
Citation: Cintra, R.J.; Martinez, P.;

Leite, A.; Coutinho, V.A.; Bayer, F.M.;

Madanayake, A.; Coelho, D.F.G.

Gaussian Kernel Approximations

Require Only Bit-Shifts. Information

2024, 15, 618. https://doi.org/

10.3390/info15100618

Academic Editor: Francesco Beritelli

Received: 2 September 2024

Revised: 4 October 2024

Accepted: 7 October 2024

Published: 9 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Article

Gaussian Kernel Approximations Require Only Bit-Shifts
R. J. Cintra 1,* , Paulo Martinez 2 , André Leite 3 , Vítor A. Coutinho 4 , Fábio M. Bayer 5 ,
Arjuna Madanayake 6,* and Diego F. G. Coelho 7

1 Departamento de Tecnologia, Universidade Federal de Pernambuco, Caruaru 55014-900, PE, Brazil
2 Siemens AG, 91058 Erlangen, BY, Germany
3 Departamento de Estatística, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil
4 Departamento de Computação, Universidade Federal Rural de Pernambuco,

Recife 52171-900, PE, Brazil
5 Departamento de Estatística and LACESM, Universidade Federal de Santa Maria,

Santa Maria 97105-900, RS, Brazil
6 Department of Electrical and Computer Engineering, Florida International University, Miami, FL 33174, USA
7 Independent Researcher, Calgary, AB T2Z 3C3, Canada
* Correspondence: rjdsc@de.ufpe.br (R.J.C.); amadanay@fiu.edu (A.M.)

Abstract: An approach to approximate the 2D Gaussian filter for all possible kernel sizes based on
the binary optimization technique is introduced. The approximate filter coefficients are designed as
negative powers of two, allowing hardware implementation with remarkable savings in the chip
area. The proposed approximate filters were evaluated and compared with competing methods using
both similarity analysis and edge detection applications. The proposed method and the competing
works for masks of size 3 × 3, 5 × 5, and 7 × 7 were implemented in a Xilinx Artix-7 FPGA. The
proposed method showed up to a 60.0% reduction in DSP usage and a 75.0% increase in the maximum
operating frequency when compared with state-of-art methods for the 7 × 7 kernel size case and a
48.8% reduction in the dynamic power normalized by the maximum operating frequency.

Keywords: Gaussian filtering; image processing; arithmetic complexity

1. Introduction

As the building block of many computer vision algorithms [1,2], the 2D Gaussian
filter is a fundamental tool in image processing. It is widely employed for noise removal
and edge detection [3] in the Sobel detector and the Canny algorithm [4,5]. Gaussian
filters are also relevant for image classification [6], texture recognition [7–9], 3D model
retrieval [10], satellite and aerial imaging and medical imaging [11–13], and in super-
resolution problems [14,15], such as in the context of surveillance [16]. Further recent
applications can be seen in the context of biomedical image processing for health monitoring
and clinical diagnoses [17]; magnetic resonance imagery [18]; identification of geological
faults [19]; shape-from-focus and depth estimation [20]; and image reconstruction [21].

However, 2D spatial filtering is prone to exhibit a significant multiplicative complexity,
often realized in floating-point representation in software implementations [1,4]. Because
of the ever-increasing demand for high resolution images and videos, the computational
complexity increase is substantial [22,23]. At the same time, economizing power and
resource consumption is of utmost importance in many scenarios such as consumer elec-
tronics [24,25], augmeted reality and robotics [26], space exploration [27], and biomedical
device technology [28].

In [29], low-complexity approximate Gaussian kernels were proposed for fixed-point
architectures. In the same vein, Garg and Sharma [30] proposed another low-complexity
approximation for 2D Gaussian filters. In [31], Cabello et al. [31] derived a low-complexity
approximate 2D Gaussian filter with a root mean square error (MSE) below 5%. Systems
implemented in hardware employing approximate low-complexity 2D Gaussian filtering

Information 2024, 15, 618. https://doi.org/10.3390/info15100618 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info15100618
https://doi.org/10.3390/info15100618
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0002-4579-6757
https://orcid.org/0000-0002-9869-6629
https://orcid.org/0000-0002-4718-9766
https://orcid.org/0000-0001-5698-6372
https://orcid.org/0000-0002-1464-0805
https://orcid.org/0000-0003-3478-6702
https://orcid.org/0000-0002-8067-0623
https://doi.org/10.3390/info15100618
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info15100618?type=check_update&version=1

Information 2024, 15, 618 2 of 17

would have the benefit of the power savings, resource consumption reduction, and im-
proved hardware metrics resulting from the application of the proposed method [22–28].
Generally, approximation methods consist of mapping the exact coefficients into fixed-point
representation at different precision levels. Such approaches pave the way for hardware
implementation requiring no multipliers. Nevertheless, a large number of additions and
bit-shifting operations—implied by the fixed-point representation—are still required.

In view of the above context, this work has multiple goals. In particular, we aim to

1. Provide a method for obtaining 2D Gaussian filter approximations for any odd integer
kernel size, based on binary integer programming methods;

2. Derive a mathematical formalism capable of suitably approximating each Gaussian
kernel filter coefficient to a single negative power of two, which requires only one
bit-shifting operation to be implemented in hardware;

3. Demonstrate the suitability of the approximate kernels in the context of image filtering;
4. Analyze the complexity and performance of the proposed method according to its

hardware realization compared to competing methods archived in the literature.

In Section 2, we review the mathematical background related to the Gaussian kernel,
propose the design criteria for the sought approximate kernels, and introduce the mathe-
matical formalism of an optimization problem that captures the adopted criteria. Section 3
provides the numerical results of the application of the proposed methods to particular filter
sizes. Additionally, a computational complexity analysis of the obtained approximations
was derived; and an experimental analysis in the context of fundamental image processing
filtering operations was also performed. Section 4 furnishes the implementation details of
the VLSI realization of the derived approximate filters along with performance analyses
in terms of hardware consumption and time-related measurements. Section 5 provides a
general discussion on the methods and results contained in this work. The conclusions are
in Section 6.

2. Approximate Gaussian Kernel
2.1. Definitions and Design Criteria

The exact 2D Gaussian filter consists of an N × N matrix, whose elements are given
by the sampled zero-mean 2D Gaussian distribution with variance σ2:

g[m, n] =
1
S
· 1

2πσ2 · exp
{
−(m2 + n2)

2σ2

}
, −N − 1

2
≤ m, n ≤ N − 1

2
, (1)

where N > 1 and odd; quantities m and n are, respectively, the vertical and horizontal
coordinate values of the kernel relative to the matrix central element; and S is a normalizing
constant to ensure that the kernel coefficients sum to one, so that pixel intensity is preserved
and bias is prevented [3]. In this work, we consider filters with unitary variance (σ2 = 1),
which comprise a commonly employed class of Gaussian filters [29,30].

In general, a good approximation for digital filters [32,33] should be capable of (i) de-
manding low computational complexity and (ii) retaining the meaningful mathematical
properties of the exact filter [34]. For this, we adopt the following design requirements for
the sought 2D Gaussian filter approximation:

Req. 1. The approximate filter coefficients must be trivial multiplicands [35];
Req. 2. The arithmetic operation counts (number of bit-shifting operations and additions)

for the approximate filter coefficient representation must be minimal;
Req. 3. The distance between the exact and approximate filters must be minimized

according to an energy-based measure;
Req. 4. The resulting filter must possess unitary gain to preserve the average intensity

of processed data [29];
Req. 5. The symmetry of the exact Gaussian kernel must be transferred to its

approximate counterpart.

Information 2024, 15, 618 3 of 17

Reqs. 1 and 2 are satisfied when the entries of the approximate filter are negative
powers of two, which are trivial multiplicands and require no extra additions in the
associate binary representation. Since 0 < g[m, n] < 1, the approximate filter coefficients
must satisfy ĝ[m, n] ∈ {2−1, 2−2, . . . , 2−K}, where K is the number of bits allocated to the
fractional part of the binary representation.

2.2. Optimization Framework

The design requirements discussed above must have a mathematical structure. We
aim to transform the problem of finding good 2D Gaussian filter approximations into
the problem of obtaining negative powers of two that optimally approximate the exact
coefficients. To that end, we introduce an optimization problem that employs an N × N × K
indicator function x[m, n, k], m, n = −(N − 1)/2, . . . ,−1, 0, 1, . . . , (N − 1)/2, k = 1, 2, . . . , K,
specifying the particular negative power of two to be assigned for each approximate
coefficient ĝ[m, n]. Thus, we have

x[m, n, k] =

{
1, if ĝ[m, n] = 2−k,
0, otherwise.

(2)

To ensure that only one negative power of two is assigned to ĝ[m, n], the following
condition must hold true:

K

∑
k=1

x[m, n, k] = 1, ∀m, n. (3)

Notice that the exact filter coefficients satisfy the following identity:
K

∑
k=1

g[m, n] · x[m, n, k] = g[m, n] ·
K

∑
k=1

x[m, n, k] = g[m, n] · (1) = g[m, n]. (4)

In turn, the approximate filter can also be related to the indicator function x[m, n, k], accord-
ing to the following format:

ĝ[m, n] =
K

∑
k=1

2−k · x[m, n, k], −N − 1
2

≤ m, n ≤ N − 1
2

. (5)

To satisfy Req. 3, we adopt the mean square error (MSE) as the metric to be minimized,
as suggested in [3]. Thus, the MSE between the exact and approximate filters can be
written as

MSE(ĝ, g) =
1

N2

N−1
2

∑
m=− N−1

2

N−1
2

∑
n=− N−1

2

(
ĝ[m, n]− g[m, n]

)2
. (6)

By invoking (4) and (5), the inner quadratic term of the above double summation can
be elaborated as follows:[

K

∑
k=1

2−k · x[m, n, k]−
K

∑
k=1

g[m, n] · x[m, n, k]

]2

(7)

=

[
K

∑
k=1

(2−k − g[m, n]) · x[m, n, k]

]2

(8)

=
K

∑
k=1

d2(m, n, k)︸ ︷︷ ︸
S1

+
K

∑
k=1

K

∑
j=1
j ̸=k

d(m, n, j) · d(m, n, k)

︸ ︷︷ ︸
S2

, (9)

Information 2024, 15, 618 4 of 17

where d(m, n, k) = (2−k − g[m, n]) · x[m, n, k].
Let us examine the two summations at the right-hand side of (9), S1 and S2, respectively.

For the single summation S1, it is true that x2[m, n, k] = x[m, n, k], because x[·, ·, ·] is an
indicator function (cf. (2)). Therefore, we have

S1 ≜
K

∑
k=1

d2(m, n, k) =
K

∑
k=1

(2−k − g[m, n])2 · x2[m, n, k] (10)

=
K

∑
k=1

(2−k − g[m, n])2 · x[m, n, k]. (11)

As for the double summation S2, we remark that x[m, n, j] · x[m, n, k] = 0, for j ̸= k,
which is a direct consequence of (2) and (3). Thus, it follows that

S2 ≜
K

∑
k=1

K

∑
j=1
j ̸=k

d(m, n, j) · d(m, n, k) (12)

=
K

∑
k=1

K

∑
j=1
j ̸=k

(2−j − g[m, n]) · x[m, n, j] · (2−k − g[m, n]) · x[m, n, k] (13)

= 0. (14)

By making the appropriate substitutions, applying the result back into (9), and disregarding
the outer multiplicative constant in (6), we obtain the following minimization problem:

min

N−1
2

∑
m=− N−1

2

N−1
2

∑
n=− N−1

2

K

∑
k=1

(
2−k − g[m, n]

)2
· x[m, n, k]. (15)

Moreover, the quantities x[m, n, k] must be subject to the constraints mathematically de-
scribed below.

1. Due to Req. 4, we have

N−1
2

∑
m=− N−1

2

N−1
2

∑
n=− N−1

2

ĝ[m, n] = 1. (16)

Therefore, the above equation can be re-cast in suitable terms for the optimization
problem as the following constraint:

N−1
2

∑
m=− N−1

2

N−1
2

∑
n=− N−1

2

K

∑
k=1

2−k · x[m, n, k] = 1. (17)

2. Req. 5 imposes the natural symmetry structure of the original exact 2D Gaussian filter
to the approximate candidate solutions. Therefore, the sought optimal solution must
satisfy the following condition. If

g[m1, n1] = g[m2, n2], (18)

then

x[m1, n1, k] = x[m2, n2, k], (19)

for −N−1
2 ≤ m1, n1, m2, n2 ≤ N−1

2 and k = 1, 2, . . . , K.

Information 2024, 15, 618 5 of 17

In view of the considerations above, we obtain that the originally quadratic problem of
minimizing the MSE in (6) was recast as an integer linear programming matching problem
with N2 · K variables. The problem in (15) with the above listed constraints is suitably
structured to take advantage of contemporary linear programming packages dedicated
to binary optimization, such as the GNU Linear Programming Kit (GLPK) [36], which
employs the Hungarian algorithm [37].

3. Results and Analyses

In this section, we provide particular solutions to the discussed optimization prob-
lem, which are submitted to mathematical and empirical analyses. For the mathematical
analysis, we performed a computational complexity evaluation where the arithmetic com-
plexity costs were quantified. For the empirical analysis, we considered image processing
experiments—blurring and edge detection—where standard images were submitted to the
proposed approximate 2D Gaussian filters. In both analyses, we supplied comprehensive
comparisons with exact and competing methods.

3.1. Particular Solutions

The mathematical optimization framework described in the previous section is general
enough to permit the derivation of approximate filters for any variation in the design
parameters, namely the number of fractional bits K and the filter size N. Thus, depending
on the specific conditions required by the application context at hand, a different approx-
imation might be obtained. In order to advance our analysis, in this paper, we selected
popular values for the filter size: N ∈ {3, 5, 7} [38–42].

As for the values of K, we selected 6, 8, and 15 bits. These values were adopted to
allow fair comparisons with the competing designs in the literature. Another reason to
select relatively small values of K, such as 6, is due to the fact that the approximation
structures are more likely to benefit computing architectures with modest computational
power and hardware resources. In the following, we fixed K = 8 and varied N ∈ {3, 5, 7}.
For N = 3, we have

2−2 ·

2−2 2−1 2−2

2−1 1 2−1

2−2 2−1 2−2

. (20)

For instance, the 5 × 5 approximation is given by

2−3 ·

2−4 2−5 2−3 2−5 2−4

2−5 2−1 1 2−1 2−5

2−3 1 1 1 2−3

2−5 2−1 1 2−1 2−5

2−4 2−5 2−3 2−5 2−4

. (21)

Finally, for the 7 × 7 kernel, the implied approximation is

2−3 ·

2−5 2−5 2−5 2−5 2−5 2−5 2−5

2−5 2−4 2−3 2−2 2−3 2−4 2−5

2−5 2−3 2−1 2−1 2−1 2−3 2−5

2−5 2−2 2−1 1 2−1 2−2 2−5

2−5 2−3 2−1 2−1 2−1 2−3 2−5

2−5 2−4 2−3 2−2 2−3 2−4 2−5

2−5 2−5 2−5 2−5 2−5 2−5 2−5

. (22)

The above approximate Gaussian kernels are displayed as 3D surfaces in Figures 1–3. The
exact Gaussian kernels are also shown for comparison.

Information 2024, 15, 618 6 of 17

−1
0

1 −1

0

10.1

0.15

0.2

(a)

−1
0

1 −1

0

1
5 · 10−2

0.1
0.15

0.2
0.25

(b)

−1
0

1 −1

0

1
−5

0

5
·10−2

(c)

Figure 1. Three-dimensional plots for the (a) exact Gaussian kernel, (b) proposed approximate
Gaussian kernel, and (c) the error for N = 3 and K = 8.

−2 −1 0 1 2 −2
−1

0
1

2
0

5 · 10−2

0.1

0.15

(a)

−2 −1 0 1 2 −2
−1

0
1

2
0

5 · 10−2

0.1

0.15

(b)

−2 −1 0 1 2 −2
−1

0
1

2
0

5
·10−2

(c)

Figure 2. Three-dimensional plots for the (a) exact Gaussian kernel, (b) proposed approximate
Gaussian kernel, and (c) the error for N = 5 and K = 8.

Information 2024, 15, 618 7 of 17

−3−2−1 0 1 2 3 −3−2−1
0 1 2 30

5 · 10−2

0.1

0.15

(a)

−3−2−1 0 1 2 3 −3−2−1
0 1 2 3

0
5 · 10−2

0.1

0.15

(b)

−3−2−1 0 1 2 3 −3−2−1
0 1 2 30

2

4

·10−2

(c)

Figure 3. Three-dimensional plots for the (a) exact Gaussian kernel, (b) proposed approximate
Gaussian kernel, and (c) the error for N = 7 and K = 8.

3.2. Computational Complexity Analysis

These approximate filters were assessed in terms of the computational cost. For this,
we evaluated the arithmetic complexity resulting from the application of the Gaussian ker-
nel. The arithmetic complexity consists of counting the number of fundamental arithmetical
operations required to perform a given mathematical operation [35]. The counting is chiefly
independent of technological particularities and takes into consideration the employed
number representation and general architecture-related aspects of computing [43]. We
measured two arithmetic complexity figures: the number of multiplications (# of Multipli-
cations) and the number of additions (# of Additions). In usual computer architectures, the
cost of evaluating a multiplication is much higher than the cost of an addition operation [35],
and bit-shifting operations can be virtually cost-free in comparison to multiplication or
addition operations.

The assessed arithmetic complexities are displayed in Table 1 and compared with
the complexities of the exact filter and the competing approximations [29–31]. The null
multiplication counts imply that the multiplications are being computed approximately
by means of a sequence of bit-shifting operations, which are more efficient compared to
executing the full multiplication algorithm.

Because we aim at the implementation of low-complexity 2D Gaussian filters, we
used the minimal wordlength to represent the Gaussian filter coefficients, according to
the number representations outlined by Garg–Sharma [30] and by Khorbotly–Hassan [29],
corresponding to 6-, 8-, and 15-bit representations for the 3 × 3, 5 × 5, and 7 × 7, respectively
(using the Khorbotly–Hassan [29] notation, we used (6,−8), (8,−10), and (15,−17), for
masks sizes 3 × 3, 5 × 5, and 7 × 7, respectively).

Information 2024, 15, 618 8 of 17

Table 1. Evaluation of arithmetic complexity.

N Wordlength Method # of Multiplications # of Additions

3 6

Exact 9 8
Khorbotly–Hassan [29] 0 18
Garg–Sharma [30] 0 13
Cabello et al. [31] 0 31
Proposed 0 8

5 8

Exact 25 24
Khorbotly–Hassan [29] 0 66
Garg–Sharma [30] 0 41
Cabello et al. [31] 0 76
Proposed 0 24

7 15

Exact 49 48
Khorbotly–Hassan [29] 0 180
Garg–Sharma [30] 0 77
Cabello et al. [31] 0 103
Proposed 0 48

3.3. Image Processing Experimental Analysis

We employed the proposed approximate filters in three computational experiments
based on two popular image processing contexts: (i) image blurring and (ii) edge detection.
The two described blurring experiments demonstrate the usage of the discussed methods
for smoothing (lowpass) spatial filtering; whereas the one edge detection experiment
illustrates sharpening (highpass) spatial filtering.

For the blurring experiment, we performed relative and absolute measurements. The
first blurring experiment was a relative measurement procedure. It aimed to capture the
performance of the proposed method and its competitors relative to the exact method.
In other words, individual approximate filtered output images were compared with the
corresponding filtered output images from the exact filter. The outputs were compared
with the outputs.

For the second blurring experiment, we had an absolute measurement procedure.
This experiment aimed at assessing the overall system performance. The goal was to
quantify the absolute performance of all methods, including the exact one, comparing the
filtered output images with the unfiltered input image. The outputs were compared with
the inputs.

In terms of the edge detection experiment, we show evidence of the effectiveness of the
approximate methods as a preprocessing computational stage for the Sobel algorithm [3].

3.3.1. Blurring Experiment: Relative Measurements

For the image blurring experiment, forty-four 8-bit images from a public image
database [44] with different sizes, including 256 × 256, 512 × 512, and 1024 × 1024,
were employed. We applied the exact and approximate 2D Gaussian filters to the images
in grey-level format and compared the filtered outputs from the proposed and competing
methods against the filtered output from the exact filter. This approach quantified the
accuracy deviation of the approximate methods relative to the exact method.

The measurements were performed according to two image quality assessment metrics:
peak signal-to-noise ratio (PSNR) [45] and structural similarity index measure (SSIM) [46].
The values of both metrics were averaged over all images to reduce the variance effects [47].
Table 2 presents the results.

Information 2024, 15, 618 9 of 17

Table 2. Error analysis for the relative measurement blurring experiment. Average PSNR and SSIM
measurements from the filtered output images relative to the exact output images.

N Wordlength Method PSNR SSIM

3 6

Khorbotly–Hassan [29] 65.0584 0.9997
Garg–Sharma [30] 57.3749 0.9994
Cabello et al. [31] 53.3941 0.9984
Proposed 51.9224 0.9984

5 8

Khorbotly–Hassan [29] 66.0763 0.9999
Garg–Sharma [30] 41.8214 0.9984
Cabello et al. [31] 50.7928 0.9985
Proposed 51.8503 0.9981

7 15

Khorbotly–Hassan [29] 85.2323 0.9999
Garg–Sharma [30] 57.3294 0.9991
Cabello et al. [31] 43.4979 0.9984
Proposed 50.4509 0.9977

3.3.2. Blurring Experiment: Absolute Measurements

To better visualize the performance of the proposed approximations, we considered
a zoomed 32 × 32 patch extracted from the 512 × 512 image texmos3.s512 (‘USC texture
mosaic #3’) from [44]. This image block was submitted to the exact 2D Gaussian filter and
to the proposed approximate filters. The resulting images are shown in Figure 4.

The PSNR and SSIM measurements were evaluated considering all the filtered output
images compared with the unfiltered input image. Table 3 summarizes the results.

Table 3. Error analysis for the absolute measurement blurring experiment. The PSNR and SSIM
measurements from the approximate and exact output images shown in Figure 4 relative to the
original unfiltered image.

N Method PSNR SSIM

3

Exact 25.9539 0.99997
Khorbotly–Hassan [29] 25.9678 0.99997
Garg–Sharma [30] 25.7377 0.99996
Cabello et al. [31] 25.9373 0.99997
Proposed 26.6959 0.99997

5

Exact 25.0316 0.99996
Khorbotly–Hassan [29] 25.0022 0.99996
Garg–Sharma [30] 24.7035 0.99995
Cabello et al. [31] 24.9931 0.99996
Proposed 25.1014 0.99996

7

Exact 24.9563 0.99996
Khorbotly–Hassan [29] 24.9565 0.99996
Garg–Sharma [30] 24.8965 0.99996
Cabello et al. [31] 24.8295 0.99995
Proposed 23.6457 0.99994

3.3.3. Edge Detection Experiment

The proposed 5 × 5 2D filter was also considered as a preprocessing step for edge
detection using the Sobel algorithm [4]. We considered the image 4.1.03 (‘Female’) from [44]
corrupted by additive white Gaussian noise with variance equal to 1% of the pixel repre-
sentation range. Figure 5 depicts the results.

Without preprocessing, the intensity of the detected edges was similar to background
noise. On the other hand, filtering provided better differentiation. The Sobel algorithm
equipped with the selected approximate filter was able to generate edges with comparable
qualitative performance.

Information 2024, 15, 618 10 of 17

(a) Original

(b) Exact, 3 × 3 (c) Exact, 5 × 5 (d) Exact, 7 × 7

(e) Proposed, 3 × 3 (f) Proposed, 5 × 5 (g) Proposed, 7 × 7

Figure 4. (a) Original unfiltered zoomed image, (b–d) filtered output images using the exact 2D Gaus-
sian filters, and (e–g) filtered output images using the proposed approximate 2D Gaussian filters. The
kernel sizes were 3 × 3, 5 × 5, and 7 × 7, respectively.

(a) (b) (c)

(d) (e) (f)

(g)

Figure 5. Two-dimensional Gaussian filtering as a preprocessing step for Sobel edge detection.
(a) Original and (b) noisy images. Output filtered images according to 5 × 5 kernels: (c) exact,
(d) Khorbotly–Hassan [29], (e) Garg–Sharma [30], (f) Cabello et al. [31], and (g) proposed.

Information 2024, 15, 618 11 of 17

4. VLSI Architectures
4.1. FPGA Realization

The proposed 2D filters of size 3 × 3, 5 × 5, and 7 × 7 were implemented on a field
programmable gate array (FPGA). The device used for the hardware implementation was the
Xilinx Artix-7 XC7A35T-1CPG236C (Xilinx, San Jose, CA, USA). The methods by Khorbotly–
Hassan [29] and Garg–Sharma [30] were set with identical sizes and physically realized.

The design of an N × N mask, N ∈ {3, 5, 7}, considers a row-wise serial rearrangement
of the input image, where the pixels are flattened into a 1D array of length N2. Because
symmetric mask coefficients have the same value, the corresponding pixels can be summed
before being scaled by the corresponding quantities approximating those coefficients. The
intermediary quantities are added in pairs forming a trellis, which pipelines each inter-
mediary value in a systolic manner. Each stage of the pipeline that involves a summation
increases the wordlength by one bit; at the end of the processing, the final quantity is scaled
down and represented as an 8-bit binary number.

The proposed designs were tested in the FPGA by connecting it to a controller state
machine and connected to an universal asynchronous receiver–transmitter (UART) block.
The UART core interfaced with the controller state machine using the ARM Advanced
Microcontroller Bus Architecture Advanced eXtensible Interface 4 (AMBA AXI-4) (Xilinx,
San Jose, CA, USA) protocol.

The personal computer (PC) communicated with the controller through the UART
by sending a batch of pixels corresponding to the pixels that would overlap with the
kernel mask through a raster scanner manner. The batch of pixels was then passed to the
design and processed. Then, the controller state machine sent the mask output back to
the personal computer, which stored it. This operation was performed over the whole
image and then saved to a text file containing all the processed pixels’ values. The file with
the data obtained through the FPGA processing was then compared with the output of
processing the original images with a software model of the proposed mask implemented
in Python. The above procedure was repeated for the competing methods to ensure the
correct implementation. For a qualitative assessment, Figure 6 shows the result of the
image processing using the proposed kernel and the competing methods in the FPGA. The
use of the proposed kernel did not impact the image quality degradation (cf. Table 2).

4.2. Performance Measurements

The FPGA implementations were evaluated according to the following metrics: the
number of occupied slices, the number of look-up tables (LUT), the flip-flop (FF) count,
the number of digital signal processing multipliers (DSP), the critical path delay (Tcpd),
the maximum operating frequency Fmax = T−1

cpd, and the dynamic power (Dp) normalized
by Fmax. The measured results are shown in Tables 4–6 for kernel sizes 3 × 3, 5 × 5,
and 7 × 7, respectively.

Table 4. FPGA measures of the implemented architectures for masks of size 3 × 3 using
6-bit coefficients.

Metric
Method

Proposed Khorbotly–Hassan [29] Garg–Sharma [30] Cabello et al. [31]

Slices 34 32 39 33
LUT 84 83 106 86
FF 102 84 107 84
DSP 0 2 0 2
Tcpd (ns) 3.938 4.220 3.763 5.362
Fmax (MHz) 253.936 236.966 265.745 186.496
Dp (mW MHz−1) 0.012 0.013 0.012 0.021

Information 2024, 15, 618 12 of 17

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 6. Image filtering using the implemented hardware for 3 × 3, 5 × 5, and 7 × 7 filters according
to the proposed method and the competing methods by Khorbotly–Hassan [29], Garg–Sharma [30],
and Cabello et al. [31]. (a) Proposed, 3 × 3. (b) Ref. [29], 3 × 3. (c) Ref. [30], 3 × 3. (d) Ref. [31], 3 × 3.
(e) Proposed, 5 × 5. (f) Ref. [29], 5 × 5. (g) Ref. [30], 5 × 5. (h) Ref. [31], 5 × 5. (i) Proposed, 7 × 7.
(j) Ref. [29], 7 × 7. (k) Ref. [30], 7 × 7. (l) Ref. [31], 7 × 7.

Table 5. FPGA measures of the implemented architectures for masks of size 5 × 5 using
8-bit coefficients.

Metric
Method

Proposed Khorbotly–Hassan [29] Garg–Sharma [30] Cabello et al. [31]

Slices 92 82 90 80
LUT 222 221 237 224
FF 305 293 303 295
DSP 0 2 1 2
Tcpd (ns) 4.208 5.801 5.405 5.888
Fmax (MHz) 237.643 172.384 185.014 169.837
Dp (mW MHz−1) 0.021 0.041 0.032 0.047

Table 6. FPGA measures of the implemented architectures for masks of size 7 × 7 using
15-bit coefficients.

Metric
Method

Proposed Khorbotly–Hassan [29] Garg–Sharma [30] Cabello et al. [31]

Slices 172 166 157 152
LUT 446 451 444 383
FF 584 534 536 547
DSP 4 16 10 5
Tcpd (ns) 4.486 6.189 5.717 5.642
Fmax (MHz) 222.916 161.577 174.917 177.242
Dp (mW MHz−1) 0.031 0.105 0.052 0.051

Information 2024, 15, 618 13 of 17

For the sake of further comparison, we included the case where the competing methods
were implemented using 8-bit coefficients in Table 7.

Table 7. FPGA measures of the implemented architectures for masks of size 3 × 3 using
8-bit coefficients.

Metric
Method

Proposed Khorbotly–Hassan [29] Garg–Sharma [30] Cabello et al. [31]

Slices 34 33 32 33
LUT 84 85 83 86
FF 102 84 84 84
DSP 0 3 2 2
Tcpd (ns) 3.938 5.682 4.220 5.362
Fmax (MHz) 253.936 175.994 236.967 186.496
Dp (mW MHz−1) 0.012 0.023 0.013 0.021

5. Discussion

In this section, we offer a discussion on the mathematical, experimental, and techno-
logical contributions detailed in this paper.

5.1. Mathematical Formalism and Design Criteria

The proposed method ensures that the filter gain is equal to one, due to the nor-
malization constraint of the optimization problem, as shown in (16) and (17). Therefore,
all our proposed solutions satisfy the normalization condition by construction. This is
one of contributions of our work, because the competing methods do not always satisfy
the normalization condition. In [29], the kernel coefficients are not required to maintain
strict unity sum. The Gaussian kernel coefficients proposed in [30] also do not sum to
one. Similarly, in [31], Cabello et al. do not necessarily furnish normalized kernels. In
those works, the kernels sum to a close-to-one value, which might or might not result in
(i) perceptual changes in the brightness level of the output filtered images, (ii) filtering bias,
and (iii) small changes related to the inter-pixel covariances.

In [30,31], the kernel symmetry could be maintained as a consequence of the direct
element-wise approximation employed in those works. In contrast, the proposed method
adds a layer of sophistication because it does not approximate the kernel coefficients
individually. We take into consideration the entire filter matrix and the interplay between
the coefficients is captured by the adopted optimization problem to ensure a minimal
approximation error. Thus, to ensure the rotational invariance symmetry of the obtained
Gaussian kernels, a specific constraint was included in the optimization problem, as shown
in (16) and (17).

In the proposed approach, the approximate kernel coefficients are required to be non-
null, because the approximate filter coefficients are approximated to a negative power of
two. Accordingly, the value zero could only be achieved at large negative powers capable
of incurring a loss of significance. Thus, by design and on purpose, zero was not included
in the current study. Another reason to avoid zero entries is to prevent the degeneration of
the approximate Gaussian kernel of size N into the approximation of size N − 1 (i.e., the
larger kernel is equal to the smaller kernel but padded with surrounding zeros). Yet another
reason to restrict zeros was to permit a fair comparison with the considered competing
methods, whose kernels are populated with non-null values.

The next step in this research includes an extension of the current methodology to
allow not only zeros but also a control variable on the complexity of non-null entries. In
the current method, we restricted the entries to be a single power of two. However, in
principle, we could tailor the method to additively accommodate extra powers of two to
ensure that the total complexity does not exceed a prescribed upper bound in the most
effective manner (minimum error). To the best of our knowledge, the current literature
does not provide such a method.

Information 2024, 15, 618 14 of 17

5.2. Complexity Analysis and Image Experiments

As a consequence of approximating the filter coefficients to powers of two, no multipli-
cation is required, and the obtained additive complexity is substantially smaller compared
with the competing methods [29,30]. The additive complexity could be lower because we
restricted the approximations to a single power of two as opposed to an additive combina-
tion of powers of two, as shown in [30], for instance. Such mathematical properties greatly
benefit the hardware realization, because the powers of two correspond to rewiring (no
actual computation cost) in an application-specific integrated circuit (ASIC).

As shown in Table 1, the equivalent 5 × 5 proposed filter requires 62.5% and 41.5%
fewer arithmetic operations than the designs in [29] and [30], respectively. Similar gains are
observed for the 3 × 3 and 7 × 7 kernels, where the proposed approximation could outper-
form the method in [30] with 38.5% and 37.5% fewer arithmetic operations, respectively.

Overall, Figures 4–6 emphasize the visual similarity among the results provided by
the proposed approximate filter when compared with the exact 2D Gaussian filter and
with the competing methods. The key point in favor of our work is that the proposed
approximations could generate virtually indistinguishable results, in some cases even better
ones (cf. Table 2), at a much smaller computational cost (cf. Table 1).

By inspecting the numerical results from Tables 2 and 3, one notices that the proposed
method offered quantitatively similar results to the methods described in [29–31] at a lower
computational cost, as shown in Table 1. For instance, in the relative measurement blurring
experiment, notice that all approximate kernels inflict a PSNR degradation. However, the
proposed approximate filters consistently achieved high values of PSNR and SSIM—above
50 dB and 0.99, respectively (Table 2). Such measurements can be considerably beyond the
quality level required in typical image processing tasks [3]. In the absolute measurement
blurring experiment, the results show the effectiveness of the approximations, as the
measurements were largely consubstantial (Table 3).

As a consequence of the reported similar image quality measurements, the main crite-
rion for comparison of the methods becomes the computational cost, which is favorable to
the proposed methods as shown in Table 1 and also in the hardware realization assessment
discussed in the next subsection.

5.3. Hardware Realization

The proposed 2D Gaussian filters show reductions in hardware resources compared
with the Khorbotly–Hassan [29], Garg–Sharma [30], and Cabello et al. [31] designs. From
Table 6, we notice that the 7 × 7 proposed kernel requires fewer than half of the DSP
blocks required by the corresponding mask following the method in [30], one-quarter of
the number required by the method in [29], and slightly less than the number required by
the method in [31]. The number of slices, FFs, and LUTs in the proposed mask are slightly
higher than the competing methods. Indeed, the DSP blocks themselves possess a signifi-
cantly larger gate count and also require a larger area in the FPGA chip when compared
with simple FFs and LUTs [48] (pp. 13–14). One can notice that the measured Fmax is 37.96%,
27.44%, and 25.76% higher than the measurements from the Khorbotly–Hassan [29], Garg–
Sharma [30], and Cabello et al. [31] masks, respectively. The normalized dynamic power Dp
is also considerably reduced, at 70.47%, 40.38%, and 39.21% smaller than the figures from
the methods in [29], [30], and [31], respectively, when 7 × 7 masks are considered.

Considering the reported figures in Table 5, the number of slices, FFs, and LUTs for
the 5 × 5 proposed methods are very close to the numbers of the corresponding competing
methods. However, the proposed 5 × 5 kernel design does not require DSP blocks, which
allows it to reach a higher maximum operating frequency Fmax, 37.85%, 28.44%, and 39.92%
higher than the measurements from the designs in [29], [30], and [31], respectively. The
normalized dynamic power is also reduced when compared with the competing methods.

As shown in Table 4, the 3 × 3 proposed masks does not show significant improve-
ments when compared with the 6-bit coefficient competitors. This is because of the small
mask size and the very low magnitude of its coefficients, which render hardware archi-

Information 2024, 15, 618 15 of 17

tectures that require few gates. In such a case, the maximum operating frequency of the
proposed mask outperforms the Khorbotly–Hassan method but does not overcome the
performance of the Garg–Sharma mask for the 6-bit coefficient case. Additionally, from
the results shown in Table 7, one can notice that the proposed design outperforms both
competitors in terms of resources (fewer DSP blocks) and the resulting maximum operating
frequency and normalized dynamic power.

Final Remarks and Recommendations

As final remarks, we emphasize that our method can be applied, with little modifi-
cation, to other classes of 2D digital filters. To that end, it suffices that the relevant error
metric and the sought structure be suitably translated into an objective function and a set
of constraints matching the optimization framework advanced in this paper.

The main advantage of our proposed method is the low computation complexity of
the resulting filters, which implies low-complexity hardware. On the other hand, the po-
tential disadvantage is the possible performance degradation that any approximate method
might effect.

We emphasized the word “possible” because, although degradation is often present in
approximate methods, it is plausible that no degradation might take place as measured by
the overall system’s figures of merit. Indeed, if the application context presents a system
error floor capable of absorbing the implied numerical losses effected by the approximate
computation stage, then the approximation errors will not be detectable.

An example of such a case where an approximation might not degrade the system
performance is found in the approximation of the transform stage of JPEG-like compres-
sion [49]. Indeed, if taken in isolation, an approximation might underperform compared to
its exact counterpart; however, when it is part of a complex system with unclear interac-
tions among nonlinear sub-systems (e.g., quantization, decimation, source coding, etc.), the
overall system performance might not be impacted (might even be enhanced), as shown
in [50].

In the image processing experiments described in Section 3.3, the output images
have consistently shown good results as corroborated by the favorable PSNR and SSIM
measurements. It is quite reasonable to infer that the reported quality figures relative to
the exact case are exceeding acceptance levels in many applications, especially in those
contexts that involve human vision. Thus, a comprehensive analysis of the balance between
the computational costs, accuracy, and performance ultimately rests on the technology user
with a specific context and known loss functions for decision making.

6. Conclusions

In this paper, a method for obtaining approximate 2D Gaussian filters is proposed.
The proposed approximate methods present a significant reduction in computational cost.
This fact suggests that the proposed filters enable the use of algorithms such as image
blurring and edge detection in contexts of limited computing resources and low-energy
devices. The hardware usage results also indicate that the proposed filter is the most power
efficient compared with the competing methods, as it has the lowest computational cost,
while presenting practically acceptable qualitative and quantitative performance.

Author Contributions: Conceptualization, P.M. and R.J.C.; theory and methodology, R.J.C.; soft-
ware, D.F.G.C., A.L., R.J.C., F.M.B., and P.M.; digital implementation, D.F.G.C., V.A.C., and A.M.;
writing—original draft preparation, P.M. and R.J.C.; writing—review and editing, R.J.C., D.F.G.C.,
F.M.B., V.A.C., and A.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research was partially funded by CNPq (Brazil) under grants 315047/2023-2 (R.J.C.)
and 308578/2023-6 (F.M.B.).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Information 2024, 15, 618 16 of 17

Data Availability Statement: All original contributions from this study are documented within the
article. For further details, please contact the corresponding authors.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Szeliski, R. Computer Vision: Algorithms and Applications; Springer: Berlin/Heidelberg, Germany, 2010.
2. Jain, A.K. Fundamentals of Digital Image Processing; Prentice-Hall, Inc.: Englewood Cliffs, NJ, USA, 1989.
3. Gonzalez, R.C.; Woods, R.E. Digital Image Processing; Pearson: Essex, UK, 2018.
4. Duda, R.O.; Hart, P.E. Pattern Classification and Scene Analysis; Wiley Interscience, Inc.: New York, NY, USA, 1973.
5. Burger, W.; Burge, M.J. Principles of Digital Image Processing; Springer: Hagenberg, Austria; Washigton, DC, USA, 2008. [CrossRef]
6. Deng, H.; Clausi, D.A. Gaussian MRF rotation-invariant features for image classification. IEEE Trans. Pattern Anal. Mach. Intell.

2004, 26, 951–955. [CrossRef] [PubMed]
7. Greenspan, H.; Belongie, S.; Goodman, R.; Perona, P. Rotation invariant texture recognition using a steerable pyramid. In

Proceedings of the 12th International Conference on Pattern Recognition, Jerusalem, Israel, 9–13 October 1994; Volume 2,
pp. 162–167.

8. Tzagkarakis, G.; Beferull-Lozano, B.; Tsakalides, P. Rotation-invariant texture retrieval with gaussianized steerable pyramids.
IEEE Trans. Image Process. 2006, 15, 2702–2718. [CrossRef] [PubMed]

9. Tzagkarakis, G.; Beferull-Lozano, B.; Tsakalides, P. Rotation-Invariant Texture Retrieval via Signature Alignment Based on
Steerable Sub-Gaussian Modeling. IEEE Trans. Image Process. 2008, 17, 1212–1225. [CrossRef]

10. Ohbuchi, R.; Furuya, T. Scale-weighted dense bag of visual features for 3D model retrieval from a partial view 3D
model. In Proceedings of the IEEE 12th International Conference on Computer Vision (ICCV) Workshops, Kyoto, Japan,
27 September–4 October 2009; pp. 63–70.

11. Nasrollahi, K.; Moeslund, T. Super-resolution: A comprehensive survey. Mach. Vis. Appl. 2014, 25, 1423–1468. [CrossRef]
12. Irani, M.; Peleg, S. Super resolution from image sequences. In Proceedings of the 10th International Conference on Pattern

Recognition Proceedings, Atlantic City, NJ, USA, 16–21 June 1990; Volume 2, pp. 115–120.
13. Li, S.; Hao, Q.; Kang, X.; Benediktsson, J.A. Gaussian Pyramid Based Multiscale Feature Fusion for Hyperspectral Image

Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 3312–3324. [CrossRef]
14. Baker, S.; Kanade, T. Super-Resolution: Reconstruction or Recognition? In Proceedings of the IEEE-EURASIP Workshop on

Nonlinear Signal and Image Processing, Baltimore, MD, USA, 3–6 June 2001.
15. Baker, S.; Kanade, T. Limits on Super-Resolution and How to Break Them. IEEE Trans. Pattern Anal. Mach. Intell. 2002,

24, 1167–1183. [CrossRef]
16. Baker, S.; Kanade, T. Hallucinating faces. In Proceedings of the Fourth IEEE International Conference on Automatic Face and

Gesture Recognition, Grenoble, France, 28–30 March 2000; pp. 83–88.
17. Rawash, Y.Z.; Al-Naami, B.; Alfraihat, A.; Owida, H.A. Advanced Low-Pass Filters for Signal Processing: A Comparative Study

on Gaussian, Mittag-Leffler, and Savitzky-Golay Filters. Math. Model. Eng. Probl. 2024, 11, 1841–1850. [CrossRef]
18. Suryanarayana, G.; Chandran, K.; Khalaf, O.I.; Alotaibi, Y.; Alsufyani, A.; Alghamdi, S.A. Accurate Magnetic Resonance

Image Super-Resolution Using Deep Networks and Gaussian Filtering in the Stationary Wavelet Domain. IEEE Access 2021,
9, 71406–71417. [CrossRef]

19. Mora, J.P.; Bedle, H.; Marfurt, K.J. Fault enhancement using probabilistic neural networks and Laplacian of a Gaussian filter: A
case study in the Great South Basin, New Zealand. Interpretation 2022, 10, SC1–SC15. [CrossRef]

20. Ali, U.; Lee, I.H.; Mahmood, M.T. Guided image filtering in shape-from-focus: A comparative analysis. Pattern Recognit. 2021,
111, 107670. [CrossRef]

21. Wei, Z.; Yan, Q.; Lu, X.; Zheng, Y.; Sun, S.; Lin, J. Compression Reconstruction Network with Coordinated Self-Attention and
Adaptive Gaussian Filtering Module. Mathematics 2023, 11, 847. [CrossRef]

22. Lee, J.; Yun, J.; Lee, J.; Hwang, I.; Hong, D.; Kim, Y.; Kim, C.G.; Park, W. An Effective Algorithm and Architecture for the
High-Throughput Lossless Compression of High-Resolution Images. IEEE Access 2019, 7, 138803–138815. [CrossRef]

23. Kim, J.; Kyung, C. A Lossless Embedded Compression Using Significant Bit Truncation for HD Video Coding. IEEE Trans.
Circuits Syst. Video Technol. 2010, 20, 848–860.

24. Choi, J. Review of low power image sensors for always-on imaging. In Proceedings of the 2016 International SoC Design
Conference (ISOCC), Jeju, Republic of Korea, 23–26 October 2016; pp. 11–12.

25. Venkateshbabu, S.; Ravichandran, C.G. Low power accuracy substitution circuit for image processing application. In Pro-
ceedings of the 2017 International Conference on IoT in Social, Mobile, Analytics and Cloud (I-SMAC), Palladam, India,
10–11 February 2017; pp. 275–279.

26. Noraky, J.; Sze, V. Low power depth estimation for time-of-flight imaging. In Proceedings of the 2017 IEEE International
Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 2114–2118.

27. Taher, F.; Zaki, A.; Elsimary, H. Design of low power FPGA architecture of image unit for space applications. In Proceedings
of the IEEE 59th International Midwest Symposium on Circuits and Systems (MWSCAS), Abu Dhabi, United Arab Emirates,
16–19 October 2016; pp. 1–4.

http://doi.org/10.1007/978-1-84800-191-6
http://dx.doi.org/10.1109/TPAMI.2004.30
http://www.ncbi.nlm.nih.gov/pubmed/18579954
http://dx.doi.org/10.1109/TIP.2006.877356
http://www.ncbi.nlm.nih.gov/pubmed/16948315
http://dx.doi.org/10.1109/TIP.2008.924390
http://dx.doi.org/10.1007/s00138-014-0623-4
http://dx.doi.org/10.1109/JSTARS.2018.2856741
http://dx.doi.org/10.1109/TPAMI.2002.1033210
http://dx.doi.org/10.18280/mmep.110713
http://dx.doi.org/10.1109/ACCESS.2021.3077611
http://dx.doi.org/10.1190/INT-2021-0127.1
http://dx.doi.org/10.1016/j.patcog.2020.107670
http://dx.doi.org/10.3390/math11040847
http://dx.doi.org/10.1109/ACCESS.2019.2943194

Information 2024, 15, 618 17 of 17

28. Turcza, P.; Duplaga, M. Hardware-Efficient Low-Power Image Processing System for Wireless Capsule Endoscopy. IEEE J. Biomed.
Health Inform. 2013, 17, 1046–1056. [CrossRef]

29. Khorbotly, S.; Hassan, F. A modified approximation of 2D Gaussian smoothing filters for fixed-point platforms. In Proceedings of
the 2011 IEEE 43rd Southeastern Symposium on System Theory, Auburn, AL, USA, 14–16 March 2011; pp. 151–159.

30. Garg, B.; Sharma, G.K. A quality-aware Energy-scalable Gaussian Smoothing Filter for image processing applications. Microprocess.
Microsyst. 2016, 45, 1–9. [CrossRef]

31. Cabello, F.; León, J.; Iano, Y.; Arthur, R. Implementation of a fixed-point 2D Gaussian Filter for Image Processing based on FPGA.
In Proceedings of the 2015 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA), Poznan, Poland,
23–25 September 2015; pp. 28–33.

32. Lee, A.; Ahmadi, M.; Jullien, G.A.; Miller, W.C.; Lashkari, R.S. Digital filter design using genetic algorithm. In Proceedings of the
IEEE Symposium on Advances in Digital Filtering and Signal Processing, Victoria, BC, Canada, 5–6 June 1998; pp. 34–38.

33. Williams, C.S. Designing Digital Filters; Prentice-Hall, Inc.: Englewood Cliffs, NJ, USA, 1986.
34. Cintra, R.J.; Bayer, F.M.; Tablada, C.J. Low-complexity 8-point DCT approximations based on integer functions. Signal Process.

2014, 99, 201–214. [CrossRef]
35. Blahut, R.E. Fast Algorithms for Signal Processing; Cambridge University Press: Cambridge, MA, USA, 2010.
36. Makhorin, A.O. GNU Linear Programming Kit. Available online: www.gnu.org/software/glpk/ (accessed on 4 July 2024).
37. Kuhn, H.W. The Hungarian method for the assignment problem. Nav. Res. Logist. Q. 1955, 2, 83–97. [CrossRef]
38. Karthik, P.; Tejashwini, N.C. Design and implementation of adaptive Gaussian filters for the removal of salt and pepper noise on

FPGA. In Proceedings of the International Conference on Electrical, Electronics, Communication, Computer and Optimization
Techniques (ICEECCOT), Mysuru, India, 9–10 December 2016; pp. 53–59. [CrossRef]

39. Talbi, F.; Alim, F.; Seddiki, S.; Mezzah, I.; Hachemi, B. Separable convolution Gaussian smoothing filters on a Xilinx FPGA
platform. In Proceedings of the Fifth International Conference on the Innovative Computing Technology (INTECH 2015), Galcia,
Spain, 20–22 May 2015; pp. 112–117. [CrossRef]

40. Khan, T.M.; Bailey, D.G.; Khan, M.A.U.; Kong, Y. Efficient Hardware Implementation For Fingerprint Image Enhancement Using
Anisotropic Gaussian Filter. IEEE Trans. Image Process. 2017, 26, 2116–2126. [CrossRef]

41. Song, S.; Lee, S.; Ko, J.P.; Jeon, J.W. A hardware architecture design for real-time Gaussian filter. In Proceedings of the IEEE
International Conference on Industrial Technology (ICIT), Busan, Republic of Korea, 26 February–1 March 2014; pp. 626–629.
[CrossRef]

42. Joginipelly, A.; Varela, A.; Charalampidis, D.; Schott, R.; Fitzsimmons, Z. Efficient FPGA implementation of steerable Gaussian
smoothers. In Proceedings of the 44th Southeastern Symposium on System Theory (SSST), Jacksonville, FL, USA, 11–13 March
2012; pp. 78–82. [CrossRef]

43. Levitin, A. Introduction to the Design & Analysis of Algorithms, 3rd ed.; Pearson: Boston, MA, USA, 2012.
44. University of Southern California, Signal and Image Processing Institute. The USC-SIPI Image Database; University of Southern

California: Los Angeles, CA, USA, 2011.
45. Huynh-Thu, Q.; Ghanbari, M. Scope of validity of PSNR in image/video quality assessment. Electron. Lett. 2008, 44, 800–801.

[CrossRef]
46. Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE

Trans. Image Process. 2004, 13, 600–612. [CrossRef]
47. Kay, S.M. Fundamentals of Statistical Signal Processing: Estimation Theory; Prentice-Hall, Inc.: Upper Saddle River, NJ, USA, 1993;

Volume 1.
48. Xilinx. 7 Series DSP48E1 Slice User Guide; Xilinx: San Jose, CA, USA, 2018.
49. Bouguezel, S.; Ahmad, M.O.; Swamy, M.N.S. Low-complexity 8 × 8 transform for image compression. Electron. Lett. 2008,

44, 1249. [CrossRef]
50. Oliveira, R.S.; Cintra, R.J.; Bayer, F.M.; da Silveira, T.L.T.; Madanayake, A.; Leite, A. Low-complexity 8-point DCT approximation

based on angle similarity for image and video coding. Multidimens. Syst. Signal Process. 2019, 30, 1363–1394. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/JBHI.2013.2266101
http://dx.doi.org/10.1016/j.micpro.2016.02.012
http://dx.doi.org/10.1016/j.sigpro.2013.12.027
www.gnu.org/software/glpk/
http://dx.doi.org/10.1002/nav.3800020109
http://dx.doi.org/10.1109/ICEECCOT.2016.7955185
http://dx.doi.org/10.1109/INTECH.2015.7173372
http://dx.doi.org/10.1109/TIP.2017.2671781
http://dx.doi.org/10.1109/ICIT.2014.6895002
http://dx.doi.org/10.1109/SSST.2012.6195131
http://dx.doi.org/10.1049/el:20080522
http://dx.doi.org/10.1109/TIP.2003.819861
http://dx.doi.org/10.1049/el:20082239
http://dx.doi.org/10.1007/s11045-018-0601-5

	Introduction
	Approximate Gaussian Kernel
	Definitions and Design Criteria
	Optimization Framework

	Results and Analyses
	Particular Solutions
	Computational Complexity Analysis
	Image Processing Experimental Analysis
	Blurring Experiment: Relative Measurements
	Blurring Experiment: Absolute Measurements
	Edge Detection Experiment

	VLSI Architectures
	FPGA Realization
	Performance Measurements

	Discussion
	Mathematical Formalism and Design Criteria
	Complexity Analysis and Image Experiments
	Hardware Realization

	Conclusions
	References

