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Abstract: With the constant growth of software-defined radio (SDR) technologies in fields related
to wireless communications, the need for efficient ways of testing and evaluating the physical-layer
(PHY) protocols developed for these technologies in real-life traffic scenarios has become more critical.
This paper proposes a software testbed that enhances the creation of network environments that
allow GNU radio applications to be fed with test traffic in a simple way and through an interoperable
interface. This makes the use of any traffic generator possible—existing ones or one that is custom-
built—to evaluate a GNU radio application. In addition, this paper proposes an efficient way to
collect PHY-specific monitoring data to improve the performance of the critical components of the
message delivery path by employing the protocol buffers library. This study considers the entire
testing and evaluation ecosystem and demonstrates how PHY-specific monitoring information is
collected, handled, stored, and processed as time series to allow complex visualization and real-
time monitoring.

Keywords: software testing; GNU radio; software-defined radio; communication protocols; network-
ing environment; monitoring messaging; protocol buffer; performance evaluation

1. Introduction

Software testing is an important component of the software development process
and it is a significant part of software engineering. It assumes the role of ensuring that a
software product fulfills its functional requirements, is free from defects and errors, and is
of good quality [1,2]. The quality of a software product depends on several parameters,
such as the response time, performance, reliability, maintainability, correctness, testability,
usability, and reusability, to mention just a few. Software testing is time-consuming, and
40–50% of a project’s budget (in some cases, even 80% [3]) can be spent on this operation
according to [1,2,4]. Nonetheless, researchers have shown [2,4] that software testing is not a
“silver bullet” that can guarantee the high quality of a software product. Complete testing,
i.e., discovering and fixing all errors, is practically impossible because the testing process
cannot be exhaustive. The number of tests that can be performed is limited by several
factors, such as the input domain being too large, there being too many possible paths, and
specifications being difficult to test [2]. As an important activity in software development,
the testing process should be carried out smoothly [5], and it should start in the early phase
of the project to avoid costs related to failed software afterward [3,6].

A fundamental issue related to testing is the generation of good test cases [6] that can
be used find the errors and faults in a minimum amount of time and with minimum effort
but with a high probability. The data obtained through testing are an indicator of software’s
reliability and quality, but the total absence of defects cannot be guaranteed. From the points
of view of both software development and testing, the use of appropriate environments
is also very important [7]. These environments can be very different due to differences in
operating systems, databases, network servers, application services, etc. An integrated
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management tool that allows the development of test scenarios and assignment of test
cases, such as the tool proposed in [7], could be helpful in performing testing operations.
The importance of frameworks for test execution to improve the quality of software testing
was underlined in [8]. Frameworks allow repeatable tests and make automated testing
easier. Frameworks can also provide a standard way of performing the main parts of the
testing process: setting the initial state, invoking the functionality being tested, checking
the results of the test, and performing any necessary cleanup.

Many testing techniques focus on testing functional correctness (debug testing), but
performance issues are also very important in software testing, especially in cases such
as web services, real-time hardware systems, and industrial systems and processes [8].
Researchers [9] have discussed various issues related to the fundamentals of software
testing and shown that software testing is much more than error detection or debugging. It
has been demonstrated [10] that after the release of software products, the main problems
are related to performance degradation or providing the required throughput, and system
crashes and incorrect system responses are usually secondary issues, as the software is
extensively tested before release from the functional point of view. Performance testing
involves issues such as resource usage, throughput, stimulus response time, queue length,
bandwidth requirements, CPU (central processing unit) cycles, and database access. Issues
such as scalability and the ability to handle heavy workloads should also be considered.

Testing communication protocols and software components used by communication
equipment raise several critical issues, such as real-time processing constraints, timing and
synchronization between intercommunicating modules and processes, strong interactions
between software and hardware components, the hardware platforms’ need for testing
complex protocols and signal processing, remote access to the platform on which the tested
software is running, and the need to process a large amount of data generated in tests, to
mention just a few. The testing of communication protocols used in specific applications
requires specific test suites due to the complexity and requirements imposed on these
protocols. This is represented by the testing of communication protocols used in wireless
communications, which is one of the most challenging testing operations. The conclusions
researchers drew when testing transmission protocols used by mobile military networks
under real-life conditions are presented in [11]. The main problems encountered during
test operations were the timing constraints, test controllability, inconsistency detection, and
conflicting timers.

The real-life testing of communication protocols in wireless communication scenarios
with general and transmission techniques, in particular, requires the use of dedicated
hardware platforms adapted to the specific test scenarios. Researchers [12] have pre-
sented a hardware platform that included DSPs (digital signal processors), FPGAs (field-
programmable gate arrays), and SDR (software-defined radio) interfaces for the prototyping
and testing of complex radio transceivers, such as OFDM (orthogonal frequency-division
multiplexing) transceivers. Other researchers [13] have proposed a mobile platform based
on universal software radio peripheral (USRP) SDR devices for testing algorithms for radio
transmitters and receivers, while other still have presented signal processing algorithms
and design and testing methodologies related to the implementation of radio transceivers
using the concept of SDR [14].

Developing communication protocols for radio transmission systems is not a trivial
task. SDR technology and open-source development libraries such as GNU radio [15] come
with several tools that ease the development of PHY (physical)- and MAC (medium access
control)-layer protocols for wireless transmission systems. GNU radio offers an extended
library of signal processing modules that are necessary for developing, testing, and eval-
uating PHY- and MAC-layer communication protocols, but support is also provided for
network- and transport-layer protocols.

Testing, evaluating, and troubleshooting communication protocols used in wireless
communication systems is challenging. The results of many studies on this topic (see
Section 2) have shown that effective automation of test suites, generating appropriate
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traffic, considering timing constraints, real-time handling of monitoring data, and storage
and visualization/analysis of gathered data are some of the main issues related to testing
these protocols.

Many papers have presented various testing platforms adapted to specific protocols
and scenarios like military or industrial communication systems. This paper proposes a
generic software testing platform (testbed) for wireless communication protocols developed
in GNU radio.

The proposed platform provides a solution for isolating the application under test
and feeding the application with any data traffic controlled by IP or Ethernet protocols, the
types of traffic used in most real-life scenarios. This feature makes it interoperable with
other traffic generators and network analysis tools, which is convenient for generating
different user data flows. The proposed testing platform is designed in such a way to
efficiently collect, store, and analyze large amounts of real-time data. These features are
essential for testing physical-layer protocols. They enable various testing operations such
as functional testing, conformance testing, quality evaluation testing, and comprehensive
dynamic testing. The platform can perform the mentioned tests in simulated and real-
life conditions when SDR interfaces are used for communication. The entire setup and
management of the testbed are implemented in Python, which means they can be easily
integrate into an automation testing framework. Additionally, the platform allows dynamic
reconfiguration of the application under testing through JSON (JavaScript Object Notation)
objects if its implementation supports it.

In summary, this paper’s contributions are the architecture and the design of a generic,
practical, flexible, and scalable testing platform (testbed) for GNU radio applications that
allows for the integration of various software and networking tools necessary to test and
evaluate time-constrained complex signal processing applications. In addition, this paper
proposes and analyzes several efficient methods to build, serialize, and parse monitoring
messages from GNU radio applications. The structure of this paper is as follows: Section 2
presents a short review of the technical literature related to software testing classification
and principles, relating to specific issues raised by testing communication protocols, in
general, and by testing wireless communication protocols, in particular. Section 3 presents
in detail the proposed software testing platform, the architecture of the systems, the
networking environments proposed for sending test data to the GNU radio application
under test, and the real-time monitoring data acquisition and handling solutions. Section 4
presents our experimental results and a discussion of these results, and Section 5 concludes
this paper.

2. Related Work

The process of software testing can be classified in various ways, but the three main
testing techniques are as follows [2]:

• Black Box Testing: this technique is based on the requirements and specifications of
the software under test, and there is no need to examine the program’s code. The
tester only knows the set of inputs and predictable outputs.

• White Box Testing: this technique mainly focuses on the internal logic and structure
of the program’s code. The tester has total knowledge of the program structure, and
with this technique, it is possible to test every branch and decision in the program.

• Grey Box Testing: this technique combines the benefits of black box and white box
testing. It attempts and generally succeeds in achieving optimal testing outcomes. The
software testing process has several phases and goals. As a result, there are a wide
range of testing categories that can be identified. A more detailed categorization of the
software testing process can be found in [3]. These categories are:

• Acceptance Testing: this category of testing is performed to determine whether the
system or software is acceptable.

• Ad Hoc Testing: this type of testing is performed without planning or documentation.
The goal is to find errors that were not detected by other types of testing.
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• Alpha and Beta Testing: alpha testing is performed at the development site after
acceptance testing, while beta testing is carried out in a real test environment.

• Automated Testing: this involves using automated tools to write and execute test cases.
• Integration Testing: the testing of individual units is grouped together, and the inter-

face between these units is tested.
• Regression Testing: the test cases from existing test suites are rerun to demonstrate

that software changes have no unintended side effects.
• Stress Testing: this testing determines the robustness of software by forcing the func-

tioning of software modules beyond the limits of normal operation.
• User Acceptance Testing: this testing is performed by the end users of the software. It

happens in the final phase of the testing process.
• Security Testing: this testing checks the ability of the software to prevent unauthorized

access to resources and data.

Many studies have addressed the categorization of testing techniques. In addition
to the categories mentioned above, random testing, functional testing, control flow test-
ing, data flow testing, and mutation testing techniques have been identified in one such
study [16]. Meanwhile, another study [17] introduces the terms “static” and “dynamic”
testing and analyzes the use of testing terminology in several testing techniques.

Generating suitable test suites is a problem that has been extensively studied. Ac-
cording to some researchers [18], a good test suite detects real faults, and only a small
number of representative use cases can be selected from a larger category of use cases [7].
Additionally, it has been shown that many errors occur at the boundaries of the input and
output ranges, meaning that test cases should focus on boundary conditions.

Testing software, systems, or networks can present specific challenges depending on
the requirements and how they function. For instance, testing software for systems based
on service-oriented architectures (SOAs) can be challenging due to system distribution,
controllability, and observability issues, as discussed in [19]. In [20], the authors propose
an approach to generate tests for error-handling routines in programmable logic controllers
(PLCs) used in industrial environments, ensuring the industrial process’s reliability. Re-
searchers have also considered testing large and complex network topologies with limited
resources, as discussed in [21], and proposed an emulator that can run on a single virtual
machine. This system is specifically designed for software-defined networks (SDNs) and
OpenFlow research. The testing of cloud-based systems and cloud technologies is covered
in [22], which presents a systematic literature review on the topic.

Similarly, researchers have considered testing software in systems with stringent
reliability requirements, such as digital control systems integrated into nuclear plant safety
software, as discussed in [23], and proposed building a real platform and a specific testing
strategy. Testing embedded software is also important, especially in safety-critical domains
such as automotive or aviation, as discussed in [24]. Testing embedded systems should
consider limited memory, CPU usage, energy consumption, real-time processing, and the
strong interaction between hardware and software. Finally, ref. [25] proposes a framework
that allows test suites to detect synchronization faults in testing embedded systems.

Testing communication protocols is an important process and has been the subject of
many papers [11,26–29]. Formal specifications, which often use an extended finite state
machine model, can be used to design protocol testing, as described in [26]. However, to
detect syntactic and semantic errors and validate the protocol design, both the control and
data flow of the protocol must be considered. In [27], testing of communication protocols
designed according to the OSI (open systems interconnection) model is discussed. The
paper demonstrates that efficient test case generation algorithms are essential for successful
testing. The importance of conformance testing in the context of the rapid development
of communication protocols, which may generate many incompatible implementations, is
emphasized in [28]. The paper also suggests that while automation of the testing process is
desirable, it is difficult to achieve for complex models. Ref. [29] presents a survey concerning
the testing of communication protocols, highlighting the importance of conformance testing,
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as implementations derived from the same protocol standard can be very different. The
paper also discusses the difficulty of generating suitable test suites and sequences, partic-
ularly in real-life testing. Additionally, the paper points out that the number of states of a
complex protocol implementation could be vast, making exhaustive testing impractical. As
a result, many testing environments/frameworks have been implemented and reported in
various studies to allow more efficient, reliable, and flexible testing and evaluation of com-
munication protocols. The issue of test case generation in communication protocol testing is
also discussed in [30]. The paper analyzes and experiments with several testing methods to
evaluate quality indicators such as fault detection capability, applicability, complexity, and
testing time. A survey concerning the testing of control and data flows and the time aspects
of communication systems is presented in [31], which also covers the generation of test suites
that can detect the maximum number of errors at a minimum cost. Various research papers
have discussed the testing of specific communication protocols [32–34]. In [32], the focus is
on testing communication protocols used between the charging equipment and the battery
management system of an electric car. In this case, the primary concern is the consistency of
communication between the two devices mentioned above. In [33], the paper presents the
testing of the LIN (local interconnect network) protocol used for interconnecting vehicles’
electronic systems. The article examines the issues related to the conformance testing of
the LIN protocol, some of which are also applicable to other link layer protocol testing.
Additionally, in [34], the testing of industrial communication protocols is considered, and
the paper evaluates some of the most commonly used industrial communication protocols
from the software perspective.

Several researchers have also considered the testing of communication protocols in
challenging wireless communication systems. In [35], the testing of military systems and
applications in different communication scenarios is discussed, including changing net-
work conditions and data flow parameters. The paper proposes a test platform that uses
reproducible test methodologies to allow automated testing of military systems and applica-
tions over actual military radio equipment. Moreover, ref. [36] proposes a software testing
method to evaluate the applicability, reliability, and durability of various communication
equipment used in maritime satellite communications.

Researchers [37] have developed an open-access wireless testing platform for testing
communication protocols used in wireless communication networks. This platform com-
prises a large grid of ceiling-mounted antennas connected to programmable SDR devices
operating at frequencies lower than 6 GHz. The system provides computational power
and hardware support for testing complex communication systems and protocols such
as MIMO (multiple-input and multiple-output) communication systems, cognitive radio,
5G cellular networks, IoT (Internet of Things), and more. A multiple-antenna evaluation
and testing platform was proposed in [38]. The platform includes FPGAs, DSPs, and
control processors to provide the necessary processing power and flexibility. The platform
interfaces require high throughput since evaluating multiple antennas generates a large
amount of real-time data.

3. Platform for Real-Life Testing of Communication Protocols
3.1. Testbed Environment

The primary objective of the testing platform that has been developed is to enable the
testing and evaluation of communication protocols that have been implemented in GNU
radio in real traffic scenarios. Conducting tests in such circumstances is vital for verification,
validation, and acceptance testing. It is also helpful for dynamic white box testing that is
carried out to assess the quality indicators of the implemented protocols. An environment
was created to run and evaluate GNU radio applications in real traffic scenarios. This
environment allows network traffic to be sent through the GNU radio application under
test. Linux network namespaces isolate the environment, making managing multiple
environments on the same or multiple machines easier. This is particularly useful when
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multiple SDR-based applications are running on a remote server, like in the case of the test
platforms described in [37,38].

The block diagram in Figure 1 shows that TUN/TAP interfaces [39] are used to
channelize the data traffic to or from the GNU radio application under test. Depending
on its characteristics, the application under test is connected to one or several TUN/TAP
interfaces. The framework supports two types of environments: one that allows testing of
GNU radio applications in simulated conditions and another that allows testing when SDR
boards are connected in the transmission chain.
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Figure 1. Schematic of the environment encapsulating the application under test.

In simulated conditions, both transceivers run in the same environment, while in
a real transmission scenario involving real channels, they run in separate environments
and possibly on different machines. For example, in a simplex simulated transmission,
the transmitter application reads the data from one interface, and the receiver application
writes the output data on the other interface. In a duplex scenario, the transmitter and
receiver read and write data to their interface.

In the concrete case presented in Figure 1, the tested application connects to bidirec-
tional tun0/tap0 and tun1/tap1 interfaces (in the left-side positioned environment) or only
to the tun0/tap0 interface (in the right-side positioned environment).

In order to allow applications running in the environment to access the internet, all
environments are connected to the host through a network bridge (i.e., dtl-br). The network
bridge [40] is configured on the host machine, and for each environment, a pair of virtual
interfaces (i.e., *-weth and *-wpeer) are set up. One interface is attached to the environment,
and the other is attached to the bridge. Since Layer 2 connectivity is established between the
environments and the host, only network addresstTranslation (NAT) of packets originating
from the environments is required. This is illustrated in Figure 2.
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To confirm that traffic passes through the bridge to the host and beyond the internet,
we run a traceroute command in our environment (refer to Figure 3) to a public IP address
outside our network (i.e., 8.8.8.8).
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To ensure that the test traffic passes through the application under test, the routing
rules need to be manipulated as follows:

1. It is important to ensure that the outgoing traffic through the TUN/TAP interfaces
of the system is not routed through the loopback interface as the application is
interacting with these interfaces. To do this, the default local routes associated with
these interfaces should be removed.

2. The kernel uses the local routing table for incoming (ingress) traffic to decide if a
packet is addressed to the local host. Therefore, it is necessary to create an alternative
routing rule that is only used for ingress traffic. To achieve this, distinct routing
decisions should be used on input and output paths, and a routing rule should be
created that matches only for ingress traffic, packets with the "input interface" attribute
(i.e., iif), and performs the route lookup in a custom "local" routing table (see Figure 4).

3. To pass traffic through the GNU radio application under test, two entries are created
in the main routing table that routes the traffic destined to the far end of the "tunnel"
(e.g., output interface) through the near-end interface. In this way, to send a packet
with the destination of the far end of the tunnel (e.g., 3.3.3.3), it is routed through the
near-end interface (e.g., tap0) from where the application reads (see Figure 5).

4. In the case of tap interfaces, which are layer 2 interfaces, static ARP (address resolution
protocol) entries are set to eliminate ARP-specific traffic through the application under
test (see Figure 6).
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source/sink GNU radio blocks. Each environment has only one TUN/TAP interface (as 
shown in Figure 1), and the environments can be hosted on the same or different ma-
chines. If the environments are hosted on different machines, they must be synchronized 
to align the monitoring data acquired at both ends of the transmission system in time. PTP 
(precision time protocol) [41] can synchronize the physical machines running the GNU 
radio applications. The routes are set as presented in Figures 4–6. Python and libraries 
such as pyroute2 [42] and python-iptables [43] are used to perform environment setup 
and management programmatically. These libraries enable easy integration into auto-
mated testing frameworks. The implementation of the testing environment setup can be 
found in [44]. 

3.2. Testbed Architecture 

Figure 5. Main routing table of the environment.



Information 2024, 15, 62 8 of 22

Information 2024, 15, x FOR PEER REVIEW 8 of 23 
 

 

 
Figure 5. Main routing table of the environment. 

 
Figure 6. Static ARP entries. 

This setup allows any traffic generator with the destination set to the far end of the 
tunnel to pass traffic through the application. Since the local routes have been removed, 
the traffic is passed according to the main routing table through the near-end interface. 
On the far-end interface, due to the incoming traffic local rules, the traffic is passed to the 
host. This means that any application listening for that traffic will receive it. For instance, 
in Figure 7, the ping utility is used to send probes with the record route (-R) option, with 
the far end of the tunnel as the destination. As anticipated, the packets are routed through 
the near-end interface (IP address 2.2.2.2).  

 
Figure 7. Probe packets sent with the ping utility to the far end of the tunnel. 

As previously discussed, when using SDR (software-defined radio) boards to test in 
real radio channel conditions, the Tx (Transmitter) and Rx (Receiver) applications run in 
separate environments. The channel is replaced by SDRʹs IO components, such as 
source/sink GNU radio blocks. Each environment has only one TUN/TAP interface (as 
shown in Figure 1), and the environments can be hosted on the same or different ma-
chines. If the environments are hosted on different machines, they must be synchronized 
to align the monitoring data acquired at both ends of the transmission system in time. PTP 
(precision time protocol) [41] can synchronize the physical machines running the GNU 
radio applications. The routes are set as presented in Figures 4–6. Python and libraries 
such as pyroute2 [42] and python-iptables [43] are used to perform environment setup 
and management programmatically. These libraries enable easy integration into auto-
mated testing frameworks. The implementation of the testing environment setup can be 
found in [44]. 

3.2. Testbed Architecture 

Figure 6. Static ARP entries.

This setup allows any traffic generator with the destination set to the far end of the
tunnel to pass traffic through the application. Since the local routes have been removed,
the traffic is passed according to the main routing table through the near-end interface. On
the far-end interface, due to the incoming traffic local rules, the traffic is passed to the host.
This means that any application listening for that traffic will receive it. For instance, in
Figure 7, the ping utility is used to send probes with the record route (-R) option, with the
far end of the tunnel as the destination. As anticipated, the packets are routed through the
near-end interface (IP address 2.2.2.2).
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As previously discussed, when using SDR (software-defined radio) boards to test
in real radio channel conditions, the Tx (Transmitter) and Rx (Receiver) applications run
in separate environments. The channel is replaced by SDR’s IO components, such as
source/sink GNU radio blocks. Each environment has only one TUN/TAP interface
(as shown in Figure 1), and the environments can be hosted on the same or different
machines. If the environments are hosted on different machines, they must be synchronized
to align the monitoring data acquired at both ends of the transmission system in time. PTP
(precision time protocol) [41] can synchronize the physical machines running the GNU
radio applications. The routes are set as presented in Figures 4–6. Python and libraries
such as pyroute2 [42] and python-iptables [43] are used to perform environment setup and
management programmatically. These libraries enable easy integration into automated
testing frameworks. The implementation of the testing environment setup can be found
in [44].

3.2. Testbed Architecture

The developed testing platform for GNU radio applications has a specific architecture,
illustrated in Figure 8. The figure shows a situation in which the transmission chain under
test is simulated, and the two transceiver modules of the system under test are connected
through a simulated channel. In this scenario, the system under test implements a full
duplex transmission.
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The framework comprises two primary components: the application process and the
support processes/services. The application process comprises the Net IO blocks and GNU
radio simulator blocks. The support processes/services include the traffic generator, traffic
sniffer, broker, database, and data visualization processes.

The testbed architecture needs to be modified to test the GNU radio application under
real channel conditions using SDR boards, as shown in Figure 9. As explained in Section 3.1,
when using SDR boards, the environment only consists of a single Net IO block. Traffic is
either read from or written to this block, depending on whether the transmitter or receiver
part of the application is being tested. The channel can be accessed through SDR IOs, i.e.,
source/sink blocks. The support services remain the same as when testing the GNU radio
applications through simulation. If the two machines running the GNU radio application
pair are different, they need to be synchronized to time-align the monitoring data.
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3.2.1. Testbed Net IO

One of the most critical components of the testbed architecture is the Net IO blocks.
These blocks connect the application being tested to the network stack of the environment,



Information 2024, 15, 62 10 of 22

allowing test traffic to be fed into the GNU radio application through the environment’s
network interfaces. The test traffic is injected into the application through the environment’s
TUN/TAP interfaces, as explained in Section 3.1. In the current implementation, the GNU
radio built-in TUN/TAP blocks are used to read/write data from/to the interfaces. These
blocks pass the protocol data units (PDUs) through the messaging-passing application
program interface (API). Since the GNU radio application evaluated in this research works
with tagged streams, it is essential to convert the input data flow into tagged streams. This
conversion is achieved by the PDU to TS block operation.

When testing communication protocols like the PHY layer of the GNU radio transmis-
sion system, data are transferred from the PDUs to the data frames. However, this requires
a size matching operation because the PHY layer frame size can be smaller than the upper
layer PDU size and can change during transmission, making it impossible to directly use
the MTU parameter to control the upper-layer PDU size. To deal with this issue, a PDU
reconstruction/defragmentation block is added to the Net IO block on the receiving path
(the flow defragmentation block in Figure 8). This block reconstructs the upper-layer PDUs
before passing them further to other blocks. It is worth mentioning that fragmentation
occurs when the PDUs are loaded into the PHY frames. The issue arises when the upper
layer passes a PDU that does not fit into a single PHY frame. As our environment supports
both TUN and TAP interfaces, the defragmentation operations are implemented for both
layer 3 and layer 2 PDUs. The defragmentation mechanism discussed here assumes that
the upper-layer protocol data units (PDUs) are synchronized with the physical (PHY)-layer
frame. The mechanism tries to identify the beginning of the upper-layer PDU to start
buffering the PHY-layer frames until the PDU length is reached or a new PDU is detected.
The detection of the beginning of the PDU depends on the upper-layer protocol, which, in
this case, is the TCP/IP stack-based networking.

In the case of the TUN interface setup (layer 3), the algorithm identifies the beginning
of the PDU by using the IP header checksum. On the other hand, in the case of the TAP
interface setup (layer 2), the algorithm uses the destination MAC address in the Ethernet
header, which is known at the receiver, to identify the start of the PDU.

3.2.2. Testbed Support Services

Support services are a set of processes that are launched alongside the GNU radio
application under test. These processes help generate traffic, monitor the traffic passing
through the application, and collect, store, and visualize the monitoring data. One can
easily use any network tool like ping or iperf3 to send traffic to the tested application.
Alternatively, you can develop custom traffic generators/analyzers using Python and the
Scapy library [45], a powerful packet manipulation library.

In cases where you need to analyze one-way performance or simplex transmission,
traffic can be captured and analyzed in a separate process. The Scapy library provides
a convenient API to send and sniff packets on L2 and L3. However, using Scapy may
introduce significant delays due to the overhead it adds to each packet. For example, the
L3 send API selects the interface according to the L3 header for each packet, which is
not needed in the testbed since the traffic is injected in the GNU radio through a single
interface. This can be overcome by selecting the interface only once and using the socket
API. An essential support service in the testbed is the database service, which stores
the monitoring data collected during the testing for subsequent analysis. The current
implementation employs MongoDB [46] for storage, mainly due to its versatility, which
better suits the purpose of the testbed. Several papers have suggested that MongoDB
outperforms structured databases, such as MySQL [47]. As MongoDB is schemeless, there
is no requirement for preparation for different monitoring data structures. In the testbed
environment, the database service is deployed on-premises. The broker process plays a
crucial role in collecting monitoring data. It parses the data and writes them to the database.
Due to its strong interdependence with the messaging system, the broker will be presented
in the next section.
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Apart from the broker, another important support service is the data visualization
service. This service helps to visualize the data collected from the GNU radio application
under test and monitor the application in almost real-time. Currently, the data visualization
service employs Grafana [48] to query and visualize the MongoDB database. Grafana, like
the database service, is deployed on-premises.

3.3. Monitor Messaging

• When creating GNU radio applications, the monitoring messages typically come from
a GNU radio block and are built within the block’s work thread. This means it is
important to find efficient methods for constructing these messages. Additionally,
since the broker combines messages from multiple sources, improving deserialization
is crucial. Refer to Figure 10 for the main components involved in transferring moni-
toring messages. The message generators are in charge of constructing messages and
operate in the same thread as the GNU radio blocks.

• The monitor probes collect messages from multiple generators within the GNU radio
application and send them to the broker.

• The broker is responsible for receiving messages from various probes and subsequently
processing them.
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A message being sent from its origin to a collector (such as a broker) goes through two
distinct channels:

• Message passing uses the GNU radio messaging system between individual blocks.
This system uses PMTs (polymorphic types) [49] to carry different objects as messages
between blocks.

• The transport channel carries the message from the GNU radio application to the
message collector (i.e., the broker).

This paper suggests using the protocol buffers library [50] to reduce the size of moni-
toring messages and the time spent building and parsing them. This library is a language-
neutral, platform-neutral extensible mechanism for serializing structured data, similar to
JSON [51]. Since both the message generators and probes need to add information to the
monitoring messages, the library must be available to both application-side components.
While most of the monitoring data come from the GNU radio block that does the work, the
probe has information that should be tracked, such as messages sent over the transport
channel and the message passing queue size.

3.3.1. Monitoring Message Content

As data transmission chains follow a highly regular pattern, the monitoring data can
be viewed as a time series, and therefore, each message must include a timestamp. The
timestamp is added to the message when it is created. Additionally, two optional fields
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are included to gather information about the probe, filled in before the message is sent
over the transport channel. To ensure that the broker knows which parser to use for each
incoming message, the payload type (payload ID) is included in the proto-carrier message.
The content of the monitoring message is summarized in Table 1.

Table 1. Structure of the monitoring messages.

Fields Mandatory Filled by Description

Timestamp Yes GNU radio block Timestamp when the message was built.
Probe queue size No Monitor probe GNU radio message passing API queue size.

Probe message counter No Monitor probe Number of messages sent.
Payload Yes GNU radio block Monitoring data.

Payload ID Yes GNU radio block Indicates the payload type for the parser.

3.3.2. Monitoring Messaging Methods

To develop the implemented framework, we explored a few messaging approaches,
two of which are based on the protocol buffer library [50], while a third is a baseline
implementation that solely uses PMT. The PMT method sends messages as pmt::dict (see
Figure 11). Both PROTO-based methods differ in the way they transmit the message
between the monitoring message generator and the probe, as well as how they set the
probe-specific fields in the message:

• The first method serializes the proto message immediately after building the message
in the GNU radio block working thread and passes the serialized data to the probe as
pmt::blob. This method is known as PROTO-BLOB.

• The second method passes the proto message object as pmt::any (i.e., boost::any), and
this method is known as PROTO-ANY.

Information 2024, 15, x FOR PEER REVIEW 13 of 23 
 

 

3.3.2. Monitoring Messaging Methods 
To develop the implemented framework, we explored a few messaging approaches, 

two of which are based on the protocol buffer library [50], while a third is a baseline im-
plementation that solely uses PMT. The PMT method sends messages as pmt::dict (see 
Figure 11). Both PROTO-based methods differ in the way they transmit the message be-
tween the monitoring message generator and the probe, as well as how they set the probe-
specific fields in the message: 
• The first method serializes the proto message immediately after building the message 

in the GNU radio block working thread and passes the serialized data to the probe 
as pmt::blob. This method is known as PROTO-BLOB.  

• The second method passes the proto message object as pmt::any (i.e., boost::any), and 
this method is known as PROTO-ANY. 
 

 
Figure 11. The generation and transfer of monitoring messages in the messaging system for the 
implemented messaging methods. 

Figure 11 shows how messages flow through the three components of the messaging 
system using the three messaging methods (see Figure 10) and two programming lan-
guages. 

 

3.3.3. The PMT-Based Messaging Method 
The monitoring systemʹs baseline implementation uses only PMT data structures 

built in GNU radio and is versatile. The PMT type requires no structure or schema like 
JSON, and the messages are self-contained. For this method, the Payload ID field is not 
required. 

The PMT type has a significant drawback in that it adds overhead to the message size 
and negatively impacts the performance of serialization/deserialization of the messages. 

Figure 11. The generation and transfer of monitoring messages in the messaging system for the
implemented messaging methods.



Information 2024, 15, 62 13 of 22

Figure 11 shows how messages flow through the three components of the messaging
system using the three messaging methods (see Figure 10) and two programming languages.

3.3.3. The PMT-Based Messaging Method

The monitoring system’s baseline implementation uses only PMT data structures built
in GNU radio and is versatile. The PMT type requires no structure or schema like JSON,
and the messages are self-contained. For this method, the Payload ID field is not required.

The PMT type has a significant drawback in that it adds overhead to the message size
and negatively impacts the performance of serialization/deserialization of the messages.
This occurs because it is necessary to send all of the message field names, and for each value,
additional information is needed to indicate the value type. Additionally, the traversal
of the data structure is performed recursively, which negatively affects performance for
highly nested messages.

In the current implementation of the testing platform, a flat dictionary (i.e., pmt::dict),
which contains both header information and payload data, is used. When building the
message, the timestamp and payload are added, and the probe-related fields are easily
inserted in the dictionary before serialization at the probe (see Figure 11). To make things
more convenient, a syntactic sugared message builder API was implemented as a variadic
function, which can take any number of (field, value) pairs as parameters, as shown in the
example presented in Figure 12.
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3.3.4. The PROTO-Based Messaging Method

The Protocol Buffer [50] is a tool used to work with structured data. It defines the
structure (schema) in a language-neutral form that needs to be compiled to obtain the
structure in the language the application is built in, like C++. This additional step is
required before the application can be compiled. However, because it integrates well with
CMake, using it in a GNU radio OOT (Out Of Tree) [52] build pipeline is relatively easy.

All PROTO messages have a fixed part that contains the timestamp, payload, payload
ID, and probe-related information. The fixed part of the message is defined as a separate
PROTO message and referred to as the main one. Each payload is defined as an independent
PROTO message aggregated into the main PROTO message through a proto::any field.
This allows for a single definition for the main PROTO message. Figure 13 illustrates the
implementation of the PROTO messaging.

The PROTO messaging system is implemented in C++ to allow integration in the GNU
radio application at a lower level. It uses a message template that is specialized for each
payload message, along with the payload ID used by the message receiver to choose the
parser. The protocol ID was used instead of proto::any’s type_url field because it needed
to be known at the compile time and used as a template parameter. The type_url field
is a string. The Message Registry variadic template is specialized with all messages as a
parameter pack and registers the parse methods in the parser dictionary. The messaging
system is built as a shared library used by both the GNU radio application under test and
the messaging broker.
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To maintain a consistent message-building API similar to the baseline method and to
enable dynamic referencing of message fields by their names at runtime, it was necessary
to create a dictionary that maps field objects to their respective names. When the message
builder was constructed, the protocol buffer reflection feature was used to build this
dictionary, resulting in an API similar to the PMT-only method. Figure 14 provides an
example of how to make a PROTO message.
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Since the payload information is now carried by a PROTO message, it is necessary to
use the payload ID field to tell the broker which parser to use.

The PROTO-BLOB method does not use the optional probe-related fields in the main
PROTO message and only sets the timestamp, payload, and payload ID when the message
is generated. After that, the PROTO message is serialized and passed to the probe as a
pmt::blob. The probe creates a PMT cons list containing the queue size, the sender counter,
and the blob message received. After that, it serializes the new message and sends it to
the transport channel. Using a cons list allows you to add fields of different types without
having field names (like tuples). It adds a bit of overhead when the structure is traversed
for serialization and deserialization. Still, the overhead is negligible since the number
of elements in the counter list is small (three elements). With the PROTO-ANY method,
the PROTO messages between GNU radio blocks are carried as pmt:any, and the method
casts the main PROTO message at the probe. In this way, it is possible to use the optional
probe-related fields of the main PROTO message. Once these fields are set, the PROTO
message is serialized and sent over the transport channel. Because the PROTO message
is not encapsulated in a PMT message, it is necessary to signal to the parser that it was
not serialized with PMT. For this, it exploits the tagging mechanism that PMT uses to
indicate the field type and adds a custom tag that PMT does not use. In this way, all three
methods are consistent, with the first byte indicating the type of the outermost element of
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the message. So, the parser only needs to look at the first byte in the message to identify
which method was used. The implementation of the monitoring mechanism is available
in [53].

3.3.5. The Transport of the Monitoring Messages

The platform uses the ZeroMQ [54] library to monitor messages between the probes
and the broker. This messaging library is known for its high efficiency. GNU radio already
has a ZMQ module to implement the most commonly used messaging patterns supported
by the ZMQ library. However, since some of the monitoring and serialization logic used in
the platform is part of the monitor probe, a custom ZMQ block is implemented.

To send messages, the publish/subscribe (pub/sub) [55] messaging pattern is used,
with the monitor probe acting as the publisher. In most cases, the broker runs on the same
machine as the GNU radio application being tested. To allow multiple monitor probes in
the GNU radio process flow, the ZMQ subscriber socket on the broker side is bound, and
the publish sockets in the GNU radio process flow connect to the subscriber. This way, the
same port can be used on the message transport channel.

3.3.6. The Message Broker

The message broker has been developed in Python to take advantage of the improved
database access support. The protocol message parsing is performed at the library level in
C++ to prevent the need for compiling the PROTO files in Python. This approach ensures
that the message structure remains internal to the library, which only exposes the parser.
In Figure 11, you can see that the ZMQ subscriber is implemented in Python and passes
the raw messages it receives to the parser through Python’s buffer protocol (as pybind11
py:buffer argument) [56]. The parser returns the parse result structure that contains the
message payload type (PMT or PROTO) and the payload. If the PMT payload type is
used, the message is parsed in Python using the pmt::to_python implementation. A PMT
message is simply a shared pointer to the PMT structure, so the amount of data copied
between C++ and Python is minimal. If the PROTO payload type is used, the data are
parsed by the registered parser, and a dictionary (i.e., std::unordered_map) with the result
is set in the parsed result structure. To avoid copying the dictionary, pybind11 opaque
types [57] are used. The parse result object is returned to Python as a unique_ptr to transfer
the ownership and release it via the garbage collector once the Python object is collected.
As mentioned earlier, the parser implementation is part of the monitoring library, and the
broker implementation is available in [44].

4. Results and Discussions

This section discusses two main issues: the performance of the monitoring messaging
methods implemented in the testing platform and the evaluation of a complex transmission
system using GNU radio. As previously explained, the testing and evaluating commu-
nication protocols at the PHY layer generate many monitoring messages that must be
handled in real-time. These messages’ size generation and handling are essential and will
be assessed in the developed platform. The aim of testing an example transmission system
is to demonstrate the capabilities of the proposed platform.

4.1. Evaluation of the Monitoring Messaging Methods
4.1.1. The Message Size

Monitoring messaging using PROTO instead of PMT results in a smaller serialized
message size. This is because message field names and value types do not need to be sent.
We analyzed the message sizes for all three messaging method implementations described
in Section 3.3 for different numbers of fields in a message. Figure 15 shows the significant
difference in message size between the PMT and PROTO methods, which increases with
the number of fields in the message. PROTO-ANY and PROTO-BLOB generate messages
with similar sizes regardless of the number of fields in the message.
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4.1.2. The Message Build and Parsing Times

The time required to build and parse monitoring messages was measured for 1,000,000
messages with different numbers of fields (F) to compare different messaging methods.
Both operations were performed using Python bindings. The testing was conducted on
a machine equipped with an AMD Ryzen 7 PRO 4750U processor and 16 GB of RAM,
running Ubuntu 22.04 in WSL2. The results presented in Figure 16 show that the PROTO
methods provide significantly shorter build and parsing times for messages of all sizes
(number of fields) when compared to the PMT methods. The time difference between
the PROTO and PMT methods decreases with the number of fields. The PROTO-ANY
and PROTO-BLOB methods exhibit similar message-building and parsing times, with the
PROTO-ANY method requiring less time in both cases.
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4.1.3. End-to-End Testing of the Messaging Methods

A custom GNU radio block was created to perform end-to-end testing of monitoring
messaging methods. This block generates messages of varying sizes and rates using the
messaging methods described in Section 3.3. To achieve this, a small GNU radio process
flow was built, which contains S message generators and a single probe (see Figure 17).
The GNU radio application was executed in the networking environment presented in
Section 3.1 in different scenarios, and the CPU usage was measured. The obtained results
are shown in Figure 18 and indicate that PROTO-based messaging outperforms pure PMT,
especially on the broker’s side. This is because the broker collects data from all probes.
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The gain in CPU usage at the GNU radio application is not as significant as the computing
time gains presented before because the network operations are only slightly improved by
the smaller size of the PROTO message. The results in Figure 18 present an average value
based on more than 100 messaging-method-evaluation application runs.
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To verify the CPU usage results presented earlier, we conducted a Wilcoxon signed-
rank test [58], which considered the slight difference between the average values shown in
Figure 18, illustrating the flow CPU usage. The test was performed under the alternative
hypothesis that the CPU usage values obtained for PROTO-based messaging methods
are lower than those obtained for PMT messaging. The p-values obtained for all the
scenarios were very close to 0, indicating a high degree of confidence that the PROTO-
based messaging methods always perform better than the method that uses only GNU
radio PMT messages.
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4.2. System under Test

To demonstrate the effectiveness of the developed testing platform in testing complex
communication protocols, an OFDM transmission system with transceivers that have
adaptive modulation and coding capabilities was used. This system is complex enough to
exhibit the test platform’s capabilities fully. Specifically, two OFDM systems were tested.
The first system implements a simplex transmission with a reverse channel to convey
channel state information from the receiver to the transmitter. The second system is a
full-duplex transmission system where the channel state information acquired by each
receiver is multiplexed with the data flows to be sent to the corresponding transmitter.
Figure 19 provides a simplified schematic of the simplex OFDM transmission system. For
additional information regarding the architecture of this system with adaptive modulations
but without adaptive coding, please refer to [59]. The implementation of the OFDM modem
under test is available in [53].
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Figure 19. The simplified architecture of the OFDM transmission system tested using the developed
testing platform.

The OFDM transmission system that was tested and evaluated consists of several
complex signal processing blocks, including the OFDM clock and carrier synchronization
block, the channel transfer function estimator, the OFDM equalizer, the forward error
correction (FEC) encoder and decoder (using LDPC codes), the SNR estimation block, the
transmission control block, and the framing block. To perform a thorough dynamic white
box testing of these signal processing blocks, acquiring and analyzing a large amount of
data is necessary. This requires a fast and efficient monitoring system that can handle
real-time signal acquisition and processing of a large amount of data. The need to acquire a
large amount of monitoring data in real-time is a common characteristic of any platform
used for testing and evaluating complex PHY-layer algorithms [38].
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Evaluation of the System under Test

The panels in Figure 20 show the changes in key parameters of an OFDM transmission
system being tested over time. The parameters include the number of iterations of the LDPC
decoder, the error rate of the transport block/frame, the CPU usage of the application, the
estimated SNR, the bits/symbol of the modulation scheme used, and the one-way travel
time of the IP packets loaded in the transport blocks. It is worth noting that this paper is not
focused on detailed testing and evaluation of an OFDM transmission system with adaptive
coded modulation. Instead, the system in Figure 20 is used to showcase the capabilities of
the developed testing platform. The parameters in Figure 20 are evaluated frame by frame
or packet by packet. However, other parameters, such as the equalization coefficients and
the decision error of the QAM symbols composing the OFDM symbol, need to be evaluated
at each OFDM symbol, generating a more significant amount of monitoring data. The
traces representing the variation over time of the considered parameters were generated
with the Grafana utility, which was also used to query the database, storing the parameter
values and time stamps. The results were obtained in the simulated duplex transmission
system, where both OFDM transceiver applications run on the same physical machine. In
the simulated transmission system, the parameters of the wireless link can be controlled,
and more relevant results can be obtained. If the SDR IO modules are integrated into the
GNU radio applications, the two OFDM transceivers can be connected by a real wireless
link with no other changes necessary.
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4.3. Threats to Validity Discussion

Various factors can threaten the reliability of test results and monitoring data. It is
essential to identify these threats to take corrective actions. In the case of the communi-
cation system being tested on GNU radio, the main limitation is the minimum sampling
frequency, which is determined by the bandwidth of the communication link. If the sam-
pling frequency is too high, signal processing could be impossible on resource-limited
machines. It could also result in data loss if too many data are acquired or the monitoring
frequency is too high. To prevent this, the testbed monitors the CPU usage of the system
under test and that of the broker to alert in case of processing resource starvation. The
monitoring data can be corrupted if the transmission nodes are not synchronized or the
synchronization needs to be more precise. A synchronization mechanism that is precise
enough for the monitoring data frequency needs to be used to avoid this.
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Ensuring that the IP packets and Ethernet frames sent and received by the application
are adequately fragmented and defragmented is essential. If these operations fail, it can
cause issues with the data flow at the output of the system being tested, resulting in
incorrect statistics. To avoid this problem, the IP and Ethernet headers should be set
according to the defragmentation mechanism implemented in the testbed.

5. Conclusions

In this study, we aimed to create a software testbed to assess communication protocols
for the PHY and MAC layers developed through GNU radio. This testbed should be easy
to use, capable of interacting with any traffic generator, and should enable the collection
and analysis of PHY-layer monitoring data. To achieve this, the paper outlines how to set
up a network environment that can be used for end-to-end testing of both simulation and
real channel applications. These network environments are isolated, making them easier to
manage and allowing multiple environments on the same machine—which is particularly
important when multiple tests are executed simultaneously on powerful servers. The
setup and management are implemented in Python to facilitate integration in testing
automation, using the Linux kernel’s virtual network devices (tun/tap) to feed test traffic
into the applications (i.e., transmission chain for SDR) to make it compatible with any
network traffic generator. In this paper, we have suggested and examined various methods
for obtaining monitoring data from the physical layer. One approach employs only the
polymorphic types (PMTs) built into GNU radio, while the other two use the protocol
buffer library to improve the efficiency of message generation, serialization, and parsing
processes. The PMT method is highly versatile and user-friendly, as it is integrated into the
GNU radio runtime and does not necessitate schema definitions. Testing communication
protocols generates significant monitoring data that need to be acquired in real-time. It is
important to use suitable methods to ensure efficiency and faster messaging. We analyzed
the performance of protocol-buffer-based methods in terms of the computation time of the
main components, CPU usage in end-to-end tests, and message size. The results showed
that the protocol-buffer-based methods outperformed the PMT method in all scenarios
considered. In this paper, we have explored the complete evaluation system, covering PHY-
layer monitoring, data storage, and visualization. We have demonstrated how to use this
system for white box testing of wireless transmission protocols developed with GNU radio.
The testbed’s capabilities were demonstrated using a complex OFDM duplex transmission
system with adaptive coded modulations. Although we have not explicitly addressed the
automation of the testing process, it is clear the proposed framework has the potential to
facilitate the integration of such functionality with relative ease. Custom traffic generators
can be constructed to align with the test suite while implementing testbed management in
Python, which allows it to be easily exposed to automation testing frameworks.
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