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Abstract: Endoscopy, a pervasive instrument for the diagnosis and treatment of hollow anatomical
structures, conventionally necessitates the arduous manual scrutiny of seasoned medical experts.
Nevertheless, the recent strides in deep learning technologies proffer novel avenues for research,
endowing it with the potential for amplified robustness and precision, accompanied by the pledge of
cost abatement in detection procedures, while simultaneously providing substantial assistance to
clinical practitioners. Within this investigation, we usher in an innovative technique for the identi-
fication of anomalies in endoscopic imagery, christened as Context-enhanced Feature Fusion with
Boundary-aware Convolution (GFFBAC). We employ the Context-enhanced Feature Fusion (CEFF)
methodology, underpinned by Convolutional Neural Networks (CNNs), to establish equilibrium
amidst the tiers of the feature pyramids. These intricately harnessed features are subsequently
amalgamated into the Boundary-aware Convolution (BAC) module to reinforce both the faculties
of localization and classification. A thorough exploration conducted across three disparate datasets
elucidates that the proposition not only surpasses its contemporaries in object detection performance
but also yields detection boxes of heightened precision.
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1. Introduction

Deep learning has surfaced as a transformative influence in the realm of medical image
analysis, profoundly impacting the domain of endoscopy, which encompasses specialized
imaging modalities for diagnostics and therapeutic interventions [1]. This symbiotic re-
lationship has yielded noteworthy applications. Convolutional neural networks (CNNs)
demonstrate exceptional proficiency in real-time polyp detection during colonoscopy, en-
hancing the prospects of early intervention and the potential prevention of colorectal
cancer [2]. When it comes to diagnosing Barrett’s esophagus, a precursor to esophageal
adenocarcinoma, deep learning surpasses human assessments by adeptly scrutinizing en-
doscopic images, thereby facilitating early detection [3]. Deep learning models additionally
gauge the quality of endoscopic procedures through real-time video analysis, ensuring
adherence to established standards, consequently amplifying the dependability and efficacy
of the practice. These applications underscore the capacity of deep learning to elevate
precision, efficiency, and reliability within the realm of endoscopy, thereby propelling
forward patient care. The competence to scrutinize copious volumes of image and video
data reinforces the pivotal role that deep learning assumes in the domain of endoscopy.
This amalgamation has inaugurated an era of innovation, thereby elevating healthcare
practices and promising a brighter future for medical diagnostics and treatments [4,5].

In recent years, the domain of object detection has witnessed remarkable progress,
primarily attributable to the emergence of deep learning methodologies. Object detection,
the task of precisely identifying and localizing objects within images or video frames, holds
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paramount importance in various applications, encompassing surveillance, autonomous
driving, and medical imaging [6,7]. The YOLO (You Only Look Once) series of models
has played a pivotal role in addressing critical challenges within this domain [8,9]. One
primary challenge tackled by the YOLO series pertains to the detection of small objects.
Traditional methods faced limitations in accurately discerning diminutive objects due to
spatial constraints. YOLOv3 addressed this issue by introducing multi-scale detection
capabilities, thereby enhancing the model’s proficiency in identifying small objects [10].
YOLO models strike an equilibrium between processing speed and detection accuracy,
rendering them highly suitable for real-time applications. Another significant challenge
that the YOLO series resolves is multi-class object detection. YOLO empowers the detection
of objects belonging to diverse categories in a single inference pass, resulting in heightened
efficiency [11]. This is particularly valuable in applications such as autonomous vehicles
navigating intricate environments, where the identification and categorization of multiple
objects within a scene are imperative. Notably, YOLO excels in real-time object detection,
even in dynamic and rapidly evolving scenarios [12]. This capability has rendered YOLO
indispensable in applications like video surveillance, traffic management, and augmented
reality. YOLO accomplishes this through the optimization of network architecture and
inference processes. In summary, the YOLO series has transformed object detection by
effectively addressing challenges related to small object detection, providing real-time
capabilities, and facilitating multi-class detection. These technological advancements have
significantly expanded the realm of object detection applications across diverse domains,
thereby carrying substantial implications for safety, security, and operational efficiency. As
the field of object detection continues its evolution, YOLO remains at the forefront of this
transformative landscape.

Over the course of the last decade, computer vision has demonstrated remarkable
advancements; nonetheless, it grapples with substantial challenges when confronted with
real-world applications. Particularly noteworthy among these challenges is the predica-
ment of intra-class variation, where objects belonging to the same class manifest significant
disparities attributable to factors such as occlusion, varying illuminative conditions, di-
verse poses, and alterations in viewpoint [13]. Furthermore, objects may incur non-rigid
deformations or undergo rotations, scalings, and blurriness, thereby complicating their
extraction and precise recognition [14]. In certain instances, objects may find themselves
ensconced in inconspicuous surroundings, further heightening the complexity of recog-
nition. Another conspicuous challenge in the realm of computer vision pertains to the
extensive multitude of object categories necessitating classification. Effectively addressing
this challenge mandates unfettered access to voluminous, high-quality annotated data
for the purpose of training object detectors. However, the dearth of such data poses a
substantial impediment, rendering the development of robust models a more intricate task.
Additionally, the matter of training object detectors with limited exemplars remains a fertile
area of ongoing research. Efficiency represents a paramount concern within the discipline,
considering the substantial computational resources demanded by modern models to attain
precise object detection. This challenge is accentuated by the growing ubiquity of mobile
and edge devices, underscoring the exigency of developing streamlined object detection
methodologies to further advance the field of computer vision. The successful surmounting
of these challenges constitutes a fundamental imperative in order to fully harness the
potential of computer vision across a diverse spectrum of real-world applications.

In this undertaking, our objective is to explore a novel methodology that can effectively
address precision and minimize expenditure. To commence, in the interest of shortening
the information path, we employ low-level fine-grained localization signals to fortify the
feature pyramid, thus creating an enhancement from shallow to deep layers. In practice,
shallow attributes have been utilized in the systems denoted by [15–22]. Yet, there has
been a scarcity of research concerning the propagation of shallow attributes to enhance
the entire feature hierarchy for instance recognition. Subsequently, to rectify the issue
of imbalanced feature hierarchy, our approach recognizes that deep high-level features
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from the backbone network carry more substantial semantic content, whereas the shallow
low-level attributes are primarily content-descriptive. In the domain of object detection,
low-level and high-level information are mutually complementary. Our research elucidates
the necessity of achieving balanced feature integration from each resolution. However,
different aggregation sequences can result in integrated features focusing more on adjacent
resolutions and less on others. In the information flow, each fusion operation dilutes
semantic information from non-adjacent levels. We leverage balanced semantic features
integrated at the same depth to enhance multi-level attributes. Lastly, we introduce the
concept of boundary-aware convolutions, where each side of the barrel is individually posi-
tioned based on the surrounding context. Furthermore, to maintain precise local bounding
boxes during non-maximum suppression, we recommend adjusting classification scores
based on barrel confidence, further enhancing overall performance. We have demonstrated
cutting-edge performance across multiple datasets. Employing ResNet as the foundational
network, our model has outperformed several advanced object detectors in single-scale
testing for object detection tasks, underscoring the effectiveness of our approach.

In this segment, we furnish an exposition of our principal contributions:

1. We introduce a boundary-aware convolution technique, denominated as BAC, metic-
ulously crafted for the efficient detection of objects within the realm of endoscopy.

2. We proffer a stratagem to elevate the attributes residing in the shallow layers, thus en-
gendering equilibrium in the domain of features. We optimize multi-tier features by ju-
diciously harmonizing the influence of superficial and profound informational strata.

3. We execute comprehensive assessments of the envisaged framework across three
distinct datasets. These evaluations exhibit unwaveringly noteworthy enhancements
in comparison to the most advanced detectors, encompassing both singular-stage and
dual-stage detectors.

2. Related Work
2.1. YOLO

YOLO made its debut on the 8th of June in 2015, ushering in a distinctive approach by
framing the detection task as a regression conundrum [23]. It achieved the simultaneous
output of both positional and class-related information through the conduit of a solitary
neural network. When juxtaposed with the Fast R-CNN, YOLO notably curtailed the
incidence of background errors in its predictions. YOLO captured substantial attention
owing to its astonishing swiftness and the augmentation of localization precision. In
recent years, dedicated researchers have tirelessly toiled on the amelioration of the YOLO
framework. In the year 2020, Glenn Jocher, the luminary CEO of Ultralytics, unveiled
YOLO (v5) on GitHub, endowing it with a plethora of invaluable attributes. These include
test-time augmentation, model ensembling, hyperparameter evolution, and the faculty to
export models in an array of formats like ONNX, CoreML, and TFLite. For the enhancement
of accuracy in video detection, the deployment of automatic anchoring techniques was
instrumental. This innovation bestowed dedicated anchor boxes to each component of the
network. As for YOLO (v6), it witnessed enhancements across the backbone, neck, and head
of the model, ingeniously addressing the pragmatic concerns germane to industrial video
detection applications [24]. YOLO (V6) prides itself on its twofold improvement in inference
speed compared to V5, all the while achieving a higher mean average precision (mAP).

The realm of natural image processing has commenced to harvest the rewards of
triumphant object detection. Simon et al. ushered in a model employing the Complexer-
YOLO architecture for real-time 3D object detection [25]. They harnessed spatial LiDAR
data and incorporated a 2D scene understanding to attain competitive performance on
the KITTI benchmark. Real-time models in the domains of Automated Driving Systems
(ADS) and Driver Assistance Systems (DAS) have hitherto grappled with issues related
to diminished accuracy and suboptimal performance. Han et al. proffered an innova-
tive real-time object detection model, O-YOLO-v2, seamlessly integrated within a deep
learning framework [26]. This model introduced a fresh architecture that amplifies the
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network’s feature extraction capabilities by embedding convolutional layers at diverse
junctures. Simultaneously, it adeptly addressed the quandaries stemming from augmented
network depth, notably the predicaments of gradient vanishing or exploding, through the
assimilation of residual modules. This judicious approach yielded successful experimental
outcomes on the KITTI dataset. In a bid to surmount the challenge of detecting faces at
varying scales, Chen et al. introduced a face detector christened YOLO-face, predicated on
the bedrock of the YOLOv3 framework [27]. This stratagem aspired to elevate face detection
performance by leveraging anchor boxes more tailored for facial detection and a regression
loss function of greater precision. This enhanced detector conspicuously elevated accuracy
while upholding alacrity in the realm of detection.

The unique attributes of endoscopy images, when juxtaposed with their natural
counterparts, bestow upon them marked disparities, courtesy of their specialized essence.
These disparities encompass divergences in resolution, hue, and luminance, which firmly
delineate endoscopy images from their natural brethren [28]. Furthermore, endoscopy
images encapsulate an array of distinctive targets, exhibiting a substantial breadth of
diversity. These targets are predominantly confined to the medical realm, enshrining
entities such as lesions, neoplasms, ulcers, and more [29]. This diversity extends to facets
like morphology, chroma, and tactile qualities. Consequently, the imperative unfurls for the
development of detectors, painstakingly tailored to confront these distinctive challenges
intrinsic to the domain of medical applications.

2.2. Object Detection

Deep learning, a subdivision within the realm of machine learning, proffers an array
of paramount advantages [30]. Inaugurally, it excels in the acquisition of intricate features
and patterns from expansive datasets, thereby culminating in substantial performance ame-
liorations across domains encompassing image scrutiny, speech discernment, and natural
language comprehension. Secondly, the multi-tiered neural networks inherent to deep
learning autonomously distill abstruse, high-level features, thus mitigating the necessity
for laborious manual feature engineering, thereby simplifying the process at hand [31].
Furthermore, deep learning models demonstrate exceptional prowess in effectively tack-
ling grandiose quandaries, spanning extensive image classification to the intricate domain
of autonomous vehicular navigation [32]. Foremost among its accolades, deep learning
unfolds extraordinary adeptness in surmounting intricate tasks such as natural language
apprehension, speech recognition, and the explication of medical images. These attributes
distinctly posit deep learning as a formidable instrument poised to unravel an extensive
gamut of real-world conundrums.

The principal objective of general object detection resides in the discernment and
classification of entities embedded within an image, aptly adorning them with rectangu-
lar bounding enclosures signifying their degrees of assurance. Elevating the caliber of
prospective bounding enclosures and harnessing profound architectural frameworks for
elevated-level feature extraction stands as a matter of paramount significance. To address
these formidable quandaries, Ross Girshick unfurled R-CNN in the year 2014 [33], cul-
minating in the attainment of a remarkable average precision (mAP) reaching 53.3% on
the PASCAL VOC 2012 dataset. SPP-net adeptly confronted the predicament associated
with rigid dimensions in fully connected layers by assimilating spatial pyramid matching
(SPM) [34–36], which bestowed the capacity to perceive entities across diverse magnitudes
without incurring forfeiture or deformation of their inherent essence, particularly when enti-
ties exhibit variances in dimensions. Fast R-CNN resolved the issue of languid region-based
object detection through the introduction of a streamlined and cohesive framework that
harmonizes region proposals with the art of feature extraction [37], thereby engendering
notable advancements in processing velocity and precision. Faster R-CNN heightened the
efficiency of candidate enclosure generation in object detection through the introduction of
a Region Proposal Network (RPN) in harmonious alliance with the detection network [38],
leading to a substantial enhancement in the process of proposal calculation. Mask R-CNN
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adroitly contended with the formidable task of instance segmentation through the unveil-
ing of a concurrent branch dedicated to pixel-by-pixel segmentation mask prognosis [39],
enabling the simultaneous discovery and segmentation of entities nestling within an image.

Object detection is a fundamental task in computer vision, yet it presents several
challenges and issues. Firstly, detecting small objects is a significant problem as they are
prone to being overlooked, especially in complex backgrounds. Secondly, object occlusion
is a common issue, increasing detection difficulty when objects are obscured by other
entities. Multiscale object detection involves objects of various sizes and scales, necessitat-
ing effective handling. Illumination variations, background interference, and noise also
introduce disturbances in object detection. Additionally, the acquisition and quality of
labeled data are crucial for the performance of deep learning models, but labeling data is
typically expensive and time-consuming. Lastly, achieving both generality and real-time
capabilities in object detection systems is challenging, as different application domains
require different detection models and speeds. Consequently, re-searchers continue to focus
on improving object detection performance and applicability in the domains of small object
detection, occlusion handling, multiscale adaptability, robustness against interference, data
annotation, and model generality.

2.3. Bounding Boxes in Clinical Endoscopy

Bounding boxes assume a paramount role in clinical endoscopy for various rationales.
Foremost among these is their capacity to facilitate the meticulous localization and dis-
crimination of pathological regions within the realm of medical imagery. This function
carries profound significance in the realm of early ailment diagnosis and therapeutics,
embracing the pivotal role of detecting anomalies, such as lesions or polyps in the realm of
colonoscopy images and the discernment of tumors in the context of endoscopic investi-
gations [40]. Moreover, bounding boxes serve as instrumental tools in the measurement
and quantification of the dimensions of these said anomalies. Thus, they empower precise
assessments, ushering in a new era of accuracy in the evaluation of ailment progression.
In a culminating fashion, bounding boxes confer invaluable data for the edification of
computer-aided diagnostic systems, thus underpinning the machinery of automated analy-
sis and lending robust support to healthcare professionals in the act of arriving at judicious
and well-informed determinations.

In the realm of endoscopy, we encounter enduring challenges in the domain of object
detection. Firstly, the intrinsic attributes of medical imagery bestow upon us datasets that
are relatively diminutive and lack the diversity that characterizes general datasets [41].
These limitations thereby place constrictions on the efficacy of deep learning models.
Secondly, the profuse heterogeneity across diverse endoscopic scenarios and equipment
configurations imposes impediments on model generalization, necessitating a heightened
degree of adaptability tailored to specific contexts. Thirdly, the exacting nature of medical
applications necessitates outcomes that are endowed with an exquisite level of precision,
thereby elevating the requisites for model performance and stability [42]. Lastly, the pursuit
of interpretability and comprehensibility in the realm of automated detection presents
a formidable challenge, as healthcare professionals seek to possess an all-encompassing
grasp of the model’s cognitive processes. Our approach is anchored in the enhancement of
object bounding boxes, revolving around the meticulous refinement of their boundaries.
We employ the barrel scheme to disentangle the intricate process of boundary localization
for each object. Furthermore, we harness the estimates from the barrel schema to augment
the outcomes of classification. Rigorous testing on three distinct datasets attests to the
model’s robust performance and its capacity to exhibit a degree of versatility.

3. Materials and Methods

The essence of object detection resides in the exactitude of target localization. Cur-
rently, the dominant methodology hinges on predetermined anchor boxes. Nevertheless,
this framework proves inadequate in furnishing pinpoint localization for diminutive tar-
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gets and competently managing intersecting objects. Various approaches [43–46] have
striven to augment localization precision by assimilating multi-scale features. Nevertheless,
this refinement frequently accompanies heightened computational intricacy and presents
dilemmas in the selection of judicious hyperparameters. Hence, there exists an imperative
need for the introduction of a nimble and efficacious substitute.

We introduce a Context-enhanced Feature Fusion Module and a Boundary-Aware
Con-volution Module to elevate edge features and attain a higher degree of precision in
target localization. As shown in Figure 1, we commence the process of feature extraction
from the input images using Res-Nets, renowned for their prowess in feature represen-
tation. The inclusion of pathways spanning from superficial strata to profound layers
promotes the seamless propagation of low-level insights. Subsequently, the CEFF module
amalgamates features of varying scales to engender fused features, affording more efficient
utilization of contextual knowledge while mitigating parameter proliferation. Ultimately,
the amalgamated features are fed into the BAC module, which consolidates features along
the X and Y axes to individually extract horizontal and vertical attributes. The BAC module
enhances the accuracy of boundary positions by predicting deviation values concerning
the ground truth boxes. Moreover, the confidence levels of estimated barrels contribute to
classification and serve to further amplify performance.
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3.1. Context-Enhanced Feature Fusion

Superficial attributes capture local information and intricacies, with local textures
more prone to eliciting responses in neighboring neurons. This profound insight signifies
the necessity for the primary network to bolster the propagation of robust semantic features
from the shallow to deep pathways, thereby enhancing all features representing classifica-
tory information. Owing to the reality that multiple sampling operations can result in the
loss of some localization information, our framework fortifies the localization prowess of
the feature hierarchy by disseminating the robust responses of superficial patterns. Thus,
we establish a connection pathway from the shallow to deep layers (as depicted by the
solid blue line in Figure 1). It comprises fewer than ten layers spanning across these strata.

Our framework initially implements path expansion for sampling. We adhere to the
FPN approach to define the generation of various network stages. The spatial size of each
feature level remains consistent and corresponds to a distinct stage. ResNet serves as our
backbone network, with the feature levels generated by the FPN denoted as {P1, P2, P3 }.
Our enhancement path initiates at P1 and progressively approaches P3. Throughout this
progression from P1 to P3, the spatial size decreases by a factor of 2. The newly generated
feature mappings corresponding to {P1, P2, P3 } are represented as {N1, N2, N3 }. It’s
worth noting that N1 remains unchanged from P1 and undergoes no additional processing.

In Figure 2, each connection block combines a feature map N with a feature map
P from a deeper level to generate a new feature map, designated as N’. Initially, each
feature map undergoes spatial dimension reduction through a 3 × 3 convolutional layer.
Subsequently, each element of feature map P is integrated with the downsampled map
through lateral connections. The resulting fused feature map then undergoes additional
processing via a 3× 3 convolutional layer to generate the N for the subsequent sub-network.
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In contrast to approaches that rely on lateral connections for the integration of multi-
level features, our method enhances multi-level features by incorporating semantic features,
as depicted in orange in Figure 1. Features at layer l are denoted as Nl , and there are a
total of L multi-level features. The indices for the lowest and highest levels are represented
as Lmin and Lmax, respectively. To integrate multi-level features while maintaining their
semantic hierarchy, we initially resize the multi-level features, denoted as {N1, N2, N3 },
to an intermediate size matching the size of N2. We achieve this through interpolation
and max-pooling. Following the feature resizing, we obtain the fused balanced semantic
features through a straightforward averaging process:

N =
1
L

lmax

∑
l=lmin

Nl (1)

3.2. Boundary Aware Convolution

The processing steps of the BAC module are shown in Algorithm 1. As shown in
Figure 3, we extract lateral features, denoted as Stop, Sdown, Sle f t, Sright , through boundary-
aware convolution, utilizing ROI features. In line with the YOLO series of detectors, we
employ a Feature Pyramid Network (FPN) for extracting Region of Interest (ROI) features
across various scales. Subsequently, we transform these features into S using a pair of 3 × 3
convolutional layers. To further enhance our capacity for capturing directional information
within regions of interest, we concentrate on amplifying these specific features. More
precisely, we employ 1 × 1 convolution to predict two distinct attention maps derived from
S, which are subsequently normalized along both the x-axis and y-axis. Using the input
attention maps designated as Jx and Jy, we amalgamate the S features to yield Sx and Sy,
as delineated below:

Sx = ∑
y

S(y, :)× Jx(y, :) (2)

Sy = ∑
x

S(:, x)× Jy(:, x) (3)

Both Jx and Jy represent one-dimensional feature maps with dimensions of 1 × k and
k × 1. They are subjected to additional refinement through 1 × 3 or 3 × 1 convolutional
layers and subsequently upsampled by a factor of 2 using deconvolution layers, yielding
1 × 2k and 2k × 1 features in both the horizontal and vertical orientations. Lastly, the
upsampled features are directly partitioned into two halves, generating the lateral features,
Stop, Sdown, Sle f t, Sright .
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Algorithm 1. Boundary aware convolution

1 Extract object proposals or bounding boxes
2 for each bounding_box in bounding_boxes:
3 Extract features from the bounding box region
4 Predict side boundaries using the features
5 Refine the bounding box based on side boundaries
6 Replace the original bounding box with the refined one
7 Output the refined bounding boxes
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The positioning process is decomposed into two stages: barrel estimation and fine
regression. Candidate regions for each object boundary are partitioned into barrels along
the horizontal and vertical directions. Initially, we estimate the barrel in which the boundary
is situated, followed by regressing a more precise boundary location within that identified
barrel. Throughout the localization process, within the context of a given predefined
bounding box (denoted as Btop, Bdown, Ble f t, Bright ), the selected boundary region is
magnified by a factor of ε (ε > 1) to encompass the entirety of the object. This chosen
region is then discretized into 2k barrels along both the x and y axes, with each boundary
associated with k barrels. Consequently, the width of each barrel along the x and y axes is
represented as

Gx =

(
εBright − εBle f t

)
2k

(4)

Gy =

(
εBdown − εBtop

)
2k

(5)

In the barrel estimation step, we employ a binary classifier to predict, based on boundary
features, whether the boundary resides within the barrel of each side or the nearest barrel.
In the fine regression step, regression techniques are employed to predict the offset from
the centerline of the selected predicted barrel to the actual boundary label. As illustrated
in Figure 4, on each side, the barrel closest to the ground-truth boundary is labeled as
1 (positive sample), while the remaining barrels are labeled as 0 (negative samples). To
mitigate ambiguity during the training process, we, for each side, omit the second closest
barrel to the ground-truth boundary, as it is challenging to differentiate from the positive
barrels. Negative barrels are excluded during the training of the boundary regressor for
each side. To enhance the robustness of the fine regression branch, we incorporate both
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the nearest barrel (marked as “positive” in the barrel estimation step) and the second
nearest barrel (marked as “ignored” in the barrel estimation step) for training the regressor.
The regression target represents the displacement between the barrel centerline and the
corresponding true ground boundary. To alleviate training challenges for the regressor, we
normalize the target by Gx and Gy along the respective axes.
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To ensure more precise barrel localization during the localization process, we employ
estimated barrel confidence scores for scoring assistance. Consequently, BAC computes the
average of the confidence scores for barrel estimation across the four boundaries. The multi-
class classification scores are then multiplied by the average localization confidence and
employed for candidate sorting during NMS. Scoring plays a crucial role in preserving the
best boxes, maintaining high classification confidence, and ensuring accurate localization.

3.3. Loss Design

Object detection is a multi-task learning problem that combines both classification and
localization objectives. In practice, network training is typically conducted by manually
tuning task weights, such as multiplying the loss during the classification process by a
fixed coefficient. The specific formulations of the loss functions are detailed as follows,

L = Lcls + σ(L barrel + Lreg
)

(6)

where Lcls represents the classification loss function. We utilize the barrel estimation
loss, denoted as Lbarrel , and the accurate regression loss, denoted as Lreg, in lieu of the
localization objective function. The term σ is employed to fine-tune the loss weights for
multi-task learning.

In the context of endoscopic images, for conducting multi-task experiments, it is feasi-
ble to appropriately adjust the coefficients of the regression task loss functions. However,
the impact of object texture and size in endoscopic images can result in significant loss



Information 2024, 15, 53 10 of 18

and gradients. We have individually formulated the barrel estimation loss Lbarrel , and the
accurate regression loss Lreg. The definition of Lbarrel is as follows,

Lbarrel = − 1
N

N

∑
i=1

yi · log(p(yi)) + (1 − yi) · log(1 − p(yi)) (7)

where y represents the label of the i-th sample, and p(y) represents the model’s prediction
for the i-th sample. Lreg is defined as follows,

Lreg =

{
0.5x2 i f |x| < 1

|x| − 0.5 otherwise
(8)

where x represents the numerical disparity between the prediction and the ground truth.
The origin of cross-entropy loss is rooted in information theory concepts. Cross-

entropy loss quantifies the difference between the probability distribution of true labels and
the probability distribution of labels predicted by the model. Minimizing cross-entropy loss
involves making the model’s predicted probabilities approach the true label probabilities as
closely as possible, thereby enhancing the model’s classification performance. Its definition
is as follows,

Lcls = −
n

∑
i=1

yilogŷi (9)

In the equation above, y represents the true distribution, ŷ represents the network’s pre-
dicted distribution, and n is the total number of classes.

4. Results
4.1. Dataset

CVC-ClinicDB [47] is a publicly available dataset for colonoscopy polyp detection,
consisting of 612 polyp images with a resolution of 384 × 288 pixels. Experts have pro-vided
essential information about the polyps using advanced medical annotation tools.

The Kvasir-SEG [48] dataset is extensively utilized for the development and evaluation
of methods for colon and rectal polyp detection and segmentation. This dataset comprises
1000 polyp images along with their corresponding bounding boxes and segmentation
masks. These images have been meticulously annotated and verified by experienced
gastroenterology experts.

EDD2020 [49] is a comprehensive dataset created for the purpose of benchmarking
disease detection algorithms in endoscopy examinations. This dataset includes annotations
for five distinct disease categories: BE, Suspicious, HGD, Cancer, and Polyp. Bounding box
annotations for disease detection are provided within the dataset. The training set consists
of a total of 386 endoscopic frames, with each frame annotated for one or multiple diseases.
Regions belonging to the same category are combined into a single mask, and bounding
boxes for multiple categories are treated as separate boxes located in the same position.

4.2. Performance Metrics

Intersection over Union (IOU) is a metric utilized for quantifying the extent of overlap
between two bounding boxes or regions. It is computed by dividing the area of the
intersection of the two regions by the area of their union. IOU is frequently employed
in object detection tasks to evaluate the precision of object localization. Its definition is
as follows,

IoU =
A ∩ B
A ∪ B

(10)

where ∩, ∪ denote the intersection and union respectively. A is the detection area and B is
annotated as GT.

Accuracy is a metric that evaluates the precision of a classification model. It is de-fined
as the ratio of true positive predictions to the total number of positive predictions, which
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includes both true positives (TP) and false positives (FP). Accuracy is employed to assess
the model’s ability to avoid misclassifying negative samples as positive. Its definition is
as follows,

Acc =
TP

TP + FP
(11)

Recall, also referred to as sensitivity or the true positive rate, is a metric that quantifies
a model’s capability to identify all relevant instances within a dataset. It is calculated as
the ratio of true positive predictions to the total number of actual positive instances (true
positives (TP) + false negatives (FN)). Its definition is as follows,

Recall =
TP

TP + FN
(12)

Average Precision (AP) is a metric utilized in object detection to evaluate the preci-
sion and recall associated with object localization and classification. It is computed by
determining the area under the precision-recall curve. Its definition is as follows,

AP = ∑n

{
(rn+1 − rn)pinterp(rn+1)

}
(13)

with pinterp(rn+1) = max
∼
r≥rn+1

p
(∼

r
)

. Here, p(rn) denotes the precision value at a given

recall value.
Mean Average Precision (mAP) is a metric utilized to assess the performance of object

detection algorithms. It is computed as the average of the Average Precision (AP) for
each category in the dataset. AP quantifies how effectively an algorithm ranks objects
and assigns scores to each detected object. mAP offers a comprehensive evaluation of the
performance of object detection models. Its definition is as follows,

mAP =
1
N

n

∑
i=0

APi (14)

The F1 score is a metric that harmoniously combines precision and recall into a single
value, offering a balanced assessment of a model’s performance. It is especially valuable
when the cost of false positives and false negatives is unequal. Its definition is as follows,

F1 Score = 2 × Acc × Recall
Acc + Recall

(15)

4.3. Implementation Details

Our model was implemented using PyTorch on an NVIDIA 3080 GPU card equipped
with 32GB of memory. To mitigate the risk of overfitting, we employed various data aug-
mentation techniques, encompassing horizontal flips, vertical flips, and cropping. Notably,
we abstained from using any pre-trained weights during the model training process. For
the CVC-ClinicDB, Kvasir-SEG, and EDD2020 datasets, we diligently partitioned the data
into training, testing, and validation sets following an 8:1:1 ratio. Maintaining uniformity,
the input resolution and batch size were consistently set at 320 × 320 and 8, respectively,
across all three datasets. During the training phase, we employed the YOLOv5 backbone
for iterative training. We optimized our model using the Adam optimizer with an initial
learning rate of 0.02. We conducted training on three datasets for 100 epochs.

4.4. Comparison with State-of-the-Art Methods

To facilitate a comparison between the proposed detector and various prior and
contemporary methods, we have summarized their components and performance across
three datasets. The reported results were either extract-ed from the original papers or
obtained from publicly available implementations and models.
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In the context of CVC-ClinicDB, it’s noteworthy that only a small portion of each
CVC-ClinicDB image contains polyps (with an average total polyp area per image of less
than 15%). This can lead to a significant number of false negative regions when positive
region predictions are hindered by interference. However, the proposed GFFBAC method
demonstrates its effectiveness in dealing with the challenges of imbalanced data. As
shown in Table 1, the proposed GFFBAC gives the most promising results with mAP50
and precision of 94.8% and 93.5% respectively. Notably, a substantial performance gap
exists between YOLOv4 and our GFFBAC method, demonstrating the efficacy of GFFBAC
in addressing imbalanced data challenges. In comparison to alternative methods, such
as [48–52], GFFBAC exhibits noteworthy precision improvements of 13%, 9.9%, 0.9%, 5.2%,
and 2.5% respectively. Additionally, our approach surpasses the prior state-of-the-art
DC-SSDNe object detection method across all metrics, achieving improvements of 2.6%
on mAP50, 2.6% on AP50, 2.5% on precision, 2.5% on recall, and 2.5% on F1. These results
not only validate the efficacy of our proposed method but also demonstrate its focus on
capturing correlations between instances.

Table 1. Comparison to mainstream methods with GFFBAC on CVC-ClinicDB dataset.

Model Dataset mAP50 AP50 P R F1

YOLOv4 [50] CVC-ClinicDB - - 80.5 ± 0.3 73.6 ± 0.1 76.9 ± 0.1
STYOLOv5 [51] CVC-ClinicDB - - 83.6 ± 0.3 73.1 ± 0.2 78 ± 0.1

ITH [52] CVC-ClinicDB - - 92.6 ± 0.2 80.7 ± 0.1 86.2 ± 0.1
soet [53] CVC-ClinicDB 89.5 ± 0.1 89.5 ± 0.1 88.3 ± 0.1 92.3 ± 0.1 89.8 ± 0.2

DC-SSDNet [54] CVC-ClinicDB 92.2 ± 0.3 92.2 ± 0.3 91 ± 0.1 92.2 ± 0.1 88.4 ± 0.2
Ours CVC-ClinicDB 94.8 ± 0.1 94.8 ± 0.1 93.5 ± 0.2 92.7 ± 0.1 90.9 ± 0.1

The Kvasir-SEG dataset contains images with relatively larger polyp areas, with an
average total tumor area exceeding 70%. This setting is conducive to the outstanding
performance of BAC. Corresponding results are shown in Table 2. GFFBAC surpasses all
competing methods, achieving an increase of 0.9% in mAP and 0.4% in accuracy compared
to the second-best method. A significant advantage of GFFBAC lies in its ability to capture
global contextual information, which YOLO-based methods struggle to achieve. The
experimental results affirm the superiority of boundary-aware feature convolution in
object detection.

Table 2. Comparison to mainstream methods with GFFBAC on Kvasir-SEG dataset.

Model Dataset mAP50 AP50 P R F1

YOLOv4 [55] Kvasir-SEG 71.0 ± 0.1 71.0 ± 0.1 65.0 ± 0.2 66.0 ± 0.2 63.0 ± 0.1
YOLOv5l [55] Kvasir-SEG 81.0 ± 0.1 68.0 ± 0.1 65.0 ± 0.2 65.0 ± 0.1 64.0 ± 0.1

YOLOv5m [55] Kvasir-SEG 81.0 ± 0.2 80.0 ± 0.2 65.0 ± 0.0 65.0 ± 0.1 64.0 ± 0.3
YOLOv5n [55] Kvasir-SEG 75.0 ± 0.0 75.0 ± 0.0 64.0 ± 0.1 64.0 ± 0.1 62.0 ± 0.2
YOLOv5s [55] Kvasir-SEG 74.0 ± 0.1 74.0 ± 0.1 63.0 ± 0.2 62.0 ± 0.1 61.0 ± 0.1

DETR [55] Kvasir-SEG 80.0 ± 0.3 80.0 ± 0.3 65.0 ± 0.1 69.0 ± 0.2 66.0 ± 0.1
soet Kvasir-SEG 92.6 ± 0.1 92.6 ± 0.1 95.1 ± 0.1 93.1 ± 0.1 94.0 ± 0.2
Ours Kvasir-SEG 93.5 ± 0.1 93.5 ± 0.1 95.5 ± 0.2 93.2 ± 0.1 94.7 ± 0.1

In the EDD2020 dataset, we conducted a comparative analysis involving our model,
the EDD2020 Detection Challenge team, and YOLO series models in Table 3. Our model
exhibits exceptional performance, achieving a 44.1% mAP50 using BAC, outperforming
YOLOv5 by 1.4% mAP50. By leveraging the more potent feature-enhanced fusion CEFF,
GFFBAC attains an overall mAP of 46.5%. As illustrated in Table 4, GFFBAC demonstrates
strong performance across all categories, with particular excellence in detecting polyps and
related classes.
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Table 3. Comparison to mainstream methods with GFFBAC on EDD2020 dataset.

Team Names Dataset mAP25 mAP50 mAP75 Overall mAP

sahadate [56] EDD2020 37.6 ± 0.1 23.3 ± 0.1 15.8 ± 0.1 26.8 ± 0.1
VinBDI [56] EDD2020 43.2 ± 0.1 27.0 ± 0.1 17.0 ± 0.1 30.2 ± 0.1
adrian [56] EDD2020 48.3 ± 0.1 33.6 ± 0.1 27.1 ± 0.2 37.6 ± 0.1
YOLOv4 EDD2020 53.1 ± 0.1 41.2 ± 0.1 32.3 ± 0.2 42.2 ± 0.2
YOLOv5 EDD2020 54.7 ± 0.1 42.7 ± 0.1 32.9 ± 0.1 43.4 ± 0.3

Ours EDD2020 59.7 ± 0.1 44.1 ± 0.1 35.6 ± 0.2 46.5 ± 0.1

Table 4. Per class evaluation results with GFFBAC for the detection task of the EDD2020 dataset.

Class Dataset mAP50 mAP50-95 Precision Recall

BE EDD2020 66.3 ± 0.2 48.4 ± 0.1 59.4 ± 0.2 68.2 ± 0.1
suspicious EDD2020 25.5 ± 0.1 16.9 ± 0.2 35.6 ± 0.3 21.9 ± 0.1

HGD EDD2020 35.3 ± 0.2 22.9 ± 0.2 47.4 ± 0.2 27.8 ± 0.2
cancer EDD2020 34.8 ± 0.2 16.3 ± 0.2 64.0 ± 0.1 25.0 ± 0.1
polyp EDD2020 58.4 ± 0.3 40.2 ± 0.1 62.9 ± 0.2 57.7 ± 0.2

Qualitative results on the CVC-ClinicDB dataset, Kvasir-SEG dataset, and EDD2020
dataset are showcased in Figure 5. These results only display bounding boxes with an IoU
greater than 0.5, and they underscore the precision of the proposed GFFBAC method.

4.5. Ablation Study

As presented in Table 5, to further assess the significance of each proposal com-ponent,
we conducted a series of ablation studies on the CVC-ClinicDB dataset. Whether balanced
feature fusion is applied or not, augmenting the path enhancement from shallow to deep
levels consistently enhances both AP50 and model precision, surpassing 1.7% and 0.3%,
respectively. This affirms the utility of information from lower-level features. Balanced
feature fusion consistently enhances performance, with or without the path enhancement
from shallow to deep levels. The results exhibited consistent improvements across small,
medium, and large scales, affirming that balanced semantic features balanced low-level
and high-level information at each level and generated consistent enhancements. Our
observation indicates the utility of features from various layers in the final prediction,
affirming the effectiveness of CEFF in overall performance improvement at all scales. As
illustrated in Figure 6, we applied BAC to bring the detection boxes closer to reality. This
approach elevated the performance from 89.7% to 94.1%, under-scoring the significance
of each boundary feature in object detection. The inclusion of all these components in
GFFBAC results in a 5.1% improvement in mAP50 compared to the baseline. The no-
table enhancement in detection precision primarily stems from the contributions of BAC,
emphasizing content boundaries, and CEFF, dedicated to enhancing semantic features.

Table 5. The effects of each module in our design. BAC, BSF, PA denote Boundary-aware Convolution,
balanced semantic features and path augmentation, respectively.

BAC BSF PA mAP50 AP50 P R F1

89.7 ± 0.2 89.7 ± 0.2 90.5 ± 0.2 86.3 ± 0.2 87.2 ± 0.2√
90.9 ± 0.2 90.9 ± 0.2 91.4 ± 0.2 87.2 ± 0.2 87.9 ± 0.2√
91.4 ± 0.2 91.4 ± 0.2 90.8 ± 0.2 87.4 ± 0.2 87.6 ± 0.2√ √
92.4 ± 0.2 92.4 ± 0.2 91.7 ± 0.2 88.2 ± 0.2 88.6 ± 0.2√
94.1 ± 0.2 94.1 ± 0.2 92.6 ± 0.2 92.2 ± 0.2 89.4 ± 0.2√ √
94.3 ± 0.2 94.3 ± 0.2 93.4 ± 0.2 92.7 ± 0.2 90.2 ± 0.2√ √ √
94.8 ± 0.1 94.8 ± 0.1 93.5 ± 0.2 92.7 ± 0.1 90.9 ± 0.1
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5. Discussion

Deep learning is rapidly gaining traction in applications such as computer-aided
detection and disease diagnosis within complex clinical settings, including endoscopy ex-
aminations. In comparison to traditional machine learning, deep learning offers numerous
advantages due to its multi-layered architecture, enabling training on raw data and the
acquisition of abstract features. The capacity of neural networks to derive meaningful rep-
resentations from data is a fundamental aspect of deep learning. Medical image processing
aids in identifying and extracting features that may elude hu-man perception. Hence, deep
learning excels in object detection tasks. Moreover, data augmentation techniques and
transfer learning methods can enhance the generalization of object detection models to
novel data and scenarios. The swift advancement of hardware components, such as GPUs,
has rendered the training of large-scale deep learning models more accessible, expedit-
ing the model development and optimization process. Through continual technological
innovations, we are empowered to achieve superior models.

However, in clinical practice, endoscopic images often present complex back-grounds
and exhibit significantly higher data variability compared to natural scenes. This necessi-
tates a closer examination of image details, textures, and structures. Additionally, lesion
or polyp regions in endoscopic images tend to display varying scales and shapes across
different patients, making smaller targets particularly susceptible to being overlooked.
Moreover, endoscopic images often contain sensitive patient information, and the acquisi-
tion of large-scale annotated endoscopic image datasets is a costly and time-consuming
endeavor. Consequently, privacy concerns and labeling challenges can result in insufficient
data, potentially affecting the performance of deep learning models. Up to this point, we
have taken these challenges into account. We propose a shallow-to-deep approach that fo-
cuses on the boundaries of lesion regions and improves classification by balancing semantic
features. In the EDD dataset, a major challenge is class confusion, particularly among the
suspicious, HGD, and cancer categories. The model achieves accuracies of 59.4%, 35.6%,
47.4%, 64.0%, and 62.9% for BE, Suspicious, HGD, Cancer, and Polyp, respectively, with
an mAP0.5 1.4 higher than YOLOv5. As depicted in Figure 5, the proposed model yields
detection boxes closer to the labels. This is partly attributed to balanced semantic features,
but more significantly, BAC focuses on the boundaries of lesion regions and introduces
confidence scores to facilitate the selection of better-fitting detection boxes.

The strengths of our model render it especially well-suited for the following scenarios:
(1) addressing the significant challenge of missed detections resulting from small polyps,
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(2) emphasizing the need for robust multi-class performance, and (3) fulfilling the demand
for intuitive interpretability. Nevertheless, the model inherently comes with its set of
constraints: firstly, although it exhibits commendable performance in polyp recognition,
there exists considerable scope for improvement. Secondly, the model’s performance
enhancement relies heavily on the availability of high-quality and extensive datasets,
underlining the significance of the dataset and data augmentation techniques.

6. Conclusions

We introduce GFFBAC for object detection in endoscopic examinations. To enhance
information propagation within the representative pipeline, we design the CEFF module.
This module aggregates features from all layers and reduces the gap between shallow and
deep feature layers, thereby promoting reliable information transmission. Additionally, we
employ the same-depth integration to bolster balanced semantic features across multiple
levels. Furthermore, we introduce BAC to improve the classification and localization
abilities of detection boxes. We utilize boundary features to focus on content boundaries
for precise localization and introduce a confidence score to maintain high-quality detection
boxes. GFFBAC yields substantial improvements on challenging datasets, including CVC-
ClinicDB, Kvasir-SEG, and EDD2020. Comprehensive experiments demonstrate GFFBAC’s
competitive accuracy in assisting medical professionals with diagnostic tasks. Our future
work will be to extend our method to video and other fields.
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