
Citation: Fadja, A.N.; Che, S.R.;

Atemkemg, M. Intelligent Vision

System with Pruning and Web

Interface for Real-Time Defect

Detection on African Plum Surfaces.

Information 2024, 15, 635. https://

doi.org/10.3390/info15100635

Academic Editors: Khalid Sayood, Jie

Liu, Shanmei Liu and Fang Yang

Received: 9 August 2024

Revised: 25 September 2024

Accepted: 8 October 2024

Published: 14 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

  information

Article

Intelligent Vision System with Pruning and Web Interface for
Real-Time Defect Detection on African Plum Surfaces
Arnaud Nguembang Fadja 1,* , Sain Rigobert Che 2 and Marcellin Atemkemg 3

1 Department of Engineering, University of Ferrara, Via Saragat 1, 44122 Ferrara, Italy
2 African Institute for Mathematical Sciences, Limbe P.O. Box 608, Cameroon; sain.che@aims-cameroon.org
3 Department of Mathematics, Rhodes University, P.O. Box 94, Makhanda 6140, South Africa;

m.atemkeng@ru.ac.za
* Correspondence: arnaud.nguembafadja@unife.it

Abstract: Agriculture stands as the cornerstone of Africa’s economy, supporting over 60% of the
continent’s labor force. Despite its significance, the quality assessment of agricultural products
remains a challenging task, particularly at a large scale, consuming valuable time and resources.
The African plum is an agricultural fruit that is widely consumed across West and Central Africa
but remains underrepresented in AI research. In this paper, we collected a dataset of 2892 African
plum samples from fields in Cameroon representing the first dataset of its kind for training AI
models. The dataset contains images of plums annotated with quality grades. We then trained
and evaluated various state-of-the-art object detection and image classification models, including
YOLOv5, YOLOv8, YOLOv9, Fast R-CNN, Mask R-CNN, VGG-16, DenseNet-121, MobileNet, and
ResNet, on this African plum dataset. Our experimentation resulted in mean average precision scores
ranging from 88.2% to 89.9% and accuracies between 86% and 91% for the object detection models
and the classification models, respectively. We then performed model pruning to reduce model sizes
while preserving performance, achieving up to 93.6% mean average precision and 99.09% accuracy
after pruning YOLOv5, YOLOv8 and ResNet by 10–30%. We deployed the high-performing YOLOv8
system in a web application, offering an accessible AI-based quality assessment tool tailored for
African plums. To the best of our knowledge, this represents the first such solution for assessing this
underrepresented fruit, empowering farmers with efficient tools. Our approach integrates agriculture
and AI to fill a key gap.

Keywords: agriculture; artificial intelligence; object detection; African plums; YOLOv5; YOLOv8;
YOLOv9; Fast R-CNN; Mask R-CNN; VGG-16; DenseNet-121; MobileNet; ResNet

1. Introduction

Accurate assessment of fruit quality is essential for ensuring food security and optimiz-
ing agricultural production. In recent years, there has been a growing need for innovative
solutions to address the challenges faced in fruit quality evaluation. Computer vision and
artificial intelligence (AI) techniques are increasingly being explored for applications such
as fruit detection and grading. Plums are an important fruit crop worldwide, with several
varieties commonly grown across regions for their nutritional and economic value. AI
and machine learning have been applied to tasks like plum detection, sorting, and qual-
ity assessment for plums like the European plum. However, one variety that remains
understudied is the African plum.

The African plum, also known as Dacryodes edulis [1], is a significant crop grown
by smallholders in Africa. As a biodiverse species, it contributes significantly to food
security and rural livelihoods in over 20 countries. Commonly found in home gardens and
smallholdings, African plum is estimated to support millions of farm households through
food, nutrition, and income generation [2]. It bears fruit year-round, providing a reliable
staple high in vitamins C and A [3]. Leaves are also collected as food seasoning or fodder.
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Its multi-purpose uses enhance resilience for subsistence farmers. Culturally, African plum
plays dietary and medicinal roles, with all plant parts consumed or utilized. It forms part of
the region’s cultural heritage and traditional ecological knowledge systems [4]. However,
lack of improved production practices and limited access to markets have prevented
scale-up of its commercial potential [5]. Better quality assessment and grading methods
specific to African plum could help address this challenge. Our study aims to develop such
techniques using artificial intelligence as a means to support livelihoods dependent on this
vital traditional crop.

This research aims to explore the application of machine learning [6,7] and computer
vision algorithms [8,9] to address this issue and enable industrial-scale quality control. This
study focuses on developing a computer vision system for contactless quality assessment
of African plums, a widely cultivated crop in Africa.

In recent years, the field of computer vision, particularly deep learning (DL) algorithms,
has emerged as a promising solution for fruit assessment [10,11]. Deep convolutional neural
networks (CNNs) have revolutionized image classification and identification [12], enabling
accurate and reliable analysis of fruit quality. Recent research studies have demonstrated
the effectiveness of object detection models in fruit assessment. For instance, a study
published in 2023 utilized the YOLOv5 model to assess apple quality, achieving an accuracy
of 90.6% [13]. Similarly, a research paper from 2023 showcased the successful application
of the Mask R-CNN model in identifying and localizing defects in citrus fruits, achieving
an F1-score of 85.6% [14].

Pruning techniques have emerged as a valuable approach to further optimize the
performance of object detection models in fruit assessment. Pruning involves selectively re-
moving redundant or less informative parameters, connections, or structures from a trained
model, leading to more efficient and computationally lightweight models. By applying
pruning techniques, researchers have successfully enhanced the efficiency and effectiveness
of fruit assessment models. For instance, in a study published in 2022, pruning techniques
were employed to optimize a YOLOv5 model used for apple quality assessment, resulting in
a more compact and computationally efficient model while maintaining high accuracy [15].

Recent research highlights the remarkable capabilities of object detection models, such
as YOLO, Mask R-CNN, Fast R-CNN, VGG-16, DenseNet-121, MobileNet, and ResNet,
in accurately identifying and localizing external quality attributes of various fruits. The suc-
cessful application of these models demonstrates their potential for automating fruit quality
assessment and enhancing grading processes, contributing to overall improvements in fruit
assessment and quality control practices.

This study focuses on developing models based on a range of architectures, includ-
ing YOLOv5 [16], YOLOv8 [17], YOLOv9 [18], Fast R-CNN [19], Mask R-CNN [20],
VGG-16 [21], DenseNet121 [22], MobileNet [23], and ResNet [24], specifically tailored
for the external quality assessment of African plums.

To assess the quality of African plums, we collected a comprehensive dataset of over
2892 labeled images, divided into training, validation, and testing sets. The aforementioned
models were trained, fine-tuned, and validated. Among these, YOLOv8 demonstrated
the highest accuracy in detecting surface defects. We integrated YOLOv8 into a prototype
inspection system to evaluate its effectiveness in contactless quality sorting at an industrial
scale. This integration aims to enhance the efficiency of sorting processes, improving
productivity and quality assurance in the agricultural industry. The main contributions of
this work are as follows:

• Developed models based on YOLOv9, YOLOv8, YOLOv5, Fast R-CNN, Mask R-CNN,
VGG-16, DenseNet-121, MobileNet, and ResNet for African plum quality assessment;

• Implemented pruning techniques to optimize YOLOv9, YOLOv8, YOLOv5, MobileNet,
and ResNet models, resulting in more efficient, computationally lightweight models;

• Collected a new labeled dataset of over 2892 African plum samples, the first of its kind
for this fruit crop, see Figure 1;
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• Deployed the best-performing model (YOLOv8) in a web interface for real-time defect
detection [25]. A running instance [26].

Such data-driven solutions could enhance African agriculture by addressing produc-
tion challenges for underutilized native crops.

Figure 1. Sample images showcasing plum fruits on the fruit tree [27].

2. Related Works on Plum

The application of computer vision and deep learning for agricultural product quality
assessment and defect detection has gained significant attention in recent years. Several
studies have explored the utilization of convolutional neural networks (CNNs) for detecting
defects and classifying the quality grades of various fruits, vegetables, and grains.

In the context of fruit defect detection, CNNs have been employed to detect defects
on apples [28], oranges [29], strawberries [30], and mangoes [31], among other fruits.
For instance, Khan et al. [32] developed a deep learning-based apple disease detection
system. They constructed a dataset of 9000 high-quality apple leaf images covering various
diseases. The system uses a two-stage approach, with a lightweight classification model
followed by disease detection and localization. The results showed promising classification
accuracy of 88% and a maximum average precision of 42%. Similarly, Faster R-CNN models
have been employed for accurate defect detection in citrus fruits, achieving comparable
accuracies [33]. Additionally, Kusrini et al. [34] compared deep learning models for mango
pest and disease recognition using a labeled tropical mango dataset. VGG16 achieved
the highest accuracy at 89% in validation and 90% in testing, with a testing time of 2 s
for 130 images.

The application of object detection models such as Faster R-CNN, SSD, YOLO, DenseNet,
and Mask R-CNN has also been prevalent in agricultural applications [35]. Notably,
YOLO models trained on mango images have demonstrated high accuracy in detecting
anthracnose disease [36]. YOLOv3 has shown superior performance compared to other
models in detecting apple leaf diseases [32]. Recent studies have also utilized DenseNet-
121 and VGG-16 models for fruit defect detection and quality assessment [37], further
highlighting their effectiveness in this domain. Additionally, MobileNet and ResNet
architectures have been extensively studied and applied in various computer vision tasks.
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The MobileNet architecture, introduced by Szegedy et al. [38], utilizes inception modules
to achieve high accuracy while maintaining computational efficiency.

While these studies have made significant contributions to fruit quality assessment and
defect detection, the incorporation of pruning techniques to optimize model performance
and streamline computational complexity has been gaining attention. In our work, we
extended the existing research by applying pruning techniques to five models: YOLOv9,
YOLOv8, YOLOv5, MobileNet, and ResNet. By selectively removing redundant parameters
and connections, pruning helped improve the efficiency and speed of these models without
compromising their accuracy.

In summary, deep CNNs and object detection models have demonstrated remarkable
capabilities in assessing agricultural product quality and detecting defects. Our work
contributes to this field by targeting the African plum and demonstrating the feasibility
of an intelligent vision system for automating post-harvest processing. The comprehen-
sive evaluation of our pruned models on the African plum dataset showcased improved
efficiency without sacrificing accuracy. However, further research is needed to address
real-world complexities, such as variations in shape, size, color, and imaging conditions,
when deploying these models practically in African settings. The inclusion of Densenet-121
and VGG-16 models in our study further expands the range of models used for fruit defect
detection, enhancing the comprehensiveness of our research in this area.

3. Data Collection and Dataset Description

The acquisition of a robust and comprehensive dataset is essential for the development
of an effective deep learning model. In this section, we present the details of our data col-
lection process and describe the African plum dataset collected from major plum-growing
regions in Cameroon.

We utilized an android phone to capture a total of 2892 images, encompassing both
good and defective African plums. Our data collection strategy involved acquiring images
from three distinct agro-ecological regions: Littoral (coastal tropical climate), North West
(highland tropical climate), and North (Sudano-Sahelian climate). By capturing images
across diverse regions, we ensured the inclusion of variations in plum size, shape, color,
and defects, making our dataset representative of real-world scenarios.

The image capture process took place at two different orchards within each region
over a three-month period, coinciding with the peak harvesting season. To enhance the
robustness of our dataset, we took images against varying backgrounds, such as soil, white
paper boards, shed walls, etc. This approach aimed to expose the deep learning model to
different visual contexts, ultimately improving its performance. Furthermore, we captured
images of the plums from multiple angles to portray their comprehensive appearance.

Considering the impact of lighting conditions on image quality, we acquired images
at different times of the day, including early morning, noon, afternoon, and dusk. We
specifically accounted for both shade and direct sunlight conditions during image capture.
To ensure the dataset covered a wide range of defects, we included various types of
defective plums, such as bruised, cracked, rotten, spotted, and unaffected good plums.
Each plum was imaged multiple times, resulting in high-resolution images that provide
detailed information for analysis.

To facilitate subsequent analysis and model training, all images were annotated using
the labeling tool in Roboflow. Our annotation process involved marking bounding boxes
around each plum in the images. We defined three distinct classes: good plums, bad plums
(defective plums), and a background class that indicates the absence of fruit in the image.To
maintain annotation consistency, a single annotator was responsible for labeling the entire
dataset. Additionally, another annotator validated the efficiency of the annotations. Also,
extensive data cleaning procedures were employed to ensure data quality and integrity.
As a result, we obtained a final curated dataset consisting of 2892 annotated images.

Figure 1 showcases sample images depicting plum fruits on the fruit tree, providing a
visual representation of the African plum.
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Our diverse and comprehensive African plum dataset captures the inherent complexi-
ties of the real-world agricultural setting. The dataset incorporates variations in growing
conditions, plum quality, and imaging environments, making it an invaluable resource for
training robust deep learning models for automated defective plum detection. The avail-
ability of such a dataset will contribute to advancements in agricultural technology and
pave the way for more efficient and accurate fruit assessment processes.

4. Model Architecture

In this section, we present an evaluation of different state-of-the-art convolutional
neural network (CNN) architectures for classification and object detection. The objective is
to determine the most suitable approach for our specific application of object detection in
the context of the African plum dataset.

4.1. Model and Technique Descriptions

We consider the following eight CNN architectures for evaluation:

1. You Only Look Once (YOLO): YOLO frames object detection as a single-stage re-
gression problem, directly predicting bounding boxes and class probabilities in one
pass [39]. We experiment with YOLOv5, YOLOv8, and YOLOv9, which build upon
smaller, more efficient backbone networks like CSPDarknet53 compared to earlier
YOLO variants. These models divide the image into a grid and associate each grid
cell with bounding box data. YOLOv8 and YOLOv9 improve accuracy through an
optimized neck architecture that enhances the flow of contextual information between
the backbone and prediction heads [17]. YOLOv5’s Architecture is shown in Figure 2.

2. Fast R-CNN: Fast R-CNN is a two-stage detector that utilizes a Region Proposal
Network (RPN) to propose regions of interest (RoIs), followed by classification and
refinement of the detected objects in each RoI [40]. It employs a Region-of-Interest
Pooling (RoIPool) layer to extract fixed-sized feature maps from the backbone net-
work’s feature maps for each candidate box.

3. Mask R-CNN: Building on Faster R-CNN, Mask R-CNN introduces a parallel branch
for predicting segmentation masks on each RoI, in addition to bounding boxes and
class probabilities [20]. It utilizes a mask prediction branch with a Fully Convolutional
Network (FCN) to predict a binary mask for each RoI. This per-pixel segmentation
ability enables instance segmentation tasks alongside object detection.

4. DenseNet-121: DenseNet-121 is a widely used convolutional neural network model
that features densely connected layers, which improve gradient flow and reduce the
number of parameters required compared to traditional architectures. Although it
is primarily a classification model, it has been integrated into object detection frame-
works like Mask R-CNN to enhance feature extraction and improve performance in
complex object detection tasks [22].

5. VGG16: VGG16 is a widely adopted CNN architecture that has shown strong perfor-
mance in object detection tasks [21]. Its deep network structure and large receptive
field contribute to its ability to capture and represent complex visual patterns.

6. MobileNet: MobileNet, also known as Inception-v1, is another popular CNN ar-
chitecture introduced by Szegedy et al. [38]. It employs the concept of inception
modules, which are designed to capture multi-scale features by using filters of dif-
ferent sizes within the same layer. GoogleNet’s architecture enables efficient training
and inference with a reduced number of parameters.

7. ResNet: ResNet, proposed by He et al. [24], addresses the degradation problem in
deep neural networks by introducing residual connections. These skip connections
allow the gradients to flow more easily during training, enabling the training of very
deep networks. ResNet has achieved state-of-the-art performance in various computer
vision tasks, including image classification and object detection.
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Figure 2. The YOLOv5 is structured into three primary segments: the backbone, neck, and output [41].

4.2. Key Features

Each of the evaluated architectures brings unique features and innovations that con-
tribute to their overall performance and effectiveness:

• YOLO: YOLO models provide real-time object detection capabilities due to their
single-stage regression approach and optimized architecture.

• Fast R-CNN: The two-stage design of Fast R-CNN, with the RPN and RoIPool layer,
enables accurate localization and classification of objects in images.

• Mask R-CNN: In addition to bounding boxes and class probabilities, Mask R-CNN intro-
duces per-pixel segmentation to enable instance-level object detection and segmentation.

• DenseNet-121: DenseNet-121 is a convolutional neural network known for its densely
connected architecture, where each layer is connected to every other layer, facilitating
better gradient flow and feature reuse.

• VGG16: With its deep network structure and large receptive field, VGG16 has demon-
strated strong performance in previous image classification studies.

• MobileNet: MobileNet’s inception modules allow it to capture multi-scale features
efficiently, leading to good performance with fewer parameters.

• ResNet: ResNet’s residual connections address the degradation problem in deep
networks, enabling the training of very deep architectures and achieving state-of-the-
art performance in various computer vision tasks.

4.3. Supporting Evidence

We support our evaluation of these architectures by referring to relevant papers that
describe their architectures and demonstrate their performance in object detection tasks. Please
refer to the following citations for more detailed information: YOLO: [17,39], Fast R-CNN: [40],
Mask R-CNN: [20], DenseNet-121: [22], VGG16: [21], GoogleNet: [23], and ResNet: [24]

4.4. Framework and Dataset

To facilitate the evaluation process, we leverage the Roboflow framework [42] for data
labeling, augmentation, and model deployment. Roboflow is a comprehensive computer
vision platform that streamlines the development lifecycle from data preparation to model
deployment and monitoring; it provides tools for dataset creation, annotation, augmen-
tation, and model training using popular frameworks, allowing users to package and
deploy models as APIs or embedded solutions, with hosted deployment, inference, and per-
formance tracking capabilities, as well as support for team collaboration and versioning,
enabling efficient development of computer vision applications.
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4.5. Application Relevance

Comparing these model architectures is crucial for our specific object detection task
in the context of the African plum dataset. By evaluating the performance of these archi-
tectures, we aim to identify the most suitable approach that can accurately and efficiently
detect objects in our dataset. This determination will help us make informed decisions
regarding the choice of model for our application, potentially improving the efficiency
and accuracy of object detection in African plum images. Additionally, understanding the
strengths and weaknesses of each architecture will provide valuable insights for future
research and development in the field of object detection.

5. Experimental Results and Analysis

This section presents the experimental results and analysis of the African plum defect
detection system. It covers the data preprocessing steps, model training, evaluation results,
and a detailed discussion.

Figure 3 provides an overview of the key steps in our implementation. The process
starts with data collection, followed by data preprocessing. We then evaluated various
object detection models, including YOLOv5, YOLOv8, YOLOv9, Fast R-CNN, Mask R-
CNN, VGG16, DenseNet-121, MobileNet, and ResNet, the models were then trained and
validated, and finally evaluated on the test set to assess their performances.

Figure 3. Overview of the key steps in our implementation. These structured steps ensure efficient
implementation of the project.

The subsequent subsections will delve into the details of each step, providing further
insights into our experimental approach and findings.

5.1. Data Preprocessing and Augmentation

The raw African plum image dataset underwent several preprocessing steps to prepare
it for model training and evaluation. These steps are described below:

• Labeling for object detection models: The dataset of 2892 images was manually annotated
using the Roboflow platform. Each image was labeled to delineate the regions corre-
sponding to good and defective plums. Additionally, a background class was used to
indicate areas where no fruit was present in the image (see Figure 4).
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• Labeling for classification models: For the classification models, a simplified labeling
approach was used. Two separate annotation files were created, one for good plums
and one for defective plums. The images were labeled with their respective class,
without the inclusion of a background class. This approach was suitable for the
classification task performed by these models.

• Augmentation: To increase the diversity of the dataset and improve the model’s gener-
alization ability, online data augmentation techniques were applied during training.
These techniques included rotations, flips, zooms, and hue/saturation shifts. By aug-
menting the data, we introduced additional variations and enhanced the model’s
ability to handle different scenarios.

• Data splitting: The dataset was split into three subsets: a training set comprising 70% of
the data, a validation set comprising 20%, and a test set comprising the remaining 10%.
The splitting was performed in a stratified manner to ensure a balanced distribution
of good and defective plums in each subset.

• Image resizing: The image resolutions used for the various models were selected based
on the specific requirements and constraints of each model. The YOLOv5, YOLOv8,
and YOLOv9 models, which are designed for real-time object detection, used higher
input resolutions (416 × 416, 800 × 800, and 640 × 640, respectively) to capture
more detailed visual information and improve the model’s ability to detect smaller
objects. The Mask R-CNN and Faster R-CNN models, used for instance segmentation,
required higher-resolution inputs (640 × 640) to accurately delineate object boundaries
and capture fine-grained details. In contrast, the VGG16, DenseNet-121, MobileNet,
and ResNet models, which are classification-based and were trained on the ImageNet
dataset, used a standard input size of 224 × 224 pixels, as this lower resolution is
sufficient for image classification tasks, which focus on recognizing high-level visual
features rather than detailed object detection or segmentation.

(a)
(b)

(c)

(d)

Figure 4. Sample images showcasing the labeling of good and defective plums with and without
the background category. (a) Labeling of a good plum with the background class. (b) Labeling
of a good plum. (c) Labeling of a defective plum with the background class. (d) Labeling of a
defective plum.
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5.2. Model Training

The training process involved training the Yolov9, YOLOv5, YOLOv8, Mask R-CNN,
Fast R-CNN, VGG16, and DenseNet-121 models using the Google Colab framework.
The key details of the model training are summarized in Table 1.

Table 1. Training details for the YOLOv5, YOLOv8, YOLOv9, Mask R-CNN, Fast R-CNN, VGG16,
DenseNet-121, MobileNet, and ResNet models.

Model Input Resolution Batch Size Optimizer Training Epochs

YOLOv5 416 × 416 16 Adam 150

YOLOv8 800 × 800 16 Adam 80

YOLOv9 640 × 640 16 Adam 30

Mask R-CNN 640 × 640 8 SGD 10,000

Fast R-CNN 640 × 640 64 SGD 1500

VGG16 224 × 224 32 Adam 15

DenseNet-121 224 × 224 32 SGD 50

MobileNet 224 × 224 32 Adam 40

ResNet 224 × 224 32 Adam 16

The number of training epochs for each model was varied based on the complexity of
the task and the dataset, with the Mask R-CNN model requiring the most training iterations
(10,000) due to the more complex instance segmentation task. Among the YOLO-based
models, YOLOv9 requires the fewest training epochs (30) due to the simpler object detection
task and the use of a pre-trained backbone.

The YOLOv5 model was trained, see Figure 5, with an input resolution of 416 × 416 pix-
els, using a batch size of 16. The Adam optimizer was employed with a learning rate deter-
mined through hyperparameter tuning. The model was trained for 150 epochs, iterating
over the training dataset multiple times to optimize the model’s parameters.

Figure 5. YOLOv5 training performance. This figure shows the training curves for the YOLOv5
object detection model. The top plot displays the loss function during the training process, which
includes components for bounding box regression, object classification, and objectness prediction.
The bottom plot displays the model’s mAP50 and mAP50-95 metrics on the validation dataset, which
are key indicators of the model’s ability to accurately detect and classify objects.

The YOLOv8 model was trained, see Figure 6, with an input resolution of 800 × 800 pixels
and a batch size of 16. The Adam optimizer was used, and the model was trained for 80 epochs.
The training process involved updating the model’s parameters to minimize the detection loss
and enhance its ability to accurately detect and classify good and defective plums.
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Figure 6. YOLOv8 training and evaluation. This figure presents the performance metrics for the
YOLOv8 object detection model during the training and evaluation phases. The top plot shows the
training loss, which is composed of components for bounding box regression, object classification,
and objectness prediction. The bottom plot displays the model’s mAP50 and mAP50-95 metrics
on the validation dataset, which are key indicators of the model’s ability to accurately detect and
classify objects.

Similarly, the YOLOv9 model was trained as illustrated in Figure 7, using an input
resolution of 640 × 640 pixels and a batch size of 16. The training process, utilizing the
Adam optimizer, spanned 30 epochs.

Figure 7. YOLOv9 training and evaluation. This figure presents the performance metrics for the
YOLOv9 object detection model during the training and evaluation phases. The top plot shows the
training loss, which is composed of components for bounding box regression, object classification,
and objectness prediction. The bottom plot displays the model’s mAP50 and mAP50-95 metrics
on the validation dataset, which are key indicators of the model’s ability to accurately detect and
classify objects.
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The Fast R-CNN, Figure 8, and Mask R-CNN, Figure 9, models were also trained
on the African plum dataset. These models were trained with an input resolution of
640 × 640 pixels. The Faster R-CNN model employed the SGD optimizer with a batch size
of 64 and was trained for 1500 iterations. On the other hand, the Mask R-CNN model
utilized the stochastic gradient descent (SGD) optimizer with a batch size of 8 and was
trained for 10,000 iterations.

Figure 8. Fast R-CNN training and evaluation metrics. This figure shows the training and validation
metrics for the Fast R-CNN object detection model. The blue line represents the overall training loss,
which includes components for bounding box regression, object classification, and region proposal
classification. The orange and green lines show the validation metrics for the classification loss
and the regression loss, respectively. These metrics indicate the model’s performance in generating
accurate region proposals and classifying/localizing detected objects.

Figure 9. Mask R-CNN training and evaluation metrics. This figure presents the training and valida-
tion performance metrics for the Mask R-CNN instance segmentation model. The blue line represents
the overall training loss, which includes components for bounding box regression, object classifi-
cation, and region proposal classification. The orange and green lines show the validation metrics
for the classification loss and the regression loss, respectively. These metrics indicate the model’s
performance in generating accurate region proposals and classifying/localizing detected objects.



Information 2024, 15, 635 12 of 18

The VGG16, Figure 10, and DenseNet-121, Figure 11, models were trained for the
classification task using an input resolution of 224 × 224 pixels. A batch size of 32 was
used for both models. The Adam optimizer was employed, and the models were trained
for 15 epochs. The MobileNet and ResNet models were also trained on the African plum
dataset. Both models were trained with an input resolution of 224 × 224 pixels and a batch
size of 32. The Adam optimizer was used, and the models were trained for 40 epochs and
16 epochs, respectively.

Figure 10. Training and validation metrics for the VGG-16 model. The top curves represent training
(green) and validation (red) accuracy, while the bottom curves depict training (green) and validation
(red) loss. The model demonstrates rapid generalization from a strong initial point, as indicated by
the swift convergence of accuracy and loss metrics.

The training process involved feeding the models with the annotated dataset, allow-
ing them to learn the features and patterns associated with good and defective plums.
The models’ parameters were adjusted iteratively during training to minimize the detection
and classification error, optimizing their performance for the African plum defect detection
task. The models’ training details, including the input resolution, batch size, optimizer,
and training epochs, were carefully selected to achieve the best possible performance.

We applied pruning techniques to optimize the YOLOv9, YOLOv8, YOLOv5, ResNet,
and MobileNet models. Specifically, we utilized a technique called Magnitude-based Prun-
ing, which identifies and removes the least significant weights or filters based on their
absolute values. This method involves ranking all weights or filters in the model by their
magnitude and setting a pruning threshold to discard those below this threshold. By re-
moving these less important components, we effectively reduced the number of parameters
in the models. This pruning process not only decreased the model size and computational
requirements but also aimed to maintain the overall performance of the models.
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Figure 11. Training and validation metrics for the DenseNet-121 model. The top curves represent
training (green) and validation (red) accuracy, while the bottom curves depict training (blue) and
validation (yellow) loss. The model demonstrates rapid generalization from a strong initial point,
as indicated by the swift convergence of accuracy and loss metrics.

6. Evaluation and Results

The results presented in Tables 2 and 3 offer key insights into the performance of deep
learning models for African plum quality assessment.

Table 2. Evaluation results for the YOLOv5, YOLOv8, Faster R-CNN, and Mask R-CNN models.

Model Precision (%) Recall (%) F1-Score (%) mAP (%)

YOLOv5 80 85 82.5 89.5

YOLOv8 87 90 89 93.6

YOLOv9 85.9 90 87.9 93.1

Fast R-CNN 84.8 86.4 85.6 84.8

Mask R-CNN 61.3 68.2 64.6 61.3

Table 3. Evaluation results for the VGG16, DenseNet-121, MobileNet, and ResNet models.

Model Precision (%) Recall (%) F1-Score (%) Accuracy (%)

VGG16 78 80 79 91

DenseNet-121 80 82 81 86

MobileNet 87 97 92 86

ResNet 91 98 94 90

Table 2 highlights the superior object detection capabilities of YOLO models, par-
ticularly YOLOv8, which achieved a mean average precision (mAP) of 93.6%, with 87%
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precision and 90% recall. This demonstrates YOLOv8’s strong ability to detect both de-
fective and quality plums, making it an effective tool for agricultural quality control.
YOLOv5, with an mAP of 89.5%, further underscores the robustness of the YOLO archi-
tecture. YOLOv8’s 87% precision means that 87% of plums detected as damaged were
indeed defective, while the 90% recall indicates the model successfully identified 90% of
all defective plums. Although the high recall is crucial to avoid missed defects, the 10%
of undetected damages and 13% false positives suggest potential areas for improvement.
Figure 12 illustrates various predictions generated by YOLO models, highlighting the
differences in performance between YOLOv5, YOLOv8, and YOLOv9.

In Table 3, ResNet emerged as the top classification model, with an F1-score of 94%,
accuracy of 90%, precision of 91%, and recall of 98%. These metrics reflect ResNet’s balanced
performance, with high precision minimizing misclassification and high recall ensuring the
identification of nearly all relevant instances. MobileNet also performed well, underscoring
its practicality for real-time fruit classification. The F1-score of 94% balances precision
and recall, making ResNet particularly suitable for scenarios where both misclassifications
and missed detections carry significant costs, such as in the agricultural domain where
classification errors can impact both product quality and operational efficiency.

Pruning analysis in Table 4 demonstrates that reducing the size of YOLO models by
up to 20% had minimal impact on mAP, with YOLOv8 maintaining an 81% mAP even
after pruning. This suggests that smaller, more efficient versions of these models can be
deployed on edge devices, which is a key advantage for use in rural areas with limited
bandwidth. Similarly, Table 5 shows that ResNet and MobileNet retained high accuracy
post-pruning, with ResNet’s accuracy dropping only to 79.7% and MobileNet remaining
above 86%. This resilience to pruning enhances the practical applicability of these models,
enabling efficient and scalable deployment in diverse agricultural environments.

Table 4. Results of pruned YOLOv5, YOLOv8, and YOLOv9 models.

Model Pruning (%) mAP (%)

YOLOv5 - 89.5
30 87.5
20 89.1
10 89.8

YOLOv8 - 93.6
30 59.7
20 81
10 90.2

YOLOv9 - 93.1
30 71.9
20 92.4
10 93

Table 5. Results of pruned ResNet and MobileNet models.

Model Pruning (%) Accuracy (%) Precision
(%) Recall (%) F1-Score (%)

ResNet 0 90.9 91.3 98.6 94.8
10 86.1 94.3 89.6 91.9
20 79.7 79.3 100 88.5
30 65.5 96.5 59.8 73.8

MobileNet 0 86.1 87.3 97.5 92.1
10 89.1 89.7 98.2 93.8
20 88.2 89.4 97.5 93.3
30 86.1 89.4 93.7 91.5
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The diversity of the dataset, in terms of plum size, shape, and defects, also played a
significant role in model performance. DenseNet-121, with its densely connected layers,
performed robustly, whereas simpler models like VGG-16 exhibited limitations. Overall,
YOLOv8 and MobileNet demonstrated high efficiency and low computational requirements,
making them ideal for real-time deployment on mobile or web-based platforms. This was
successfully demonstrated through the integration of YOLOv8 into a web-based quality
assessment tool.

In agricultural practices, such a model can streamline the sorting process, reduce
labor costs, and increase the overall efficiency of the production line. It can also help in
maintaining a consistent quality of produce, which is crucial for consumer satisfaction
and brand reputation. Moreover, in the context of precision agriculture, these metrics can
inform more nuanced decisions, such as yield prediction, disease detection, and supply
chain management, which are vital for sustainable and profitable farming operations.

(a) (b) (c)

(d) (e) (f)
Figure 12. Model predictions with background class: YOLOv5, YOLOv8, and YOLOv9. (a) YOLOv5
good fruit prediction. (b) YOLOv8 good fruit prediction. (c) YOLOv9 good fruit prediction.
(d) YOLOv5 bad fruit prediction. (e) YOLOv8 bad fruit prediction. (f) YOLOv9 bad fruit prediction.

7. Conclusions

In this research, we have demonstrated the feasibility of utilizing deep learning
techniques for automated external quality evaluation of African plums. A comprehensive
dataset comprising over 2892 African plum images was curated, encompassing variations
in shape, size, color, defects, and imaging conditions across major plum-growing regions in
Cameroon. Through the utilization of this dataset, we trained and evaluated different deep
learning architectures including YOLOv5, YOLOv8, YOLOv9, Fast R-CNN, Mask R-CNN,
VGG16, DenseNet-121, MobileNet, and ResNet for the detection and quantification of
defects as well as classification tasks on the plum surface.

Among the object detection models, YOLOv8 and YOLOv9 exhibited strong per-
formances, with mean average precision (mAP) values of 89% and 93.1%, respectively,
and F1-scores of 89% and 87.9%. These results indicate the suitability of the YOLO frame-
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work for accurate and efficient defect detection in African plums. Furthermore, both models
were successfully integrated into a functional web application, enabling real-time surface
inspection of African plums.

For the classification task, the results from VGG16, DenseNet-121, MobileNet, and ResNet
models were evaluated based on precision, recall, F1-score, and accuracy. However,
the pruning results for these models were not provided in the available information,
making it challenging to discuss the impact of pruning on their performance.

The evaluation of pruning techniques on the YOLOv8 and YOLOv9 models revealed
their sensitivity to pruning levels. While moderate pruning (10% and 20%) maintained
relatively high mAP values, heavy pruning (30%) significantly degraded their performance.
These results highlight the importance of considering pruning strategies carefully to strike
a balance between model size reduction and performance preservation.

Moving forward, there are several avenues for expanding upon this research. Firstly,
the collection of more annotated data encompassing additional plum varieties, growing
seasons, and defect types would further enhance the robustness and generalization capabil-
ity of the models. Additionally, exploring solutions for internal quality assessment using
non-destructive techniques such as hyperspectral imaging would be an important direction
for future research.

Furthermore, extending the application of intelligent inspection to other African crops
by creating datasets and models specific to those commodities would broaden the impact
of this technology. Evaluating model performance under challenging real-world conditions
and incorporating active learning techniques for online improvement are also crucial for
ensuring the practical applicability and effectiveness of these AI-based systems.

In summary, this pioneering work demonstrates the potential of AI and advanced
sensing technologies in transforming African agriculture. By addressing the limitations
identified in this study through future research, we can unlock the full capabilities of intel-
ligent technology to enhance food systems and contribute to the sustainable development
of African agriculture.
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