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Abstract: Recently, considerable attention has been directed toward graph-based semi-supervised
learning (GSSL) as an effective approach for data labeling. Despite the progress achieved by current
methodologies, several limitations persist. Firstly, many studies treat all samples equally in terms
of weight and influence, disregarding the potential increased importance of samples near decision
boundaries. Secondly, the detection of outlier-labeled data is crucial, as it can significantly impact
model performance. Thirdly, existing models often struggle with predicting labels for unseen test
data, restricting their utility in practical applications. Lastly, most graph-based algorithms rely on
affinity matrices that capture pairwise similarities across all data points, thus limiting their scalability
to large-scale databases. In this paper, we propose a novel GSSL algorithm tailored for large-scale
databases, leveraging anchor points to mitigate the challenges posed by large affinity matrices.
Additionally, our method enhances the influence of nodes near decision boundaries by assigning
different weights based on their importance and using a mapping function from feature space to label
space. Leveraging this mapping function enables direct label prediction for test samples without
requiring iterative learning processes. Experimental evaluations on two extensive datasets (Norb
and Covtype) demonstrate that our approach is scalable and outperforms existing GSSL methods in
terms of performance metrics.

Keywords: large-scale data; graph construction; bipartite graph; label propagation

1. Introduction

The enhancement of classification performance through SSL, in circumstances where
only a few costly labeled samples are available while plentiful unlabeled samples are
easily obtained [1], has become a prominent research avenue and finds wide application
in various real-world scenarios [2,3]. There were numerous intriguing proposals made to
acquire knowledge from both labeled and unlabeled data, like transductive inference [4],
co-training [5], and graph-based methods [6–8].

Graph construction plays an essential role in graph-based label propagation, as graphs
provide information about the structure of the data manifold [9]. The success of GSSL meth-
ods can be attributed in part to the manifold assumption, which enhances the expressive
power of graph structure [10]. While semi-supervised learning (SSL) models have shown
promise in many areas, they can face challenges in certain scenarios. Next, we discuss the
limitations encountered by several GSSL models:

• Many of them are not able to predict the labels of unseen data. Consequently, due to
the continuous updating and creation of data in the real world through the internet
and social networks, these methods are difficult to apply to real-world problems.

• The use of an n× n affinity matrix (where n is the number of samples) makes applying
these methods to large databases computationally and memory-intensive.
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• Most of the existing models do not work based on weighted samples, and all samples
have the same weight.

One major problem with semi-supervised learning models is their inability to estimate
the labels of unseen data. With the expansion of the internet and social networks, data are
rapidly generated and changing. Models that lack the ability to generalize to unseen data
exhibit limited effectiveness in real-world applications. Therefore, using inductive models
is necessary in many cases. Flexible Manifold Embedding (FME) [11] was designed to solve
this problem. This method utilizes an objective function and linear mapping that enables
the model to anticipate the labels of samples. Inspired by the FME model, Reduced Flexible
Manifold Embedding (R-FME) was designed to work on large-scale datasets and to predict
the labels of unseen data. To anticipate the labels of data, ref. [11] FME proposed a GSSL
model that can also work on multi-view datasets.

The second limitation of GSSL methods is their scalability when dealing with large
datasets. Traditional approaches to constructing affinity graphs involve calculating pairwise
affinities between all nodes, leading to a computational complexity of O (n2). This quadratic
time complexity becomes impractical as the size of the dataset increases. To address this
issue, more efficient methods for constructing affinity matrices are needed. An affinity
matrix is a square matrix used to represent the similarity or affinity between pairs of data
points. Each entry in the matrix quantifies how similar or connected two data points are. In
the context of a graph, the affinity matrix can be seen as the adjacency matrix of a weighted
graph, where the weights represent the strength of the edges between nodes. For large-
scale datasets, constructing a full affinity matrix can be computationally expensive and
memory-intensive. Therefore, efficient strategies such as using approximations, leveraging
sparsity, or employing bipartite graphs can significantly reduce the computational burden.
These strategies enable more scalable and practical implementations of GSSL methods,
making them more feasible for large datasets. A bipartite graph that shows the similarity
between anchor points and data samples can be constructed with O (nm) order [12]. To
generate anchor points, Random selection, and k-means generation are often the two
available options. Using a set of clustering centers as anchor points, k-means clustering
enhances the representativeness of the results [1]. R-FME and Fast FME (F-FME) [13] are
two famous GSSL models that work on large-scale datasets. Graph-based learning is also
used in large-scale unsupervised learning; for instance, the model proposed in [14] can
cluster large-scale data using reinforcement learning technique.

The next limitation of GSSL methods is that not all samples have the same impact on
the model. For example, samples near the decision boundary based on the idea of anchor
points are more important than others [15,16]. Hence, their incorrect label estimation should
have a large effect on the loss function. In recent studies, much attention has been paid
to the weighted sample models. For example, studies [15,16] improved local and global
consistency (LGC) performance using weighted samples obtained from k-means.

To address these limitations, we propose a graph-based semi-supervised learning
approach that effectively handles large-scale datasets. Our model can predict unseen data
via a bias term and a projection matrix.

In summary, this article is notable for the ensuing accomplishments:

• A novel model based on graph-based semi-supervised learning is presented that
uses anchor samples and can work on large-scale datasets with reasonable computa-
tional complexity.

• By leveraging principal component analysis (PCA) for dimensionality reduction dur-
ing data preprocessing, the proposed model efficiently extracts key features relevant
to future prediction while simultaneously reducing computational runtime.

• Similar to R-FME, the presented model can effectively handle data sampled from
nonlinear manifold and provides a mapping for new data points to anticipate the
labels of unseen data.

• Using anchor points, we propose a weighting scheme that calculates weights for the
nodes according to their topological location.
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• By weighting labeled samples, our model can reduce the effect of outliers and em-
phasizes samples close to decision borders, which enhance the performance of base-
line methods.

The rest of this paper is organized as follows: Section 2 explains the related works in
the area of GSSL, considering their benefits and drawbacks. In Section 3, we provide an
overview of some fundamental preliminaries related to the proposed method. In Section 4,
we discuss the proposed model and how it labels large-scale data. Section 5 provides
a detailed description of the experimental results obtained using the proposed method.
Finally, the conclusion of our paper can be found in Section 6.

2. Related Work

In this section, we introduce related work in graph-based learning. In recent years,
graph-based semi-supervised and unsupervised learning approaches have been widely
used across various areas. Although many models have been proposed, each suffers from
some limitations.

Many studies focus on transductive learning on graphs. For unlabeled data prediction,
ref. [17] proposes a harmonic function-based model. Ref. [18] builds a model on manifold
assumptions, where nearby points and points on the same structure (cluster/manifold)
are likely to share labels. Ref. [19] introduces a method for constructing a similarity
matrix based on distance, where closer points have a higher similarity. Inspired by [19],
ref. [20] develops a multi-view reinforcement learning model. Building on [20], ref. [14]
addresses large-scale multi-view datasets using reinforcement learning and bipartite graphs
for unlabeled data prediction. Refs. [12,21] propose graph-based spectral clustering models
with anchor points identified by k-means to cluster large-scale data. Finally, models in [22–24]
leverage bipartite graphs for large-scale unlabeled data prediction.

While previous studies utilizing graph-based semi-supervised learning have achieved
success in various domains, many suffer from limitations in handling unseen data. Even
though the Flexible Manifold Embedding (FME) method in [11] utilizes an objective func-
tion to predict the labels of unseen data, it incorporates all samples, hindering its scalability
for large datasets. Subsequent studies, such as [9,25], addressed this limitation by propos-
ing models that leverage dynamic graph construction techniques similar to those employed
in [19]. Additionally, ref. [13] introduced two novel models, R-FME and F-FME, specifically
designed for large-scale data prediction, handling both labeled and unlabeled data.

Although the studies mention above perform well on real-world datasets, none of
them makes distinctions between data samples across the whole graph. It is worth saying
that data near the decision boundary are more important than the others [15,16]. Recent
studies have demonstrated that applying weights to samples can significantly enhance
model accuracy, as it allows the model to focus on more relevant data points. In [16]
Shannon’s self-information is used to generate weights for each node, which are then
incorporated into the local and global consistency (LGC) model. The study in [15] uses the
same idea with different uses of k-means and generates weights for data to help the model
have better performance. With attention to topology imbalance in many different datasets,
refs. [26,27] develop a model to generate weights for each labeled data point using a graph
neural network. It is worth saying that most studies on weighing nodes do not achieve
acceptable performance on large-scale datasets. The inability of these models to work on
large datasets limits their applicability in industry.

Inspired by [20], the model proposed in [14] works on a large-scale multi-view dataset
using reinforcement learning and bipartite graphs to predict the labels of unlabeled data.
The authors in [12,21] propose a model to cluster large-scale data using graph and spectral
clustering. In this model, anchor points are determined using k-means clustering, and
then using a bipartite graph and spectral clustering, the model clusters the data. Moreover,
the models in [22–24] predict the labels of unlabeled samples in large-scale datasets using
bipartite graph.
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3. Background

In this section, we provide an explanation for some of the mathematical notions used in
the suggested method. Section 3.1 involves a concise explanation about the primary steps in
SSL. In Section 3.2, we discuss a method called Weighted Samples-based Semi-Supervised
Classification (WS3C) [16] and finally, in Section 3.3, we review the R-FME [13] algorithm.

3.1. Preliminaries

In this paper, we use bold capital characters for matrices, whereas bold lowercase
letters represent vectors. Suppose we have n instances of data presented in matrix format

X = {Xl, Xu} = {x1, x2, . . . , xl, xl+1, . . . , xl+u} ∈ Rd×n,

where l, u, and n = l + u correspond to the number of labeled samples, unlabeled samples,
and the total number of training samples, respectively. Also, d indicates the dimensionality
of the samples. Moreover, we have a binary label matrix as

Y = {YlYu} =
{

y1; y2; . . . ; yl; yl+1; . . . ; yn
}
∈ Rn×c,

where c is the number of classes, and Yij = 1 if xi belongs to the jth class and zero otherwise.
Additionally, we have a soft-label matrix as

F = [f1; f2; . . . ; fn] ∈ Rn×c,

where Fij indicates how probable it is for the sample xi to be a member of class j. Also, we
have a graph as

G = {X, S},

where S ∈ Rn×n is a directionless affinity matrix, and Sij offers evidence of the similarity
between the two xi and xj nodes. In an anchor-based graph, similarities among all data
points are measured with respect to a small set of m data points known as anchors. Given
that m << n, these similarities provide an efficient approximation of the large adjacency
matrix using smaller-sized matrices.

For convenience, Table 1 illustrates the symbols used throughout this paper.

Table 1. Symbols used in this paper.

Symbol Description

n Number of samples

d Dimensionality of samples

l Number of labeled samples

o Number of labeled samples per class

u Number of unlabeled samples

m Number of anchor points

c Number of classes

p Percent of features

t Number of clusters

r Number of iterations

µ, γ Balance parameters

X ∈ Rd×n Data matrix

Y ∈ Rn×c Binary label matrix

F ∈ Rn×c Probability matrix of samples belonging to each label
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Table 1. Cont.

Symbol Description

Z ∈ Rd×m Matrix of anchors

S ∈ Rn×n Similarity matrix of data

A ∈ R(m+l)×(m+l) Probability matrix of sample belonging to same cluster

W̃ ∈ Rm×m Similarity matrix of anchors

B ∈ Rn×m Similarity matrix of data with anchors

L ∈ Rm×m Laplacian matrix of anchor graph

D̃ ∈ Rm×m Diagonal matrix

Q ∈ Rd×c Projection matrix

P ∈ R(m+l)×(m+l) Affinity matrix of labels and anchors

b ∈ Rc×1 Bias vector

U ∈ Rl×l Diagonal matrix for weights of labeled data

3.2. Review of WS3C Model

As discussed earlier, nodes closer to the decision boundary are more critical because
they are more prone to incorrect label predictions. Therefore, it is essential to identify and
assign greater importance to these nodes. In this section, we review the WS3C model and
describe how it weights samples.

Consider Xs ∈ Ra×n as one feature subset of data where a < d. We cluster this subset
and then define a clustering association graph as A ∈ Rn×n where Aij = 1 if the two xi
and xj samples are in the same cluster and zero otherwise. Assume that t clusterings are
conducted on different feature subspaces of the data, with each clustering defining the
association graph as Aτ. In [16], the authors define Ã as

Ã =
∑t

τ=1 Aτ

t
, (1)

where Ãij indicates the probability that two samples xi and xj are grouped in the same
cluster across t clusterings. Closing value of Ãij to 1 indicates that the two nodes are
relatively similar (or close together) in the feature space. This suggests a high probability of
them belonging to the same cluster. Conversely, a value close to 0 means that the nodes are
likely not in the same cluster and are relatively far from each other. The closer Ãij is to 0.5,
the more difficult it is to determine whether the nodes should be in the same cluster or not.

The authors in [16] considered samples with Ãij values close to 0.5 as samples with
high importance and defined a hard-to-cluster index between xi and xj as

Hij = −log2Ãij ∗
(
−log2

(
1 − Ãij

))
. (2)

Using Equation (2), Ãij values close to 0 and 1 will have small Hij values, while Ãij
values close to 0.5 will have high Hij values.

In this case, the hard-to-cluster index between xi and xj is solely measured using
Hij. To measure the index for each sample, we aggregate the index between xi and other
samples as

ηi = ∑n
j=1 Hij. (3)

High values for ηi indicate that a sample is on the border, while lower values suggest
that it is inside a cluster.
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3.3. Review of R-FME

As previously mentioned, the FME method [11] suffers from a key drawback: its
computational cost scales cubically with the number of samples. Therefore, when dealing
with large-scale datasets, the algorithm mandates extensive memory allocation and presents
considerable computational overhead. The authors in [13] addressed this problem by
adopting anchor points in the objective function of FME and called their method Reduced
FME (R-FME).

Consider the matrix Z = [z1, z2, . . . , zm] ∈ Rm×d as m anchor points, where m << n.
Also, we have the affinity matrix B ∈ Rn×m, which shows the similarity between n training
samples and the m anchor points. In our research, we leveraged the K-Nearest Neighbor
(KNN) method to compute matrix B. Specifically, we set k to 10, and the similarity between
data points was determined using a Gaussian function. Additionally, the similarity matrix
between the anchors can be calculated using W̃ = BTB. Consider that the estimated
labels for the anchors are stored in A ∈ Rm×c. Hence, the label of the training set can be
calculated using

F = BA. (4)

The objective function of the R-FME algorithm is given by

(A∗, Q∗, b∗) = min
A,Q,b

Tr
(

ATLA
)
+ Tr

(
BA − Y)TU(BA − Y)

+µ
(
∥ Q ∥2 + γ∥ ZTQ + 1bT − A ∥2) , (5)

where L is the laplacian matrix of anchor–anchor graph, U signifies the diagonal matrix
with l non-zero diagonal elements for the labeled samples, projection matrix is shown as Q,
b is the shift vector, and µ and γ are balance parameters.

The first term is the label smoothness of the anchors, the second term is the label fitting
term for the labeled samples, the third term is the regularization of the projection matrix,
and the forth one is the error in label estimation over the anchors using the projection matrix.

The mathematical formulations for Equation (5) provide closed-form solutions for A,
Q, and b. As described in [13], the solutions are as

A =
[
L̃ +BTUB + µHa

−µHaZT(ZHaZT + γI
)−1ZHa

]−1
BTUY

, (6)

Q =
(

ZHaZT + γI
)−1

ZHaA, (7)

and
b =

1
m

(
AT1 − QTZ1

)
, (8)

where L̃ is the normalized Laplacian graph calculated as L̃ = I − D̃
−1/2

W̃D̃
−1/2

, with
W̃ = BTB and D̃ ∈ Rm×m being the diagonal matrix with diagonal elements D̃ii = ∑j W̃ij,∀i.

Table 2 lists the full names of the acronyms used in this paper.

Table 2. Full names of articles referenced in this paper.

Method Name Description

GSSL Graph-Based Semi-Supervise Learning

LGC [18] Local and Global Consistency

FME [11] Flexible Manifold Embedding

F-FME [13] Fast Flexible Manifold Embedding

R-FME [13] Reduced Flexible Manifold Embedding
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Table 2. Cont.

Method Name Description

WS3C [16] Weighted Sample-Based Semi-Supervised Classification

AGR [22] Anchor Graph Regularization

EAGR [23] Efficient Anchor Graph Regularization

MMLP [28] Minimax Label Propagation

MTC [29] Minimum Tree Cut

1NN 1-Nearest Neighbor Classifier

LapRLS/L [30] Laplacian Regularized Least Square

4. Proposed Model

In this section, we explain the proposed model and explain each part of it. In Section 4.1,
we explain how we applied the weighting scheme to large-scale datasets, and in Section 4.2,
we explain the proposed objective function.

4.1. Weighting Labeled Samples

The node weighting idea proposed in [16] was applied to small datasets. Due to the
use of a clustering association matrix with dimensionality n × n, it is challenging to apply
this approach directly to large-scale datasets. In the following, we explain how we can make
this idea adaptable to large-scale datasets. What we need is to weigh the labeled samples in
the training set. However, the number of unlabeled samples is large, and it is not efficient
to use them all in the weighting algorithm. Therefore, instead of using the entire dataset
in the WS3C algorithm, we use the labeled data and m anchor points for the unlabeled
set of data and construct the data matrix P = [XlZ]. Instead of constructing a clustering
association graph with all nodes, we construct a graph containing only labeled data and
anchors. Thus, the dimensionality of the clustering graph becomes (m + l)× (m + l) and
m << n. From this, we can calculate a weight for each labeled data and consequently have
a vector containing weights for all labeled samples. The next step is to apply these weights
to the R-FME objective function. Figure 1 shows the flowchart of modified WS3C algorithm.
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4.2. Proposed Algorithm

One of the main limitations of the R-FME model is that it does not differentiate between
samples close to the decision boundaries and those far from them and assigns equal weights
to all samples. In other words, samples close to the decision boundaries are weighted the
same as those farther away. To address this limitation, we propose a modified objective
function that assigns topologically related weights to the labeled samples. We achieve
this by changing the label fitting error term, which is the second term in Equation (5).
As explained in Equation (5), the diagonal U matrix has l non-zero elements for labeled
samples. As explained in Section 4.1, we calculate a weight value vi for each labeled node
xi. Consequently, we change the U matrix values and use the calculated weights by setting

Uii = vi. (9)

For each labeled sample xi, this results in different weights for each labeled sample
based on its topological location.

The next step is to solve the proposed objective function. Since the vector v is calculated
separately and fixed in our objective function, the solution to the proposed method is
similar to that of the R-FME method, except that the U matrix in the proposed framework
is computed using Equation (9).

Figure 2 shows the flowchart of our proposed model. Moreover, Table 3 shows the
algorithm of the proposed method.

Table 3. Algorithm of the proposed model.

Input:

- n data points as X = {Xl, Xu} = {x1, x2, . . . xl, xl+1 . . . , xl+u} that n = l + u;
- Binary label of data: Y = [Yl, Yu];
- Parameters µ, γ, m, and t.

Output:

- The prediction label matrix of training data F, the optimal projection matrix Q, and the
optimal bias vector b are obtained.

- Apply K-means clustering to data set X, with the resulting cluster centroids serving as
anchor points.

- Construct data matrix P = [XlZ] using the provided anchors and labeled samples.
- Compute the matrix B ∈ Rn×m by adopting the KNN graph construction method.Compute

the weight of labeled samples using Equation (3).
- Construct the proposed U matrix using Equation (9).
- Compute A, Q, and b using Equations (6)–(8), respectively.
- Compute F with Equation (4).

The proposed method contains two algorithms: the weighting method and the R-FME
algorithm. Since the proposed method first applies the weighting method and then the
R-FME algorithm, the computational complexity of the proposed method is the summation
of two computational complexities of the W3SC and R-FME algorithms. In this case, the
computational complexity of the proposed method is

O
(

t(m + l)× (m × d × r) + t(m + l)2 + (m + l)3
)
+ O

(
nm2 + m3 + m2d + md2 + d3

)
.
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5. Experiment

In this section, we examine the efficacy of our proposed approach on two large-scale
datasets. In Section 5.1, the original datasets employed in our studies are described,
alongside the adopted preprocessing steps. Section 5.2 provides a detailed evaluation
of parameter tuning and identifies the optimal parameters for the proposed model. A
detailed analysis of how the proposed method performs compared to other state-of-the-art
algorithms is provided in Section 5.3.

5.1. Datasets

The following overview provides a brief description of the Norb and CoverType
large-scale datasets employed in this work.

Norb: It stands for NYU Object Recognition Benchmark, and it is a collection of images
and labels for generic object recognition in images. The dataset contains objects belonging
to 5 categories: four-legged animals, human figures, airplanes, trucks, and cars. There are
10 instances of each category, 5 for training and 5 for testing. The combined count of photo
pairs for testing and training reaches 24,300 in total. An example of images from the Norb
dataset is given in Figure 3.
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Figure 3. Example images from the Norb dataset [31].

CoverType: The dataset has 54 features, including 10 numerical variables such as
elevation, slope, and distance to water sources, and 44 binary variables indicating the
presence or absence of certain wilderness areas and soil types [32]. The Covertype dataset
is a popular benchmark for multiclass classification and semi-supervised learning methods.
The Covertype dataset is highly imbalanced. The majority class (Lodgepole Pine) accounts
for almost half of the samples, while the minority class (Cottonwood/Willow) accounts for
less than 1% [32]. Similar to [13], we select 80% of the data for training and 20% for testing.

For each database, we choose o samples from each class in the training set as labeled
samples, and the rest are set as unlabeled samples. For the Norb database, we have
o = 5, 7, and 10, and for the CoverType database, we have o = 30, 50, and 70. We aimed for
unbiased results regardless of the way the data were arranged, thus we formed 20 diverse
combinations of labeled and unlabeled data. Furthermore, our approach involves utilizing
PCA to decrease the dimensionality of the samples down to 50. In this case, our model can
focus on important features and work faster with lower computational processing.

Moreover, we need anchor points as data representatives. For simplicity, we use the
k-means clustering method to generate anchor points. In our study, similar to [13], we
separate the data into 1000 clusters and use their centroids as anchor points. Table 4 shows
a brief description of the datasets used in the model.

Table 4. Brief description of the adopted datasets.

Dataset Number of Samples Number of Features Number of Features
after PCA

Norb 48,600 9216 50

CoverType 581,012 54 50
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5.2. Parameter Tuning

In this section, we first discuss the parameters that need to be tuned in the proposed
model. The proposed method has four parameters: the two balance parameters of the
R-FME method (i.e., µ and γ) and two parameters for the WS3C model, namely the percent
of the feature subset (i.e., p) and the number of clusters (i.e., t).

To find the best parameters for each database, we select a subset of data and perform a
grid search. We vary p from 10% to 90% and t from 20 to 350, and then we calculate the
accuracy of the proposed method. The reported accuracy is calculated as the percentage
of correctly classified samples over the whole number of classifications. Figures 4 and 5
show the accuracy versus the parameters for the Norb dataset, with 10 labeled samples per
class for the train and test samples, respectively. Figure 4 shows a much flatter and more
consistent surface with only one prominent peak. This suggests that the algorithm is highly
stable across most parameter combinations, with a specific setting that leads to a slightly
higher accuracy. The overall consistency in the second plot highlights the algorithm’s
robustness and suggests that it can maintain high performance with minimal sensitivity
to the changes in parameters. In Figure 5, however, the landscape is more uneven, with
multiple peaks and valleys, suggesting that while the algorithm performs consistently
across most settings, certain combinations of parameters can lead to significant drops in
accuracy. This indicates that while the algorithm is resilient, there are particular parameter
settings that may result in suboptimal performance.

In the second experiment, we find the best values for µ and γ. Similar to the previous
experiment, we perform a grid search and evaluate the model’s accuracy based on different
values of µ and γ, for unlabeled data and test samples. Like before, we vary both µ and λ

from 10−30 to 1020, and then we calculate the accuracy of the proposed method. Figures 6
and 7 show the model results for the training and test datasets for the Norb dataset with
o = 10, respectively. Figures 8 and 9 show the model results for the training and test data
of the Covertype with o = 30, respectively.
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Based on our grid search results, the optimal parameters are outlined in Table 5 for
the Norb dataset and in Table 6 for the CoverType database. These tables present the
results of parameter tuning across various numbers of labeled samples per class. Each table
specifies the type of data split: train for model training and test for performance evaluation.
The “Labeled samples per class” column indicates the number of labeled examples from
each class used during training (e.g., 10 labeled samples per class in the first row). The
“Number of clusters” column denotes the number of clusters used in k-means clustering.
The “Percent of feature subset” column shows the percentage of features utilized in the
training process. Additionally, the “µ value” and “γ value” columns represent the balance
parameters of the R-FME method employed in the model.

Table 5. Best parameters for the Norb dataset.

Norb

Type #Labeled Samples per
Class #Cluster Percent of

Features µ Value λ Value

Train 10 20 40% 1012 106

Test 10 20 40% 101 106

Train 8 320 60% 101 106

Test 8 20 40% 101 106

Train 5 320 60% 101 106

Test 5 320 60% 101 106



Information 2024, 15, 591 15 of 19

Table 6. Best parameter for the CoverType dataset.

Cover Type

Type #Labeled Samples per
Class #Cluster Percent of

Features µ Value λ Value

Train 70 70 80% 103 102

Test 70 70 80% 10−6 10−3

Train 50 70 80% 103 103

Test 50 70 80% 103 102

Train 30 70 80% 103 103

Test 30 70 80% 103 102

5.3. Comparison with Other Methods

To further evaluate the performance of the proposed model, in this section, we compare
the accuracy of our model with that of state-of-the-art algorithms that work on large-scale
datasets. In this case, as we discussed before for the Norb dataset, we set O = 5, 7, and 10 as
the number of labeled nodes per class and set o = 30, 50, and 70 for the Cover type dataset.
To eliminate the impact of randomization of labeled samples on the classification results,
we generate 20 randomized selections of unlabeled and labeled data and report the average
accuracy rate along with its standard deviation. In Tables 7 and 8, we compare the model
accuracy of the proposed model with other state-of-the-art algorithms on the Norb and
Covertype datasets. All transductive methods, including AnchorGraphReg (AGR) [22], Effi-
cient Anchor Graph Regularization (EAGR) [23], Minimax Label Propagation (MMLP) [28],
and Minimum Tree Cut (MTC) [29], cannot predict labels for unseen test samples. AGR
tackles scalability challenges in graph-based semi-supervised learning by leveraging a
minimal set of anchor points, which allows for efficient nonparametric regression and
accurate label prediction across large datasets [22]. EAGR introduces Efficient Anchor
Graph Regularization (EAGR), an enhanced framework designed to address the limitations
of Anchor Graph Regularization (AGR) by improving both local weight estimation and
adjacency matrix effectiveness for large datasets [23]. MMLP introduces a path-based
semi-supervised learning (SSL) framework that efficiently propagates labels through a
minimal set of critical paths between labeled and unlabeled nodes, leveraging minimax
paths to enhance performance [28]. MTC presents Minimum Tree Cut, a novel graph-based
transductive classification method designed to address scalability and robustness issues
in large-scale data by approximating the graph with a spanning tree and minimizing the
cut size with a linear-time algorithm [29]. LapRLS introduces Linear Manifold Regular-
ization, a method designed to enhance large-scale semi-supervised learning by applying
linear manifold techniques to improve the handling of partially classified training data [30].
F-FME enhances scalability by utilizing anchor points for efficient graph construction and
provides a simplified closed-form solution, demonstrating significant improvements in
both computational efficiency and learning performance in large-scale semi-supervised
learning scenarios [13]. R-FME achieves linear scalability in both time and space by con-
structing the graph adjacency matrix using a small number of anchor points, resulting in a
simplified solution and demonstrating enhanced effectiveness and efficiency in large-scale
graph-based semi-supervised learning [13].

As we observed, the proposed method has better accuracy than other models. Com-
pared to the R-FME method, the accuracy is significantly enhanced by the weighted
technique, which highlights the importance of incorporating the weight of labeled samples
under the given scenario. Also, the proposed method has a lower standard deviation in
contrast to the R-FME method.
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Table 7. Average (%) and standard deviation of the accuracy over 20 trials for the proposed method
and 8 other competing algorithms on the Norb database.

Dataset Model
5 Labeled Samples 8 Labeled Samples 10 Labeled Samples

Unlabeled Test Unlabeled Test Unlabeled Test

Norb
N = 48,600

C = 5
M = 1000

AGR [22] 41 ± 4.04
(10−3)

- 48.28 ± 5.10
(10−3) - 52.34 ± 5.80

(10−3) -

EAGR [23] 44.79 ± 4.01
(10−3)

- 52.10 ± 3.85
(10−2) - 55.79 ± 4.31

(10−3) -

MMLP [28] 41.61 ± 3.11 - 48.21 ± 3.98 - 52.86 ± 4.88 -

MTC [29] 38.22 ± 3.76 - 41.89 ± 3.23 - 45.61 ± 4.01 -

1NN 36.68 ± 2.08 34.65 ± 2.36 41.08 ± 2.32 39.61 ± 2.06 44.65 ± 2.03 41.90 ± 1.80

LapRLS/L
[30]

45.23 ± 2.41
(10 3, 10−3)

40.75 ± 3.75
(10 3, 10−3)

49.76 ± 2.24
(10 3, 10−3)

45.10 ± 3.02
(10 3, 10−3)

51.9 ± 2.43
(10 3, 10−3)

46.88 ± 2.89
(10 3, 10−3)

F-FME [13] 46.85 ± 2.54
(10 0, 1015)

41.74 ± 3.84
(10 18, 10−3)

53.30 ± 3.11
(10 0, 1018)

46.36 ± 3.36
(10 3, 106)

56.30 ± 3.25
(10 0, 1018)

47.95 ± 3.13
(10 3, 106)

R-FME [13] 50.09 ± 2.54
(10 0, 103)

43.03 ± 3.58
(10 0, 106)

56.40 ± 3.44
(10 0, 10−24)

47.22 ± 3.21
(10 21, 10−6)

59.95 ± 3.29
(10 0, 103)

49.08 ± 2.69
(10 9, 106)

Proposed
Model

53.02 ± 2.25
(10 1, 106, 60, 320)

46.35 ± 2.34
(10 1, 106, 60, 320)

58.59 ± 2.42
(10 1, 106, 60, 320)

48.81 ± 1.58
(10 1, 106, 40, 20)

60.86 ± 1.91
(10 12, 106, 40, 20)

49.95 ± 2.03
(10 1, 106, 40, 20)

Table 8. Average (%) and standard deviation of the accuracy over 20 trials for the proposed method
and 8 other competing algorithms on the CoverType database.

Dataset Model
30 Labeled Samples 50 Labeled Samples 70 Labeled Samples

Unlabeled Test Unlabeled Test Unlabeled Test

Covtype
N = 464,807

C = 7
M = 1000

AGR [22] 44.00 ± 2.54
( 10−2) - 47.08 ± 2.73

(10−2) - 48.85 ± 2.30
(10−2) -

EAGR [23] 43.56 ± 2.4
(10 0)

- 46.35 ± 3.2
(10 0)

- 48.30 ± 2.69
(10 1)

-

MMLP [28] 40.58 ± 2.55 - 44.54 ± 2.79 - 46.90 ± 1.86 -

MTC [29] 40.50 ± 3.48 - 44.62 ± 3.39 - 48.21 ± 2.12 -

1NN 43.12 ± 2.26 43.17 ± 2.28 45.53 ± 1.13 45.61 ± 1.15 47.14 ± 1.60 47.19 ± 1.64

LapRLS/L
[30]

44.48 ± 3.27
(10−3, 10−6)

44.48 ± 3.30
(10−3, 10−9)

48.86 ± 2.83
(10−6, 10−9)

48.97 ± 2.83
(10−6, 10−6)

50.50 ± 2.23
(10−6, 10−9)

50.61 ± 2.25
(10−6, 10−9)

F-FME [13] 48.27 ± 2.79
(10 0, 106)

45.03 ± 6.62
(10 0, 106)

48.86 ± 2.83
(10 0, 106)

49.57 ± 2.98
(10 15, 10−9)

51.94 ± 1.95
(10 0, 106)

50.90 ± 2.08
(10 15, 10−9)

R-FME
[13]

47.70 ± 3.20
(10 15, 103)

45.88 ± 3.87
(10 9, 10−3)

49.54 ± 1.78
(10 24, 106)

50.01 ± 3.14
(10 9, 10−3)

51.89 ± 2.08
(10 9, 10−3)

53.36 ± 2.74
(10 9, 10−3)

Proposed
Model

49.12 ± 2.07
(10 3, 103, 70, 80)

48.86 ± 2.48
(10 3, 102, 70, 80)

51.14 ± 2.20
(10 3, 103, 70, 80)

51.52 ± 2.78
(10 3, 102, 70, 80)

52.63 ± 1.65
(10 3, 102, 70, 80)

53.97 ± 1.18
(10−6, 10−3, 70, 80)

To measure the performance of classification models, which aim to predict a categorical
label for each input instance in Figures 10 and 11, we show a Confusion Matrix for the Norb
with o = 5 and the Covertype dataset with o = 30. The matrix displays the number of true
positive (TP), true negative (TN), false positive (FP), and false negative (FN) produced by
the model on the test data. To have a better evaluation of our model, in Figures 10 and 11,
we show other parameter responses such as the F1-Score, Recall, and Precision.
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6. Conclusions

This paper presents a novel graph-based semi-supervised learning (GSSL) method
specifically designed for large-scale datasets. Our method builds upon the Reduced Flexible
Manifold Embedding (R-FME) framework and introduces several key innovations that
address the limitations of existing GSSL approaches.

6.1. Scalability

Our approach effectively scales to large datasets by employing a reduced-complexity
graph construction using anchor points. This strategy mitigates the computational and
memory constraints typically associated with large-scale GSSL methods.

6.2. Weighted Node Importance

We introduce a differential weighting scheme for label nodes based on their topological
proximity to class boundaries. This novel feature enhances classification performance by
prioritizing nodes that are critical for defining class boundaries, which is a significant
advancement over traditional methods that treat all nodes uniformly.

6.3. Unseen Data Prediction

Our method incorporates a mechanism to predict labels for previously unseen data,
addressing a major limitation of current models. This capability extends the applicability
of our approach to dynamic and evolving datasets encountered in real-world scenarios.
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6.4. Performance

Comprehensive evaluations of benchmark datasets demonstrate that our method
achieves state-of-the-art performance in terms of accuracy and computational efficiency,
surpassing existing GSSL techniques.

Future work will focus on further refining our model by reducing the number of
hyperparameters and exploring various weighting strategies. Additionally, integrating
our approach with Graph Neural Networks (GNNs) holds potential for further enhancing
performance in large-scale data labeling tasks. Our findings underscore the efficacy of
weighted models in advancing GSSL methodologies and suggest promising avenues for
future research.
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