: Progress to date and the path forward. Alzheimer’s Res. Ther. 2022, 14, 168. [Google Scholar] [CrossRef] [PubMed]
- Krogh, B.; Jensen, C.S.; Torp, K. Efficient in-memory indexing of network-constrained trajectories. In Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, Burlingame, CA, USA, 31 October–3 November 2016; pp. 1–10. [Google Scholar]
- Grossi, R.; Marino, A.; Moghtasedi, S. Finding structurally and temporally similar trajectories in graphs. In Proceedings of the 18th International Symposium on Experimental Algorithms (SEA 2020), Catania, Italy, 16–18 June 2020. [Google Scholar]
- Tao, Y.; Both, A.; Silveira, R.I.; Buchin, K.; Sijben, S.; Purves, R.S.; Laube, P.; Peng, D.; Toohey, K.; Duckham, M. A comparative analysis of trajectory similarity measures. GIScience Remote Sens. 2021, 58, 643–669. [Google Scholar] [CrossRef]
- Shang, S.; Ding, R.; Zheng, K.; Jensen, C.S.; Kalnis, P.; Zhou, X. Personalized trajectory matching in spatial networks. VLDB J. 2014, 23, 449–468. [Google Scholar] [CrossRef]
- Qiu, M.; Pi, D. Mining frequent trajectory patterns in road network based on similar trajectory. In Proceedings of the Intelligent Data Engineering and Automated Learning–IDEAL 2016: 17th International Conference, Yangzhou, China, 12–14 October 2016; Proceedings 17. pp. 46–57. [Google Scholar]
- Won, J.-I.; Kim, S.-W.; Baek, J.-H.; Lee, J. Trajectory clustering in road network environment. In Proceedings of the 2009 IEEE Symposium on Computational Intelligence and Data Mining, Nashville, TN, USA, 30 March–2 April 2009; pp. 299–305. [Google Scholar]
- Mao, Y.; Zhong, H.; Xiao, X.; Li, X. A segment-based trajectory similarity measure in the urban transportation systems. Sensors 2017, 17, 524. [Google Scholar] [CrossRef]
- Xia, Y.; Wang, G.-Y.; Zhang, X.; Kim, G.-B.; Bae, H.-Y. Spatio-temporal similarity measure for network constrained trajectory data. Int. J. Comput. Intell. Syst. 2011, 4, 1070–1079. [Google Scholar]
- Yuan, H.; Li, G. Distributed in-memory trajectory similarity search and join on road network. In Proceedings of the 2019 IEEE 35th international conference on data engineering (ICDE), Macao, China, 8–11 April 2019; pp. 1262–1273. [Google Scholar]
- Kim, J.; Mahmassani, H.S. Spatial and temporal characterization of travel patterns in a traffic network using vehicle trajectories. Transp. Res. Procedia 2015, 9, 164–184. [Google Scholar] [CrossRef]
- Chang, J.-W.; Bista, R.; Kim, Y.-C.; Kim, Y.-K. Spatio-temporal similarity measure algorithm for moving objects on spatial networks. In Proceedings of the Computational Science and Its Applications–ICCSA 2007: International Conference, Kuala Lumpur, Malaysia, 26–29 August 2007; Proceedings. Part III 7. pp. 1165–1178. [Google Scholar]
- Yuan, L.; Li, D.; Hu, S. A map-matching algorithm with low-frequency floating car data based on matching path. EURASIP J. Wirel. Commun. Netw. 2018, 2018, 146. [Google Scholar] [CrossRef]
- Wan, Z.; Dodge, S.; Bohrer, G. Leveraging similarity analysis to understand variability in movement behavior. Trans. GIS 2023, 27, 1441–1466. [Google Scholar] [CrossRef]
- Custers, B.; Kerkhof, M.V.D.; Meulemans, W.; Speckmann, B.; Staals, F. Maximum physically consistent trajectories. ACM Trans. Spat. Algorithms Syst. 2021, 7, 1–33. [Google Scholar] [CrossRef]
- Haidri, S.; Haranwala, Y.J.; Bogorny, V.; Renso, C.; da Fonseca, V.P.; Soares, A. PTRAIL—A python package for parallel trajectory data preprocessing. SoftwareX 2022, 19, 101176. [Google Scholar] [CrossRef]
- Zheng, L.; Xia, D.; Zhao, X.; Tan, L.; Li, H.; Chen, L.; Liu, W. Spatial–temporal travel pattern mining using massive taxi trajectory data. Phys. A Stat. Mech. Its Appl. 2018, 501, 24–41. [Google Scholar] [CrossRef]
- Yang, C.; Gidofalvi, G. Fast map matching, an algorithm integrating hidden Markov model with precomputation. Int. J. Geogr. Inf. Sci. 2018, 32, 547–570. [Google Scholar] [CrossRef]
- Goh, C.Y.; Dauwels, J.; Mitrovic, N.; Asif, M.T.; Oran, A.; Jaillet, P. Online map-matching based on hidden markov model for real-time traffic sensing applications. In Proceedings of the 2012 15th International IEEE Conference on Intelligent Transportation Systems, Anchorage, AK, USA, 16–19 September 2012; pp. 776–781. [Google Scholar]
- Chao, P.; Xu, Y.; Hua, W.; Zhou, X. A survey on map-matching algorithms. In Proceedings of the Databases Theory and Applications: 31st Australasian Database Conference, ADC 2020, Melbourne, Australia, 3–7 February 2020; pp. 121–133. [Google Scholar]
- Raymond, R.; Morimura, T.; Osogami, T.; Hirosue, N. Map matching with hidden Markov model on sampled road network. In Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012), Tsukuba, Japan, 11–15 November 2012; pp. 2242–2245. [Google Scholar]
- Lee, W.-C.; Krumm, J. Trajectory preprocessing. In Computing with Spatial Trajectories; Springer: Berlin/Heidelberg, Germany, 2011; pp. 3–33. [Google Scholar]
- Li, F.; Shi, W.; Zhang, H. A two-phase clustering approach for urban hotspot detection with spatiotemporal and network constraints. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 3695–3705. [Google Scholar] [CrossRef]
- Moayedi, A.; Ali Abbaspour, R.; Chehreghan, A.; Mojtabaee, P. The credibility evaluation of the trajectory clustering results using a user-defined similarity. Earth Obs. Geomat. Eng. 2021, 5, 132–144. [Google Scholar]
- Besse, P.C.; Guillouet, B.; Loubes, J.-M.; Royer, F. Review and perspective for distance-based clustering of vehicle trajectories. IEEE Trans. Intell. Transp. Syst. 2016, 17, 3306–3317. [Google Scholar] [CrossRef]
- Koutra, D.; Parikh, A.; Ramdas, A.; Xiang, J. Algorithms for Graph Similarity and Subgraph Matching; Technical Report; Carnegie-Mellon-University: Pittsburg, PA, USA, 2011. [Google Scholar]
- Chris, C. Taxi Trajectory Data from ECML/PKDD 15: Taxi Trip Time Prediction (II) Competition. Available online: https://www.kaggle.com/datasets/crailtap/taxi-trajectory/data (accessed on 24 April 2015).
- Furtado, A.S.; Kopanaki, D.; Alvares, L.O.; Bogorny, V. Multidimensional similarity measuring for semantic trajectories. Trans. GIS 2016, 20, 280–298. [Google Scholar] [CrossRef]
- Liang, M.; Liu, R.W.; Li, S.; Xiao, Z.; Liu, X.; Lu, F. An unsupervised learning method with convolutional auto-encoder for vessel trajectory similarity computation. Ocean. Eng. 2021, 225, 108803. [Google Scholar] [CrossRef]
Filtering Method | Algorithm Iteration | Reduction Percentage | Process Time |
---|---|---|---|
Without filter | 177,129,481 | 0 | 310′ |
Distance | 48,636,646 | 72.5 | 180′ |
Azimuth | 11,753,469 | 93.3 | 12′ |
Distance and azimuth | 4,191,878 | 97.6 | 2′10” |
Method | Processing Time | Algorithm Iteration | Mean ± SD |
---|---|---|---|
Developed method without filtering | 310′ | 177,129,481 | 0.384 ± 0.056 |
Developed method with filtering | 2′10″ | 4,191,878 | 0.384 ± 0.056 |
LCS method | 660′ | 177,129,481 | 0.067 ± 0.072 |
MSM method | 1100′ | 177,129,481 | 0.705 ± 0.210 |
CNN method | 1650′ | 177,129,481 | 0.935 ± 0.085 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dorosti, A.; Alesheikh, A.A.; Sharif, M. Measuring Trajectory Similarity Based on the Spatio-Temporal Properties of Moving Objects in Road Networks. Information 2024, 15, 51. https://doi.org/10.3390/info15010051
Dorosti A, Alesheikh AA, Sharif M. Measuring Trajectory Similarity Based on the Spatio-Temporal Properties of Moving Objects in Road Networks. Information. 2024; 15(1):51. https://doi.org/10.3390/info15010051
Chicago/Turabian StyleDorosti, Ali, Ali Asghar Alesheikh, and Mohammad Sharif. 2024. "Measuring Trajectory Similarity Based on the Spatio-Temporal Properties of Moving Objects in Road Networks" Information 15, no. 1: 51. https://doi.org/10.3390/info15010051
APA StyleDorosti, A., Alesheikh, A. A., & Sharif, M. (2024). Measuring Trajectory Similarity Based on the Spatio-Temporal Properties of Moving Objects in Road Networks. Information, 15(1), 51. https://doi.org/10.3390/info15010051