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Abstract: The advent of the Fourth Industrial Revolution has positioned the Internet of Things as a
pivotal force in intelligent vehicles. With the source of vehicle-to-everything (V2X), Internet of Things
(IoT) networks, and inter-vehicle communication, intelligent connected vehicles are at the forefront
of this transformation, leading to complex vehicular networks that are crucial yet susceptible to cyber
threats. The complexity and openness of these networks expose them to a plethora of cyber-attacks,
from passive eavesdropping to active disruptions like Denial of Service and Sybil attacks. These not
only compromise the safety and efficiency of vehicular networks but also pose a significant risk to
the stability and resilience of the Internet of Vehicles. Addressing these vulnerabilities, this paper
proposes a Dynamic Forest-Structured Ensemble Network (DFSENet) specifically tailored for the
Internet of Vehicles (IoV). By leveraging data-balancing techniques and dimensionality reduction,
the DFSENet model is designed to detect a wide range of cyber threats effectively. The proposed
model demonstrates high efficacy, with an accuracy of 99.2% on the CICIDS dataset and 98% on
the car-hacking dataset. The precision, recall, and f-measure metrics stand at 95.6%, 98.8%, and
96.9%, respectively, establishing the DFSENet model as a robust solution for securing the IoV against
cyber-attacks.

Keywords: Internet of Vehicles; intrusion detection system; Dynamic Forest-Structured Ensemble
Network; cybersecurity

1. Introduction

Industry 4.0 has propelled the importance of the Internet of Things (IoT) to the forefront
of technological innovation. This innovation is especially evident in the sectors of intelligent
vehicles (IVs), where the fusion of vehicle-to-everything (V2X) technology, IoT networks,
and inter-vehicle networks has brought forth intelligent connected vehicles (ICVs). As a
result, a comprehensive and intricate network for vehicle communication has been estab-
lished. In recent years, the proliferation of Internet of Vehicles (IoV) systems has exposed
significant vulnerabilities, necessitating robust intrusion detection systems (IDSs) tailored
for this complex environment. Traditional IDS solutions, while foundational, often struggle
with high false positive rates, limited scalability, and suboptimal performance against sophis-
ticated or novel attacks. Recognizing these challenges, this study introduces the Dynamic
Forest-Structured Ensemble Network (DFSENet), a novel approach designed to transcend
the limitations of conventional methods. DFSENet aims to enhance detection accuracy
while minimizing false negatives significantly—a critical issue in current IDS frameworks.
By integrating a state-of-the-art deep learning architecture with the Synthetic Minority
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Over-sampling Technique (SMOTE) to address data imbalances, DFSENet is engineered to
improve the precision of threat detection across varying attack vectors, thereby reducing the
typical high false positive rates associated with existing systems. This manuscript will detail
the innovative aspects of DFSENet, emphasizing its capability to adapt and respond to the
evolving landscape of cyber threats in the IoV. Additionally, the study is motivated by the
increasing frequency and complexity of cyber-attacks in IoV environments, underlining the
urgent need for more sophisticated and dynamic IDS solutions. By bridging the identified
research gap through advanced machine learning techniques and a refined data-handling
strategy, DFSENet stands as a pivotal advancement in IDS technology, promising substan-
tial improvements in system reliability and security efficacy. As the Internet of Vehicles
(IoV) continues to evolve, it increasingly becomes a target of various cyber threats. These
vulnerabilities expose IoV systems to various cyber-attacks, each carrying potentially severe
consequences such as data breaches, operational disruptions, and compromised safety. For
instance, a typical IoV threat could involve unauthorized access to vehicle communication
systems, leading to unauthorized control over vehicle functionalities. Such real-world
implications underscore the critical need for robust security measures within these net-
works. Intrusion detection systems (IDSs) serve as an essential line of defense in response to
these escalating security challenges. IDSs are pivotal in identifying and mitigating threats,
thereby preserving the integrity and reliability of IoV networks. Their role extends beyond
mere detection; they provide the necessary frameworks to initiate prompt responses to
security breaches, which is crucial for maintaining the operational efficacy and safety of IoV
systems. This study is driven by the need to address the limitations observed in current IDS
implementations, particularly their struggle with high false positive rates and inadequate
scalability. Our primary objective is to introduce the DFSENet, specifically designed to
enhance the detection capabilities of IDSs within IoV environments. DFSENet aims to
improve detection accuracy, reduce false negatives, and demonstrate superior scalability
and adaptability in facing new and evolving cyber threats. However, this network’s com-
plexity also exposes it to potential cyber-attacks, presenting a significant challenge to the
Internet of Vehicles (IoV)’s stability and resilience. As integral components of intelligent
transportation systems, vehicular networks are increasingly vulnerable to a wide range of
cyber-attacks due to their open and distributed infrastructure. Attacks range from passive
spying to more active disruptions such as Denial of Service (DoS) attacks, Sybil attacks,
and false data dissemination. In DoS attacks, excessive requests overwhelm the network,
delaying or neglecting legitimate requests [1–6]. Sybil attacks involve a malicious node
impersonating multiple nodes, undermining network functionality and trust. False data
propagation spreads inaccurate or deceptive information across the network, potentially
causing traffic issues, accidents or life-endangering situations. These cyber threats pose
substantial risks to vehicular network safety, efficiency and reliability, highlighting the
urgent need for robust and effective security protocols. The potential damage from these
cyber-attacks is substantial, ranging from immobilizing vehicles to causing severe acci-
dents. The integration of the IoT amplifies these risks by introducing vulnerabilities to
internet-based attacks and malware, which could lead to remote control or the destruction
of vehicle systems. This is not just a theoretical risk; real-world incidents, such as the Jeep
Cherokee and Tesla hackings, have demonstrated the potential for severe consequences like
the loss of life, energy, and significant financial losses. The stability of IVs is also threatened
by traditional network attacks such as eavesdropping and sniffing. Attacks on the IoV fall
into two principal classifications based on the attacker’s objective: attacks between vehicles
(Inter-vehicle) and those within a single vehicle (Intra-vehicle) [7–9]. This underscores the
urgent need for robust intrusion detection systems (IDSs), which play an essential role in
enhancing the cybersecurity of the IoV. However, the limited occurrence of attack instances
in typical network traffic data often results in class imbalance, which can adversely impact
IDS performance. To manage system and maintenance costs, modern vehicular networks
have turned to wireless protocols for data transmission. Vehicular networks are an emerg-
ing research field in the realm of smart cities, where vehicles function as nodes in a network,
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facilitating communication between each other. These networks enhance the quality of
life, security, and safety, making them crucial to the evolution of smart cities. Vehicular
networks strive to provide advanced communication technologies for vehicles, fostering
cooperative relationships through information sharing. However, the spatiotemporal chal-
lenges associated with vehicular networks can affect their efficiency in traffic management
systems, necessitating effective data analysis [10–18]. This paper introduces an IDS for
the IoV based on a DFSENet model. This enables precise multiclass classification and the
effective detection of various cyber threats within vehicle communication networks. The
paper’s main contributions include the following:

• The paper examines different data-balancing methods and their effects on IDS efficacy.
A combined mechanism of the SMOTE and random undersampling is utilized to
address class imbalance issues and attain balanced class distribution. This approach’s
efficacy is demonstrated using the CICIDS2017 (CICIDS) dataset. Additionally, Princi-
pal Component Analysis (PCA) is employed to reduce feature dimensionality, sub-
stantially lessening computational demands.

• The paper presents a DFSENet as the core of the IDS. This network effectively classifies
network traffic data from In-Vehicle Networks (IVNs) and external sources. The deep-
layered IDS model stacks various machine learning (ML) models sequentially layer by
layer, connecting them in an ordered manner. This architecture enhances the ability
to precisely and efficiently detect a spectrum of cyber-attacks, safeguarding both IoV
systems and intelligent connected vehicles (ICVs) from diverse cyber threats.

• A CIDS architecture is proposed, based on machine learning, that enables information
exchange and knowledge sharing within vehicular networks.

• A design principle is also presented to determine the optimal privacy parameter value.
This is attained by solving an optimization problem that balances the tradeoff between
security for the vehicular network and protecting its privacy.

• The proposed IDS’s performance was evaluated using two datasets—the widely
accepted CICIDS2017, known as CICIDS, for network intrusion detection, and the
car-hacking dataset pertinent to IoV security.

The structure of this manuscript is as follows: Section 2 presents a comprehensive
review of existing studies in the realm of intrusion detection for the IoV. Section 3 delves
into the research approach employed in our investigation, elaborating on the architecture
of the system, the preprocessing of data, and the construction of the intrusion detection
model that constitutes the proposed effective IDS. Section 4 presents a detailed evaluation
and discussion of the experimental outcomes. Lastly, Section 5 wraps up the paper by
succinctly summarizing the key findings from our research and proposing directions for
further study.

2. Literature Review

The unique characteristics of the IoV, such as high mobility and predictable node
movements, contribute to its security challenges. Due to life-critical safety implications,
protection is paramount. A privacy protection mechanism is needed to ensure information
sharing and encourage nodes to collaborate. Therefore, a mechanism ensuring privacy
protection is critical for safeguarding training data privacy across the network and en-
abling an efficient Collaborative Intrusion Detection System (CIDS). Differential privacy, as
proposed in [9], is a well-established concept able to furnish robust privacy assurance by
guaranteeing any single entry change in the dataset produces only a minor alteration to the
response distribution of the dataset. Previous work explored IoV threats and demonstrated
potential attacks on intelligent vehicle systems like braking interference [19]. In 2013,
researchers began analyzing vulnerabilities and attacks on intelligent vehicles, conducting
risk analyses [1,3–5]. Subsequent experiments tested attacks and suggested solutions often
involving encryption [20,21]. IoV cybersecurity has grown to be increasingly important.
As IoV adoption increases along with intelligent vehicles (IVs), so too do communication
nodes and the potential exploitation of new security issues. Effective and precise intrusion
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detection is essential. ML techniques have often developed mature, effective unautho-
rized access detection through misuse and anomaly detection using decision trees [22], a
fog-based DT IDS [23], and CSV-ISVM for training data enlargement [24]. Other research
combined frequented Random Forests for network intrusion [25,26]. Significant attention
addressed distributed ML-based IDSs utilizing fog models [27–30] and federated learning
distributed architectures maintaining user privacy [22–24].

Deep learning (DL), an ML subset, has outperformed traditional ML techniques in
NLP and CV in recent years [31]. For example, CNN intrusion detection requires convert-
ing network traffic to a matrix for two-dimensional processing [32,33]. Notably, LSTM
was used as an FCN sub-module for time series classification, introducing an attention
mechanism that improved intrusion detection performance. Others combined DL tech-
niques and SVMs, integrating 1D CAE and OCSVM into a one-stage model demonstrating
superior detection and generalization [34]. Another approach used k-means, a DNN and
an SVM in two stages, k-means for anomaly detection followed by a DNN and a SVM
for intrusion detection, showing effectiveness though some generalization limitations [35].
While the above IDS addressed general networks, research increasingly focuses on IoV-
specific IDSs. One study proposed a deep CNN IDS optimizing CAN bus data, achieving
excellence on vehicle datasets. Another designed an LSTM auto-encoder IDS detecting
network traffic anomalies, providing crucial ITS security. Other work simulated VANET
attack scenarios, collecting and analyzing traffic data statistically, though it was less accu-
rate for multiple events [36]. Additionally, neural networks identified denial-of-service
attacks on autonomous vehicles communicating via VANETs [37]. Feature dimensionality
reduction using PCA constructed low-parameter cyber-attack classifiers on traffic data’s
multidimensionality complexities [38]. Lastly, ensemble approaches proved effective for
imbalanced traffic data classification, with some studies achieving exceptional detection
through ensemble technology [39,40]. Studies [22–24,31–35,41,42] design general network
IDSs, while [27–30,43] emphasize distributed IDS deployment in the IoT/IoV. Refs. [36–40]
primarily focus on IVN cybersecurity. However, current IDSs are commonly limited to
binary classification, which is insufficient for multiclass tasks. Additionally, network traffic
data’s severe imbalance severely challenges multiclass classification. Albers et al. proposed
a collaborative IDS with a local IDS on each mobile network node for local security, extend-
able to address global security via collaboration [44]. Sterne et al. designed a hierarchical
IDS using multilevel clustering [45]. Machine learning and data mining have also been ex-
plored for IDSs. These techniques enable continual learning, enhancing security knowledge,
linking suspicious events, and predicting attacks. Unsupervised methods like clustering
categorized normal and anomalous packets [46] using hierarchical [47], K-means [48] cluster-
ing. Supervised learning including SVMs detected anomalies using new window kernels [2].
Differential privacy research focuses on machine learning applications [33,34], balancing
privacy and performance [22,35]. Interest grows in distributed differential privacy with
automated verification frameworks [36] and differentially private constrained optimization
algorithms [37], using clouds for differentially private computations [38]. Hikal et al. [49]
introduced a lightweight, machine learning-based IDS for the IoT. Employing an ensemble
data preprocessing stage to enhance feature selection, the system achieves up to 99.7% de-
tection accuracy and a 30–80 s detection time in combating IoT botnet attacks. Mohammed
et al. [50] explored hybrid metaheuristic optimization algorithms, specifically gray wolf
optimization and the salp swarm algorithm, to efficiently solve IoT sensors’ localization and
privacy problems in wireless networks with power and processing capability constraints.
Fetooh et al. [51] proposed a novel admin-side method for detecting fake Wi-Fi access points
capable of identifying multiple cyber-attacks, including various forms of WI-phishing and
the DE-authentication attack. By analyzing frame types and static and dynamic parameters
in real-time, the system distinguishes between normal and malicious packets, achieving an
average accuracy of 94.40%, a precision of 87.08%, and a specificity of 96.39% across five
types of attacks. Zhang et al. [52] leverages XGBoost (Version 2.1.1.) and RF ensemble learn-
ing methods, enhanced by Bayesian optimization, to predict the undrained shear strength
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(USS) of soft clays from the TC304 database using five soil parameters. Demonstrating supe-
rior performance under 5-fold CV, the XGBoost-based model also offers valuable insights
into feature importance, thus improving predictability and interpretability in geotechnical
parameter estimation. Zhang et al. [53] developed a time-variant reliability analysis method
for landslide prevention in the Three Gorges Reservoir Area. The method utilizes XGBoost
and LightGBM machine learning algorithms to evaluate landslide failure probabilities ef-
ficiently and accurately under varying environmental conditions. Our proposed model
advances intrusion detection research by addressing limitations found in prior studies, such
as poor generalizability, inefficient high-dimensional data management, and overfitting. By
employing a dynamic-depth, tree-based network with a diverse ensemble of base estimators,
it enhances accuracy and robustness. Strategic data preprocessing and feature selection
reduce dimensionality, cutting down on the computational load. Unlike other models,
ours handles imbalanced datasets effectively without requiring data balancing, showcasing
its capacity for real-world applicability and superior performance in identifying network
threats. Table 1 shows the comparison between the existing methods in the related works.

Table 1. Comparison between existing methods.

Precision Recall F1-Score Accuracy # Categories

LSTM 0.954 0.895 0.885 0.893 2
MLP 0.882 0.859 0.868 0.872 2

1D-CNN 0.964 0.906 0.935 0.938 2
DBN 0.897 0.975 0.943 0.946 6

3. Proposed CIDS

In order to guarantee the accurate, streamlined, and detailed categorization of network
traffic within vehicular communication systems, thus protecting intelligent connected
vehicles (ICVs) in the IoV against cyber threats emanating from external networks and
Intra-Vehicle Networks (IVNs), we introduce a potent IDS founded on the principles of
DFSENet. Figure 1 presents a detailed breakdown of the IDS workflow. The five IDS
components depicted in Figure 1 are (1) intra-vehicle network data collection, (2) data
processing, (3) the local IDS engine, (4) detection result output, and (5) privacy preservation.
Our aim is to elevate ICV security through implementing a robust IDS efficiently identifying
and neutralizing potential threats.
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3.1. Data Processing
3.1.1. Data Collection

For the training and evaluation of intrusion detection models within any IDS, a substan-
tial volume of data samples is crucial. Adequate records of network traffic, encompassing
both normal and malevolent scenarios, are vital for the development of such models. In the
case of the IDS we have proposed, the gathered data are segmented into a pair of collections:
(1) the training dataset, which is utilized for the purpose of model training, and (2) the
testing dataset, which serves to assess the efficacy of the model.

3.1.2. Data Cleaning

To rigorously assess IDS effectiveness, numerous network intrusion detection datasets
are available for related studies, including well-recognized datasets like KDD99, NSL-
KDD [42], UNSWNB15 [43], and a CIDS [3]. Concurrently, collective research efforts have
created dedicated car-hacking datasets furthering automotive safety within the IoV [4].
However, a sequence of data purification procedures is required to optimize these data
for model training and evaluation, for example, scrutinizing datasets for missing values,
constant values, and other outliers incompatible with model learning. These irregularities
require either purification or transformation into useful data. Algorithm 1: Enhanced
Real-time VANET Surveillance delineates the structured process we developed to monitor
and detect intrusions effectively. Initially, the algorithm preprocesses the incoming VANET
system data stream (X), a critical step for ensuring the integrity and usability of data.
Subsequent steps involve assessing the need to update the intrusion detection system (IDS)
classifier based on the preprocessed data. If an update is required, the IDS classifier is
refreshed using a locally stored dataset before proceeding with intrusion detection. The
final step involves continuous monitoring where, whether updated or not, the classifier
is used to detect potential intrusions and trigger alerts (Y) if anomalies are detected. This
algorithm is pivotal for maintaining robust surveillance within VANETs and enhancing
security measures in real-time operational environments.

Algorithm 1: Enhanced Real-time VANET Surveillance

INPUT: Real-time VANET System Data Stream (X)
OUTPUT: Intrusion Detection Alerts (Y)

START PROCEDURE
//Step 1: Data Preprocessing Stage
Preprocessed_Data = Processing_data(X)

//Check if classifier update is needed
IF NEED_UPDATE(Preprocessed_Data) THEN

//Step 2: Classifier Update Mechanism
Updated_Classifier <- IDS (Load_local_dataset())
Classifier = Updated_Classifier

//Step 3: Local IDS with updated classifier
Alerts = Local_Detection (Preprocessed_Data, Classifier)

IF Alerts CONTAIN Intrusions THEN
TRIGGER_ALERT(Y)

END IF
ELSE

//Step 4: Continuous Monitoring with the current
classifier

Alerts = Local_Detection (Preprocessed_Data,
Classifier)

IF Alerts CONTAIN Intrusions THEN
TRIGGER_ALERT(Y)

END IF
END IF

END PROCEDURE
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3.1.3. Feature Selection

Datasets designed for intrusion detection typically comprise a wide array of standard
network attributes. Take, for instance, the CICIDS dataset, which is characterized by
78 distinct network attribute features. When datasets possess such a multitude of features,
they are often referred to as high-dimensional data. To manage this complexity, feature
selection methods are applied to retain crucial attributes while discarding those that are
redundant or irrelevant. This technique helps in reducing data duplication and lessens the
computational load. In our initial analysis, we evaluated the interrelationships between the
78 features of the CICIDS dataset using specific equations. From the resulting correlation
coefficient matrix, we identified and removed 27 features that exhibited high correlation.
The progression of these steps is depicted in Figure 2 through heatmaps, which illustrate
the correlation between features in the CICIDS dataset at various stages of processing.
The correlation coefficient, denoted as ρu,v, measures the linear relationship between two
variables u and v. It is defined as follows:

ρu,v =
cov(u, v)

σUσV
(1)

where cov(u, v) represents the covariance between the variables. This coefficient is crucial
for identifying features in the IoV data that move together, which may indicate underlying
patterns or influential relationships.

cov(u, v) =
1

M − 1

M

∑
i=1

(ui − u)(vi − v) (2)

σu =

√
M∑ ui

2 − (∑ ui)
2 (3)

σv =

√
M∑ vi

2 − (∑ vi)
2 (4)

u =
1
M

M

∑
i=1

ui (5)

v =
1
M

M

∑
i=1

vi (6)

where u and v represent sample sets, u signifies the mean of u, v denotes the mean of v, the
term σ is used to represent variance, while cov(u, v) indicates the covariance of u and v.
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showing data feature correlations following the implementation of PCA.
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In Figure 2a—After Feature Selection, this heatmap shows the correlation between
different network traffic features after a feature selection process has been applied. Feature
selection aims to reduce the number of input variables for modeling, focusing on those
most relevant to detecting intrusions. This map helps identify which features retain strong
associations with each other and are potentially significant for the subsequent analytical
steps. In Figure 2b—After Implementing PCA (Principal Component Analysis), the second
heatmap depicts the correlation between features after the transformation by PCA, a
statistical technique used to emphasize variation and bring out strong patterns in a dataset.
PCA reduces the dimensionality of the data by transforming the original variables into a
new set of variables (principal components), which are uncorrelated and ordered so that
the first few retain most of the variation present in all of the original variables.

3.1.4. Data Normalization

Normalizing data with many dimensions is an essential part of the data preprocess-
ing phase. Unstandardized data in such high-dimensional spaces can lead to heavier
computational burdens on machine learning algorithms, thereby hampering the speed
and efficacy of their training processes. In this research, we have implemented a quantile
transformation to achieve data normalization. This method uses non-linear transformations
to render the data robust to outlier influences. Fundamentally, it calculates a mapping
function that aligns well with the input variables, effectively converting the values to a
uniform distribution ranging from 0 to 1. These values are then processed through specific
quantile functions to conform to the desired distribution shape. For a deeper analysis of
the distribution of features, we utilize the quantile function, particularly focusing on the
inverse quantile function denoted as Q−1. The equation is given as follows:

y = Q−1( f (k)) = Q−1(
∫ k

∞
fk(t)dt) (7)

where k denotes the features, f (k) corresponds to the cumulative distribution function of
features, and Q−1 refers to the inverse quantile function associated with the distribution of
the anticipated output values.

3.1.5. Data Balancing

Upon examining open-source IDS datasets, significant data imbalance is evident.
For example, NSL-KDD and CICIDS2017 show considerable benign samples at 95% and
90%, with remaining samples consisting of various attacks. This stems from rare attack
instances in real-world scenarios, with networks predominantly maintaining regular states.
Pronounced imbalance skews classifier performance toward the majority class (benign),
challenging minority class classification. Numerous techniques address this issue. Com-
mon strategies include undersampling, oversampling, class weight, and sample weight.
Random oversampling balances data by randomly duplicating minority samples but risks
overfitting. This study uses SMOTE oversampling, generating synthetic minority samples
by examining neighbors to augment minority classes. Undersampling also reduces majority
instances. The principle aims to balance underrepresented and dominant class distributions
by randomly selecting majority instances. This study also considers class and sample
weight strategies for adjusting weights, with class weights allocating identical weights
to samples of the same class. We investigate benefits of several techniques to intrusion
detection models.

3.2. Local Intrusion Detection Engine
3.2.1. Overview

Ensemble learning inherently excels against highly imbalanced challenges, evident by
top algorithms in contests like KDDCup, Netflix, and Kaggle using ensembles. Hence, we
employ ensemble learning for intrusion detection. Deep learning’s recent success stems
from multilayer representation learning, incrementally extracting features from original
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data via MLP, CNNs, DNNs, etc. However, tree-based models typically outperform neural
models on tabular data.

3.2.2. Dynamic Forest-Structured Ensemble Network (DFSENet)

Our approach introduces a dynamic-depth, tree-structured network model within the
ensemble learning framework. Recognizing the importance of diversity among component
learners, we leverage a combination of machine learning models (including Random For-
est, Extra Trees, LightGBM, and XGBoost) as base estimators and stack them to create a
multi-layered network structure. The model is akin to an ‘ensemble of ensembles’ with
connections between successive layers that may include ensemble estimators like XGBoost
and Random Forest. This layered approach, reminiscent of deep learning structures, uti-
lizes diversity to expand the model’s depth, guard against overfitting, and improve overall
accuracy. In the machine learning domain, diversity is crucial for enhancing the learning
process. To further increase the diversity during training, our model integrates the initial
inputs, augmenting the variety of data. This method enriches the class probability vectors
from preceding layers in a sequential manner, offering rich insights for the layers that follow.
Our experimental results indicate that this strategy significantly boosts accuracy. To refine
the model and ensure it generalizes well, we apply cross-validation techniques, specifically
5-fold cross-validation, to optimize hyperparameters and guard against overfitting, which
could otherwise degrade the model’s performance on unseen test data. Specifically, valida-
tion samples constituting 20% of input are used in each layer of training to assess current
performance (we opt for recall as a validation index). If the current layer metric drops
beyond the threshold, training halts without expanding the next forest layer. Thus, the
proposed model depth adapts without artificial setting. Figure 3 presents the design of the
Dynamic Forest-Structured Ensemble Network, showcasing the framework’s systematic
approach to integrating multiple decision trees in a dynamic ensemble configuration.
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3.2.3. Machine Learning Models

Incorporated models include RF, ET, and XGBoost, constructed on diverse rule-based
ensemble decision trees. A decision tree (DT) comprises decision and leaf nodes. Decision
nodes signify decision routes while leaf nodes correspond to final predictions. Random
Forest orchestrates decision trees utilizing bagging. Feature split point optimality in
Random Forest minimizes the Gini index per Equation (8). Extra Trees (ETs) similarly
amalgamate decision trees, distinguished by using all samples and randomly selecting
features for branching.
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Gini(k) = 1 −
n

∑
i=1

(
|Ci|
|k| )

2
(8)

where k represents the aggregate number of samples, Ci denotes the count of samples in
the i-th class, n is indicative of the total number of classes. XGBoost stands as a gradient-
boosting framework that integrates multiple decision trees and is celebrated for its speed,
flexibility, and relatively small resource footprint. During each iteration, XGBoost focuses
on optimizing the submodel relevant to that specific phase. For example, during the i-th
iteration, it merely considers the fc(ui).

fc(ui) = fc−1(ui) + fc(ui) (9)

where fc(ui) is the current model, fc−1(ui) represents the model as established in the
preceding step. The objective function of XGBoost is composed of a loss function coupled
with a regularization term, which serves to constrain the complexity of the model, as
depicted in Equation (10). The regularization term is obtained as defined in Equation (11).
The ultimate objective function is reached after optimizing the loss and regularization
components, as demonstrated in Equation (12). For multi-class classification tasks, we use
XGBoost, where the loss function is specified as softmax, as delineated in Equation (13).

objective f unction =
m

∑
i=1

L(yi, ŷl) +
t

∑
i=1

ϑ( fi) (10)

ϑ( ft) = δT +
1
2

λ
T

∑
j=1

ω2
j (11)

objective f unction = −1
2

T

∑
j=1

R2
j

Sj + λ
+ δT (12)

so f tmax(zi) =
exp(zi)

∑j exp(zj)
(13)

where T represents the number of leaf nodes, ω2
j is the L2-norm of the leaf scores, λ and δ

are the penalty coefficients. While R and S correspond to the cumulative first and second-
order gradient statistics of the loss function, respectively, while zi is the i-th samples in data
z.

4. Experimental Results

All experiments in this study were conducted using the Google Colab system. PyTorch
(version 2.4) served as our primary development framework and Python served as the
programming language. The graphics processing unit (GPU) used was an NVIDIA T4
@1.59 GHz with 16 GB of memory and 8.1 TFLOPS of compute performance.

4.1. Datasets

For IDSs in connected car environments to effectively detect a wide range of attacks
from both IVNs and external networks, we chose the CICIDS and car-hacking datasets to
evaluate IDS progress in this study.

4.1.1. CICIDS Dataset

An IDS needs a representative benchmark network dataset for evaluating various IDSs.
The first (CICIDS) dataset serves this purpose as a modern flow-based intrusion dataset.
Previously, commonly used datasets were KDD99 and NSL-KDD, but in 2016, 11 criteria
were published specifying fundamental requirements for a reliable intrusion detection
dataset. The CICIDS dataset meets all criteria, positioning it as comprehensive and up to
date. It primarily contains benign data over 80% and various attack types. The dataset is
divided into 13 subcategories consolidated into six main categories during preprocessing,
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as depicted in Figure 4. Additionally, we split the CICIDS dataset into training and test
sections at a 70/30 ratio for model training and performance evaluation, respectively.
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4.1.2. Car-Hacking Dataset

The second dataset, known as the car-hacking dataset, was created by capturing
CAN traffic through the OBD-II port under conditions of a CAN attack. This dataset
is characterized by 10 features, including a timestamp, CAN ID, DLC data bytes, CAN
packet, and a label indicating Receive/Transmit (R/T). Nonetheless, the DLC and label
were deemed to provide limited informative value and thus were discarded during the
data cleansing phase. Any anomalies present in the data were also eliminated. With the
original label column removed, new appropriate labels were designated. The dataset
comprises normal traffic as well as four types of attacks: DDoS, Fuzzy, and Spoofing.
Consequently, each data entry was annotated with the name of the attack it related to. The
distribution within the dataset is illustrated in Figure 5. It is important to note that the
dataset is predominantly composed of attack samples, which make up 95% of the data,
making it unnecessary to apply any data-balancing techniques. In addition to cleansing,
a data-shuffling method was implemented to ensure a thorough mix of the data. This
step was crucial for splitting the dataset into training and testing partitions that were
subsequently utilized for developing and validating the intrusion detection model.
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4.2. Evaluation Metrics

Network intrusion detection involves classifying traffic as normal or an attack. Several
machine learning metrics provide insight into a classifier’s performance, defined below.
Specifically, a binary classifier categorizes instances as positive or negative. Correctly
classified instances are true positives (TP) or true negatives (TN). False positives (FP) or
false negatives (FN) occur from misclassification. To quantify the efficacy of our IDS, we
employ several performance metrics, such as the accuracy metric, which evaluates the
overall correctness of the model by comparing the true positives (TP) and true negatives
(TN) against all outcomes. Recall measures the model’s ability to detect all relevant
instances (true positives) out of all actual positives, which is critical for security systems
where missing a true threat can be costly, precision assesses the accuracy of the positive
predictions made by the model, highlighting its effectiveness in identifying true threats
among all detected threats, and the F1-measure combines precision and recall into a single
metric by calculating their harmonic mean, providing a balanced view of the model’s
performance, especially when the classes are imbalanced. As defined in Equation (15),
the accuracy measures the proportion of correctly classified data. However, intrusion
datasets often exhibit class imbalance, skewing accuracy to classify benign traffic while
diminishing the identification of malicious traffic. Therefore, we focus more on precision,
recall, and the F1-measure. An effective IDS considers both precision and recall. The F1-
measure, capturing precision and recall through harmonic mean, presents a comprehensive
evaluation metric. A higher F1-measure indicates greater algorithm classification capability.
Besides these metrics, execution time merits assessment to understand the efficiency in
processing single samples.

Accuracy =
TP + TN

TP + TN + FP + FN
(14)

Recall =
TP

TP + FN
(15)

Precision =
TP

TP + FP
(16)

F1 − measure = 2 × Precision × Recall
Precision + Recal

(17)

4.3. Discussion

Our aim is to develop a precise, streamlined, and effective IDS to protect IoV intelligent
connected vehicles (ICVs) against various cyber threats. This section empirically validates
the model using the datasets from Section 4.1. We assess effectiveness using the stated
metrics and analyze results from multiple perspectives. During data preprocessing, we
explore benefits of different data-balancing techniques for enhancing IDS performance,
applying them to the CICIDS dataset. We equalized the training set’s class distribution
using diverse methods while leaving the testing set unchanged. Table 2 presents the
balanced class distribution of the preprocessed training set.

Table 2. Balanced class distribution of the first dataset (CICIDS) after preprocessing.

Categories Prior-Balance Adjustment Post-Balance Adjustment

Normal 1,221,300 700,000
DDoS 192,162 420,000
Botnet 1160 45,000

Web Attack 1272 45,000
Port Scan 34,384 49,000

Brute Force 5131 53,000
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We conduct a preliminary analysis of several data-balancing methods previously
mentioned, using RF as the basis. The balanced training dataset is employed for model
training. In contrast, the original testing set is used for evaluating the model’s efficacy. The
results of this experiment are visualized in Figure 6.
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data-balancing techniques tested on the original testing set.

Figure 6 compares the detection performance of Random Forest (RF) using different
data-balancing techniques. The baseline without balancing yielded an 87% F1-score, 89%
recall, 85% precision, and 97% accuracy. Four balancing methods were evaluated: the
(1) class weight mechanism, the (2) Random UnderSampler mechanism, the (3) sample
weight mechanism, and (4) combining the Random OverSampler and UnderSampler.
Figure 7 illustrates that all four methods substantially improved detection performance
versus the baseline. F1-score enhancement ranged from 1.34% to 8.08%, and accuracy
increased between 1% and 2%. Notably, combining oversampling and undersampling
delivered the most impressive results. Consequently, we opted for the combined Random
Over and UnderSampler approach to balance the original training set. Table 2 compares the
model’s detection performance with and without PCA. Our investigation showed that PCA
had a minor impact, reducing the F1-score by 0.89%, recall by 1.13%, and precision by 0.73%.
However, dimensionality was effectively decreased from 49 to 25 features, significantly
reducing computational cost. PCA was selected primarily for its effectiveness in reducing
our dataset’s dimensionality while retaining the data’s most significant variance. This
capability is crucial for our analysis because it allows us to simplify the data without
substantial loss of information. PCA does not require labels to reduce dimensionality,
making it suitable for our initial exploratory data analysis where class labels might not
be effectively utilized. PCA scales well with large datasets, which was necessary given
the volume of data we needed to process. PCA is a generic, well-understood method
that provides a solid baseline for dimensionality reduction, ensuring our results are easily
interpretable and comparable within the broader research community. While LDA is also a
popular choice for dimensionality reduction, it differs from PCA in several vital aspects:
LDA requires class labels to maximize the separability between known categories, making
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it less flexible than PCA in unsupervised scenarios. LDA is limited to extracting at most C
− 1 features (where C is the number of class labels), which can be a significant limitation
in datasets with a small number of classes. LDA can overfit in scenarios with very few
data points per class, whereas PCA remains general. Table 3 presents the balanced class
distribution of the CICIDS training set after preprocessing.
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Table 3. Balanced class distribution of the CICIDS training set after preprocessing.

Precision Recall F1-Score Accuracy Execution Time (ms)

Without PCA 95.9 98.8 96 99 1.05
With PCA 95.4 98.3 95 98 2.66 × 10−3

We analyzed various ML models (RF, ET, XGBoost, and LightGBM) using the processed
CICIDS dataset to choose the optimal base estimator for the definitive IDS model. The initial
four rows show that bagging ensemble models like RF and ET outperform boosting models
like XGBoost and LightGBM in precision and speed. Therefore, we selected RF and ET as
base estimators. To incorporate diversity, we also included XGBoost. Stacking these varied
base estimators without extending layers yielded a 94.77% F1-score, 92.3% recall, 98.66%
precision, and 99.88% accuracy. The final row shows that DFSENet outperforms single ML
models, with F1-score enhancements of 3.09–7.6%, a recall of 0.26–13.42%, a precision of
0.82–5.76%, and accuracy increases of 0.13–0.35%. Further analysis revealed that deepening
structure significantly boosts detection performance. Compared to stacked models, the
DFSENet demonstrated a 1.69% higher F1-score, 6.07% increased recall, and 0.02% accuracy
enhancement. This strongly suggests successive learning layers significantly contribute to
improved performance. We evaluated several models to ascertain their efficacy in terms
of precision, recall, F1-score, accuracy, and execution time. The summarized results are
presented in Table 4. This table highlights the performance metrics of different models
including Decision Trees (DT), Random Forest (RF), XGBoost, a combined model of XGBoost
and RF, and DFSENet. Each model’s performance was assessed under identical conditions
to ensure a fair comparison. Notably, the DFSENet model outperformed others with an
accuracy of 99.2% and a notably efficient execution time.
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Table 4. Comparative analysis of detection capabilities across ensemble and single ML models with
emphasis on DFSENet enhancements.

Model Precision Recall F1-Score Accuracy Execution Time (ms)

DT 93.4 96.5 94.9 97.7 1.23 × 10−25

RF 89.6 98.7 93.2 98.2 1.67 × 10−5

XGBOOST 97 85.9 91.1 95.5 3.83 × 10−5

XGBoost + RF 98.3 93.4 95.2 97.6 1.26 × 10−4

Proposed DFSENet 95.6 98.8 96.9 99.2 2.91 × 10−4

We generated confusion matrices for our proposed model using the testing portion of
both the CICIDS dataset and the car-hacking dataset as shown in Figure 8. The numerical
values allocated to each category within these matrices present a granular perspective of
the successful and mistaken classifications. The data evidently demonstrates the model’s
aptitude in distinguishing between various types of network traffic, whether they are
benign or malicious.
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Table 5 presents evaluation metrics in detail for each category within the CICIDS
testing set. The results clearly show that the DFSENet delivers outstanding performance
across all categories, achieving near-perfect precision, recall, and F1-score. This implies
the superb detection of most attack instances. However, the “Botnet” categories exhibit
distinctly higher recall but lower precision. Detecting all malicious activity is paramount for
network intrusion detection, making high recall critical. Meanwhile, a few false positives
(lower precision) are considered less important. Figure 9 illustrates the evaluation metrics
for each category within the CICIDS testing set, with a particular focus on the performance
of the DFSENet model. The figure clearly demonstrates DFSENet’s superior detection
capabilities across various metrics.
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Table 5. Assessment of model performance on the first (CICIDS) dataset.

Precision Recall F1-Score Accuracy

Normal 0.984 0.974 0.978 0.992
DDoS 0.963 0.973 0.965 0.991

Web Attack 0.978 0.968 0.973 0.992
Botnet 0.882 0.962 0.922 0.93

Brute Force 0.982 0.986 0.984 0.995
Port Scan 0.979 0.989 0.984 0.995
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Figure 9. Evaluation metrics for each category in the CICIDS testing set, highlighting DFSENet’s
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precision.

The results from testing on the car-hacking dataset demonstrate the effectiveness
of our intrusion detection model. Table 6 shows that the model achieves almost perfect
detection for all categories, with the F1-score approaching 98%. This underscores the
outstanding capability of the proposed intrusion detection system (IDS) in recognizing
malicious activity within In-Vehicle Networks (IVNs). Table 6 presents a comprehensive
view of the proposed IDS performance when evaluated using the car-hacking dataset.

Table 6. Assessment of model performance on the second (car-hacking) dataset.

Precision Recall F1-Score Accuracy

Normal 0.984 0.984 0.984 0.98
DoS 0.964 0.986 0.975 0.98
Gear 0.978 0.968 0.973 0.98

Spoofing Gauge 0.972 0.982 0.977 0.98
Fuzzy 0.982 0.986 0.984 0.98

Figure 10 provides a comprehensive overview of the performance of our proposed
Intrusion Detection System (IDS) on the car-hacking dataset. This visualization is instru-
mental in demonstrating the effectiveness of the IDS in identifying and mitigating threats
in automotive systems.
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4.4. Empirical Analysis between the Proposed Model and Related Works

In Table 7, a variety of studies such as those using MLP, 1D-CNN, and LSTM, predom-
inantly focus on binary classification over multiclass classification. Within this subset, the
1D-CNN framework stands out, achieving an F1-score peak of 0.939. Our objective extends
beyond the binary distinction of normal and anomalous activities to encompass precise
categorization across a broader spectrum. When juxtaposed with the approaches listed in
Table 6, our technique exhibits superior performance metrics, including precision, recall,
and an F1-score that tops at 0.965. In comparison to the DBN model, which also tackles
multiclass classification, our method shows an enhancement in the F1-score by 2.5%.

Table 7. Empirical analysis and comparison between existing methods and the proposed model.

Precision Recall F1-Score Accuracy Categories

LSTM 0.954 0.895 0.885 0.893 2
MLP 0.882 0.859 0. 868 0.872 2

1D-CNN 0.964 0.906 0.935 0.938 2
DBN 0.897 0.975 0.943 0.946 6

Proposed Model 0.956 0.988 0.969 0.992 6

4.5. Limitation and Future Works

This section discusses several key limitations of our current study. Firstly, the ex-
perimental design, while robust, is constrained by the size and diversity of the datasets
employed, potentially affecting the universality of our findings. Secondly, while our model
shows promising results, it relies heavily on high-quality data input, which may not be as
readily available in real-world scenarios. Lastly, our analysis methods, though effective
for the scope of this study, may not capture all nuances of complex data interactions, sug-
gesting a need for more sophisticated analytical tools in future studies. The DFSENet is
inherently complex due to its multi-layered ensemble structure, which integrates multiple
advanced machine learning models like XGBoost, LightGBM, Random Forest, and Extra
Trees. This complexity is necessary to handle multiclass classification and address class
imbalance effectively. However, it can also affect the DFSENet’s scalability in large-scale
IoV environments, as each additional layer or model increases the computational load and
memory requirements. Deploying such a model in real-world IoV settings might require
substantial computational resources, which could be a limitation in environments with
restricted resource availability. For future research, we aim to enhance the DFSENet model’s
adaptability to emerging threats, improve its scalability for growing IoV networks, and
ensure its efficiency in high-traffic environments. We also plan to explore the application of
our IDS framework across various IoT domains to secure interconnected systems within
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smart infrastructures. Furthermore, we will investigate collaborative defense strategies
that leverage network-wide intelligence for proactive threat mitigation, and rigorously test
the system against advanced attack vectors, including AI-driven and zero-day exploits, to
maintain robust and forward-thinking vehicular cybersecurity.

5. Conclusions

This study presents a novel intrusion detection system (IDS) for the Internet of Ve-
hicles (IoV) that leverages a DFSENet. The proposed model is a significant contribution
to the field of vehicular cybersecurity, offering a sophisticated multilayered approach to
detect and classify a spectrum of cyber threats. By incorporating advanced data-balancing
techniques and feature reduction through Principal Component Analysis (PCA), our model
effectively addresses the challenges of class imbalance and high-dimensional data, which
are prevalent in network traffic datasets. The DFSENet model’s architecture, which sequen-
tially stacks multiple machine learning models, represents a breakthrough in enhancing
detection accuracy and response time against cyber-attacks. Empirical results from our
extensive experiments using the CICIDS2017 and car-hacking datasets have demonstrated
the superiority of the proposed IDS. With an impressive accuracy of 99.2% on the CICIDS
dataset and 98% on the car-hacking dataset, along with high precision, recall, and f-measure
scores, the DFSENet model has proven to be highly effective. Moreover, it has shown its po-
tential in solving related problems such as reducing false positives and enhancing real-time
detection capabilities, which are crucial for the practical deployment of an IDS in the IoV.
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