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Abstract: Tumors in the brain can be life-threatening, making early and precise detection crucial
for effective treatment and improved patient outcomes. Deep learning (DL) techniques have shown
significant potential in automating the early diagnosis of brain tumors by analyzing magnetic
resonance imaging (MRI), offering a more efficient and accurate approach to classification. Deep
convolutional neural networks (DCNNs), which are a sub-field of DL, have the potential to analyze
rapidly and accurately MRI data and, as such, assist human radiologists, facilitating quicker diagnoses
and earlier treatment initiation. This study presents an ensemble of three high-performing DCNN
models, i.e., DenseNet169, EfficientNetB0, and ResNet50, for accurate classification of brain tumors
and non-tumor MRI samples. Our proposed ensemble model demonstrates significant improvements
over various evaluation parameters compared to individual state-of-the-art (SOTA) DCNN models.
We implemented ten SOTA DCNN models, i.e., EfficientNetB0, ResNet50, DenseNet169, DenseNet121,
SqueezeNet, ResNet34, ResNet18, VGG16, VGG19, and LeNet5, and provided a detailed performance
comparison. We evaluated these models using two learning rates (LRs) of 0.001 and 0.0001 and two
batch sizes (BSs) of 64 and 128 and identified the optimal hyperparameters for each model. Our
findings indicate that the ensemble approach outperforms individual models, having 92% accuracy,
90% precision, 92% recall, and an F1 score of 91% at a 64 BS and 0.0001 LR. This study not only
highlights the superior performance of the ensemble technique but also offers a comprehensive
comparison with the latest research.

Keywords: deep learning; deep convolutional neural networks; magnetic resonance imaging; ensemble
model; state-of-the-art; learning rates; batch sizes

1. Introduction

Brain tumors are a serious medical condition with potentially life-threatening conse-
quences, affecting the central nervous system (CNS) by disrupting vital functions in the
brain and spinal cord. These tumors can be classified into several types, with meningioma,
glioma, and pituitary adenomas being the most common. Understanding and accurately
diagnosing these tumors is critical for ensuring patients receive timely and appropriate
treatment [1].

Meningiomas arise from the meninges, the protective membranes that cover the brain
and spinal cord. While they are typically benign, certain cases can develop into malignant
forms, depending on the tumor size and growth rate. Gliomas, on the other hand, develop
from glial cells, which play a supportive role for neurons. Gliomas represent the largest
group of primary brain tumors and vary significantly in terms of aggressiveness and
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biological characteristics. They can range from low-grade, slow-growing tumors to highly
malignant forms like glioblastoma. The third type, pituitary adenomas, are benign tumors
that form in the pituitary gland, a small but critical gland located at the base of the brain.
These tumors can disrupt hormonal functions and, depending on their size, may cause
pressure on surrounding brain structures. Although mostly benign, pituitary adenomas
constitute approximately 10% of all intracranial tumors [2].

Diagnosing and classifying these brain tumors accurately is a complex task due to the
overlapping features in medical imaging, particularly MRI scans. Conventional methods
often rely on radiologists’ expertise, which can be subjective and time-consuming. Artificial
intelligence (AI) is nowadays applicable in various domains for disease detection, i.e.,
early detection and classification of different diseases in humans [3–5]. Similarly, AI,
especially deep learning (DL), can significantly improve the early classification of brain
tumors using magnetic resonance imaging (MRI). The DL technique can analyze large
amounts of MRI data much faster than humans. This allows for a quicker diagnosis, which
is crucial for starting treatment early. DL techniques, especially deep convolution neural
networks (DCNNs), can detect abnormalities in MRIs more accurately and quickly than
radiologists [6]. This high level of accuracy can lead to earlier detection of brain tumors.
DCNN models can be trained on large datasets to differentiate between different types
of brain tumors. This ability helps identify the specific type of tumor, which is essential
for choosing the right treatment plan. The DCNN algorithms are helpful for brain tumor
classification. It can reduce the workload on radiologists, allowing them to focus on more
complex cases. This efficiency can lead to better overall healthcare outcomes for patients [7].

Our study focuses on the influence of DCNN-based models with varied hyperpa-
rameters to assess their performance using MRI-based brain tumor classification. After
evaluating the individual performance of several DCNN architectures, we identified three
top-performing models: DenseNet169, EfficientNetB0, and ResNet50. We implemented an
ensemble approach to capitalize on the strengths of each model. This approach combines
the outputs of these three high-performing DCNNs to create a more robust and accurate
classification system. This ensemble technique harnesses the unique features and learning
capabilities of each model, potentially leading to improved overall performance in distin-
guishing between different tumors and non-tumor MRI samples. The contribution of our
study is discussed in later sections; however, a brief overview is as below:

1. Our proposed ensemble model provides prominent results. We observed a significant
improvement in evaluation parameters, especially improved classification accuracy
using our approach.

2. This study provides the implementation of ten SOTA DCNN models, i.e., Efficient-
NetB0, ResNet50, DenseNet169, DenseNet121, SqueezeNet, ResNet34, ResNet18,
VGG16, VGG19, and LeNet, and a detailed performance comparison of them. We also
observe better results when we compare our proposed ensemble technique’s with
SOTA DCNN models.

3. We compare results using two LRs of 0.001 and 0.0001 and two BS of 64 and 128. We
highlight the best LR and BS for the respective model.

2. Related Work

Several approaches are available in the literature to detect brain tumors. These ap-
proaches include basic machine learning algorithms, DL approaches, and a hybrid of both.
Therefore, this section presents the overview and analysis of the related research to detect
brain tumors using MRI scans.

Khairandish et al. [8] used MRI scans for the classification of brain tumors. Their
methodology involved CNN for feature extraction and support vector machines (SVMs) to
learn the features and classify them. The model could analyze brain images using CNN and
hybrid SVM as a supervised learning approach to categorize normal and cancerous scans.
The input images were preprocessed as resized, and then normalization was carried out.
Considerable features from the preprocessed image were extracted using the maximally
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stable extremal regions and the segmentation method based on a threshold. To perform
a classification of brain MRI images, the segmented features were labeled and trained
through hybrid CNN and SVM algorithms. The researcher used the BRATS 2015 dataset to
validate their approach. The hierarchical DL model was developed by Khan et al. [9], in
which they proposed a brain tumor classifying model. Three steps made up their proposed
approach included data generation, data interpretation, and data use. The MRI scans
were obtained first from internet of medical things (IoMT) devices and transferred to the
data acquisition layer. Assam et al. [10] proposed a unique method. The preprocessing
of MRI images involved applying a median filter, and they then used discrete wavelet
transform (DVT) and color moments to extract features. Those features were utilized to
create feed-forward artificial neural networks (FF-ANNs) for the classification of brain
MRI scans using random forest (RF) and residual sum of squares (RSSs) classifiers. A
self-collected dataset of 70 T2-weighted images from Harvard Medical School was used to
evaluate their methodology.

Noreen et al. [11] used DCNN-based pre-trained models, i.e., Inception-V3 and Den-
sNet201, to detect brain tumors. The authors used four dense blocks in DensNet201 and
eleven inception modules in Inception-V3, where the number of convolution layer features
varied depending on the architecture to extract features and end with a softmax classifica-
tion layer. Their approach incorporated both local and global multi-level feature extraction
and concatenation of the resulting features. The data for testing the model under consid-
eration was comprised of 3064 T1-weighted contrast MRI images. Ghassemi et al. [12]
proposed a framework consisting of training a DCNN model as the discriminator in the
GAN. Its task was to distinguish between fraudulent and genuine MRI scans synthesized
by the generative model. Therefore, the discriminator assessed and quantified the features
of MRI scans and identified the intricate structure of MRI scans. It was a classification
model for brain tumors that was fine-tuned through training of the pre-trained CNN on
the original dataset. The final fully connected layer of the GAN discriminator was replaced
by the seven neuron SoftMax layer for classification. The author loaded the preprocessed
image by rotating and mirroring it to boost the training data through data augmentation.
It was applied to T1 contrast-enhanced (CE) MRI images and whole brain volume MR
images, 3064. Musallam et al. [13] also proposed a framework involving three stages, i.e.,
preprocessing such as erasing ambiguous objects from the MRI images, noise reduction
on the MRI scans, and online histogram equalization to boost the performance of the MRI
images. To diagnose the brain tumor, samples of MRIs corresponding to different types
of tumors were used to train a DCNN model. The Navoneel brain tumor dataset, which
includes both T1 and T2 MRI images, and Sartaj brain MRI images were used to validate
their method.

Ismael et al. [14] modified the ResNet50 DL model for classifying brain tumors through
the inclusion of three neurons in a layer and establishing a fully connected layer. The
researchers augmented their dataset by performing flipping, rotation, shift, scale, whitening,
clipping, and brightness. For the assessment, the subjects consisted of 3064 T1-weighted
CE MRI images publicly available for brain tumors. Sekhar et al. [15] modified the existing
DL model, i.e., GoogleNet, for extracting features from MRI images in combination with
SVM and K-NN classifiers. The researchers used two datasets from the Harvard medical
archives and the CE-MRI Figshare repository. Their method produced the best classification
accuracy when used with the Figshare dataset for 3-class tumor classification and the
Harvard Medical Archives for 4-class tumor classification. Compared to the existing
models, their proposed approach showed better results.

Irmak et al. [16] proposed a multi-class classification approach using three fully CNN
models connected to classify MRI images of brain tumors, followed by a Softmax classifier.
Their study involved 3 CNN models: The Model-I CNN model classifier was used for
distinguishing brain tumors: brain tumors classified as glioma, meningioma, pituitary,
normal, or metastatic using the Model-II CNN classifier; and glioma brain tumors classified
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as Class II, Class III, and Class IV using the Model-III CNN classifier. A grid search
optimizer was used to find optimal hyperparameters for each CNN model.

Table 1 summarizes the studies provided in paper to classify the brain tumors using
machine learning, deep learning, and hybrid approaches, with other details. Khairandish
et al. and Khan et al. utilized different models, including hybrid approaches and hierar-
chical classifiers, on datasets ranging from 220 to 3264 MRI scans to distinguish between
normal and tumor tissues. Assam et al. used several models on a smaller dataset of 70 scans,
while Noreen et al. and Ghassemi et al. used advanced DL models like InceptionV3 and
DCNN on larger datasets of over 3000 scans to identify specific tumor types. Musallam
et al. and Ismael et al. used DCNN and ResNet50 on datasets of similar size to classify
glioma, meningioma, and pituitary tumors. Sekhar et al. combined GoogLeNet with SVM
or KNN on 3064 scans. Whereas Irmak et al. analyzed extensive datasets with CNN models
to classify various tumor types and grades.

The remaining sections of the study include methodology with details in Section 3,
results comparison and their discussion in Section 4, and conclusion with possible future
direction in Section 5.

Table 1. Comprehensive overview of the literature.

Reference Dataset Technique
Used Total Scans Classes Advantages Limitations

[8],
Khairandish

et al.
BRATS’15

Hybrid CNN
for feature

extraction and
SVM for

classification

64 LGG
220 HGG MRIs

Normal and
tumor

Combines
strengths of

CNN for
feature

extraction and
SVM for

classification;
good accuracy
on BRATS’15

dataset

Limited to
normal and

tumor
classification

only

[9],
Khan et al. Public Hierarchical DL

model 3264

Normal,
Meningioma,
Pituitary and

Glioma,

Hierarchical
approach
allows for

better
multi-class

tumor
classification

Limited
description of

the exact
performance;
needs further
evaluation on
large datasets

[10], Assam
et al.

Self-collected
acquired from

Harvard
Medical

College (T2
weighted scans)

Median filter,
DWT, color

moments for
feature

extraction,
FF-ANN, RF,

RSS
classifiersPre-

trained DCNN
(InceptionV3,
DenseNet201),

multi-level
feature

extraction and
concatenation

25 Normal
45 Tumors

scans

Normal and
tumor

Combination of
feature

extraction
techniques
improves

classification
performance

Small dataset
(self-collected,
70 samples);

limited
generalization

capability
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Table 1. Cont.

Reference Dataset Technique
Used Total Scans Classes Advantages Limitations

[11], Noreen
et al.

3064 T1-CE
MRI scans

Pre-trained
DCNN

(InceptionV3,
DenseNet201),

multi-level
feature

extraction and
concatenation

3064
Glioma,

Meningioma,
and Pituitary

Pre-trained
models reduce

the need for
large datasets,

multi-level
feature

extraction
enhances

classification

Lacks of
novality and

better
performance,
exploration of

lightweight
models

[12], Ghassemi
et al.

(1) 3064 T1-CE
MRI scans

(2) Whole brain
MRI scans

consisting of
373 longitudi-
nal scans via
150 subjects

DCNN as a
discriminator in

GAN, data
augmentation

via image trans-
formations

(1) 3064
(2) 156

Pituitary,
Meningioma
and, Glioma.

GAN enhances
robustness by
distinguishing
genuine/fake

MRI scans; data
augmentation

improves
model

performance

GAN training
can be unstable;

limited
evaluation on
more diverse

datasets

[13], Musallam
et al.

(1) Sartaj brain
MRI dataset
(2) Navoneel
brain tumor
MRI dataset
that has two
kinds of MRI

DCNN with
pre-processing

(noise
reduction,
histogram

equalization)

(1) 3394
(2) 3394

Glioma,
Meningioma,
and Pituitary

Pre-processing
improves MRI
scan quality;

robust
validation on

different tumor
types

Focused on
specific MRI

types (T1 and
T2); lacks
broader

generalization
on unseen
datasets

[14], Ismael
et al. Public

Modified
ResNet50 with

data
augmentation

3064
Meningioma,
Glioma, and

Pituitary

ResNet50
provides good
accuracy; data
augmentation
helps improve

model
generalization

Their approach
may not

perform well on
smaller datasets

[15], Sekhar
et al.

FigShare
CE-MRI dataset

Modified
GoogleNet with
SVM and K-NN

classifiers

3064
Glioma,

Meningioma,
and Pituitary

Combination of
GoogleNet and

traditional
classifiers

yields high
classification

accuracy

Needs
comparison
with more

advanced deep
learning

models; compu-
tationally
expensive

[16], Irmak
et al.

(1) RIDER
(2) REM-
BRANDT

(3) TCGA-LGG

Multi-class
classification

with CNN and
grid search for
hyperparame-

ters

(1) 70,220
RIDER

(2) 110,020
REMBRANDT

(3) 241,183
TCGA-LGG

Model I: Tumor
and non-tumor;

Model II:
Glioma,

pituitary,
meningioma,

metastatic, and
normal;

Model III:
Different
grades of

glioma tumors

Use of grid
search

optimizes hy-
perparameters;
CNN models

for multi-level
tumor

classification

Computational
complexity

increases with
multiple CNN

models
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3. Materials and Methods

Deep learning-based DCNN models enhance the precision of diagnoses, aiding clin-
icians in delivering targeted treatments. Similarly, Figure 1 illustrates a brain tumor
classification workflow using MRI data and an ensemble of deep learning (DL) models.
The process begins by splitting the dataset into training and validation sets, followed by
preprocessing steps such as encoding, resizing, and normalization. Three pre-trained deep
CNN models, i.e., DenseNet169, EfficientNetB0, and ResNet50, are then employed, with
their predictions combined through ensemble majority voting. This method classifies MRI
scans into four categories: no tumor, glioma, meningioma, or pituitary tumor. The final
stage involves analyzing the model performance using training and validation accuracy.
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Figure 1. Block diagram of our proposed methodology.

3.1. Dataset Description

The publicly available dataset from Kaggle [17] has been used in this study and has
four classes, i.e., pituitary, glioma, meningioma, and non-tumor samples. Figure 2 shows
the MRI samples of each class available in the dataset. The dataset is gathered from three
public repositories, i.e., non-tumor samples from the BRATS repository, gliomas samples
from the FigShare repository, and meningioma and pituitary samples from the Sartaj
dataset. The samples from BraTS images were captured using multiple imaging modalities,
including fluid-attenuated inversion recovery (FLAIR), T2-weighted, and T1-weighted
with contrast enhanced. The FigShare and Sartaj datasets consist of T1-weighted contrast-
enhanced images. The original image resolution is 512 × 512 × 3 for the entire dataset.
There are a total of 5722 scans for training, distributed as 1321 gliomas, 1349 meningiomas,
1457 pituitary, and 1595 no tumor. Similarly, there are 1311 scans for validation, with
300 glioma, 306 meningioma, 300 pituitary, and 405 no tumors, as shown in Table 2. The
dataset is considered nearly balanced for different tumor types and non-tumor cases. The
label (also known as encoding) against each class is also shown in the table. Figure 3
shows the distribution of the dataset for each class, i.e., 1621 glioma, 1655 meningioma,
1757 pituitary, and 2000 no tumor MRI samples.
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Class Train Validate Total Class Label
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Meningioma 1349 306 1655 “1”
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No tumor 1595 405 2000 “3”

Total 5722 1311 7033
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3.2. Dataset Preprocessing

Preprocessing is an important step in deep learning while dealing with image data.
The vital data preprocessing techniques include resizing and normalization of input data to
maintain homogeneity in the size of the feature vectors and scaling of pixel values, which is
beneficial to train faster and more efficiently. In our study, the input MRI scans are resized
to a target size of 224 × 224 × 3 pixels, and the pixel values are normalized by rescaling
them to the range [0,1].

Here x is the pixel value and µ is the mean pixel value in an image. Similarly, σ
represents the standard deviation of all pixel values. This normalization helps the model
learn more effectively by standardizing the input data.
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3.3. Proposed Ensemble of DL DCNN Models

The proposed ensemble consists of three state-of-the-art DCNN models, i.e., ResNet50,
DenseNet169, and EfficientNetB0. Each model has unique strengths in extracting hierar-
chical features from images. The rationale behind using an ensemble of these models is
based on the principle that different architectures capture distinct feature representations
at varying scales and complexities, which, when combined, can provide a more robust and
generalized model. By integrating their outputs, we aim to achieve better classification
performance than any single model alone [18].

We focus on classifying MRI images into four distinct classes, i.e., three tumor types
and one non-tumor class. The ensemble method aggregates the complementary strengths
of these models to improve classification accuracy and reduce generalization error.

3.3.1. Model Architecture

Each of the three models is initialized with pre-trained weights from ImageNet, which
allows leveraging transfer learning. The top classification layers from each model are re-
moved, and the remaining network is used as a feature extractor. This means we only retain
the convolutional and pooling layers, which are effective in learning spatial hierarchies
of features from images. The input image dimensions for all models are standardized to
224 × 224 × 3 (height, width, channels). Here channels refer to T1-weighted, T2-weighted,
and FLAIR.

Let X ∈ R224×224×3 represent the input MRI image. For each model Mk where
k ∈ {1, 2, 3}, the model processes X and produces a feature map Fk.

Fk = Mk(X) (1)

Here, Fk ∈ RHk×Wk×Dk where Hk, Wk, and Dk represent the height, width, and depth
(number of feature channels) of the feature map generated by the model Mk.

3.3.2. Global Average Pooling (GAP)

To reduce the dimensionality of each feature map while retaining important informa-
tion, we apply a GAP layer on each feature map Fk. The GAP layer computes the average
value across the spatial dimensions (height and width) for each feature channel, resulting
in a vector of size Dk, where Dk is the depth of the feature map [19]. Mathematically, GAP
is defined as:

GAPdk
=

1
Hk × Wk

Hk

∑
i=1

Wk

∑
j=1

Fk(i,j,dk)
(2)

GAPdk
is the output of the GAP layer for the dk-th feature channel.

Fk(i,j,dk)
is the feature map value at position (i, j) in the dk-th feature channel.

Hk and Wk are the height and width of the feature map.
Dk is the total number of channels in the feature map.
This operation reduces each feature map Fk to a 1D vector of size Dk.

3.3.3. Concatenation and Dense Layer

Once the GAP operation is performed on all three models’ outputs, the resulting
feature vectors GAP1, GAP2, GAP3 from the three models are concatenated to form a single
feature vector V of size D1 + D2 + D3:

V = [GAP1, GAP2, GAP3] ∈ RD1+D2+D3 (3)

This concatenated vector represents a comprehensive feature set derived from all three
models. Next, V is passed through a fully connected (dense) layer with 256 neurons and
ReLU activation, which is defined as:

f (z) = max(0, z) (4)



Information 2024, 15, 641 9 of 19

This layer learns a higher-level representation of the combined feature vector and
outputs a transformed vector Vdense ∈ R256

3.3.4. Output Layer

The final output layer is a dense layer with four neurons, corresponding to the four
classes (three tumor types and one non-tumor class). The softmax activation function is
applied to produce a probability distribution over the four classes. The softmax function is
given by:

ŷi =
ex f ,i

∑ · ex f ,j
(5)

ŷi represents the predicted probability for class i.
x f ,i is the output of the dense layer before softmax for class i.
∑j ex f ,j is the normalization factor across all classes.

3.3.5. Ensemble Voting Mechanism

For each input image, all three models make predictions. The ensemble combines
these predictions using a majority voting mechanism. Let yi denote the prediction vector
for the i-th model, where yi contains the predicted probabilities for all four classes. For
each class j, we compute the vote count:

vj =
3

∑
i=1

1
(
yi,j = max(yi)

)
(6)

Here, the indicator function 1 equals 1 if class j is predicted by model i with the highest
confidence. The final predicted class ŷ is determined by selecting the class with the highest
number of votes:

ŷ = arg max
j

vj (7)

This majority voting approach ensures that the ensemble makes a decision based on
the consensus of all three models, thus increasing robustness.

3.3.6. Model Optimization and Evaluation

The ensemble model is trained using the Adam optimizer, which adapts the learning
rate during training to optimize the categorical cross-entropy loss. The cross-entropy loss L
for a single image and its true label y is defined as:

L(y, ŷ) = −
4

∑
i=1

yilog(ŷi) (8)

yi is the true label for class i (one-hot encoded).
ŷi is the predicted probability for class i.
After training, the model’s performance is evaluated on a validation set. Accuracy,

precision, recall, and F1-score are computed to assess the classification performance of the
ensemble model.

By integrating different architectures, the ensemble benefits from ResNet50’s deep
residual learning, DenseNet169’s feature reuse through dense connections, and Efficient-
NetB0’s scaling efficiency. This combination yields a model that captures diverse feature
hierarchies and generalizes better on unseen MRI data.

3.4. SOTA DL Models

This study provides the comparison of our approach with other SOTA DCNN mod-
els, i.e., EfficientNetB0, ResNet50, DenseNet169, DenseNet121, SqueezeNet, ResNet34,
ResNet18, VGG16, VGG19, and LeNet5. We used these pretrained models and acquired
classification accuracy, precision, recall, and F1-score using an MRI dataset for brain tumors
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and non-tumor classes. The results are compared with the proposed approach with similar
hyperparameters to understand the performance. We discuss the comparison in detail in
Section 4 of the paper.

3.5. Hyperparameters

The learning rate decides how quickly the model weights are updated during back-
propagation. It directly affects the optimization process, and choosing an appropriate LR
is essential for model convergence and avoiding local minima. The relationship between
weight update and learning rate in gradient descent.

W(t+1) = W(t) − η∇L
(

W(t)
)

(9)

W(t) are the weights at the t-th iteration.
η is the learning rate.
∇L

(
W(t)

)
is the gradient of the loss function with respect to the weights at iteration t.

If η is too large, the model might overshoot the optimal solution, resulting in divergent
behavior. Conversely, a very small η leads to slow convergence or getting stuck in a local
minimum. Based on these dynamics, we tested two LR values, 0.001 and 0.0001, to explore
both relatively faster and more cautious learning rates. Through simulation, we observed
that a smaller LR provided more stable convergence and reduced overfitting in our deep
learning models, which is especially important in medical imaging tasks where the data
can be high-dimensional and complex.

Similarly, batch size influences the noise in gradient estimates and the memory re-
quirements during training. The total gradient used to update weights is an average over
the gradients computed for each batch. Larger batches result in more stable but computa-
tionally expensive updates, while smaller batches may introduce more variance into the
gradient estimate, making the training process noisier but requiring less memory. The
batch gradient computation can be expressed as:

∇L
(

W(t)
)
=

1
B

B

∑
i=1

∇L
(

W(t), xi

)
(10)

B is the batch size.
xi represents individual samples within the batch.
We experimented with batch sizes of 64 and 128 to observe how larger batches would

impact the stability of our model’s training. In this case, 128 was chosen as it provided a
good balance between computational efficiency and model performance without overbur-
dening the system’s memory or slowing down training excessively.

3.6. Training Parameters

The training of the DL model involves certain parameters set up to allow for efficient
operation. All models are trained for 50 epochs, which is sufficient for training. The input
data are shuffled after each epoch to prevent the models from memorizing the specific order
of data and learning the features that are not informative. For multi-class classification
tasks, categorical cross-entropy is used with two optimizers, i.e., Adam and SGD, which
provides a strong, basic method for updating gradients [20]. We used Adam optimizer
with EfficientNetB0, ResNet50, ResNet34, ResNet18, VGG16, and VGG19, whereas SGD
optimizer was used with DenseNet169, DenseNet121, SqueezeNet, and LeNet5. Table 3
shows the training parameter and respective value used in this study.
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Table 3. Training parameters used in ensemble technique and other SOTA DCNN models.

Sr. No Parameters Value

1. No.s of epochs 50

2. Learning Rates 0.001 and 0.0001

3. Batch Sizes 64 and 128 Against Each Learning Rate

4. Shuffle Every Epoch

5. Optimizer and Loss
Function

Adam Optimizer (AO) and Stochastic Gradient Decent
(SGD) with Categorical Cross-Entrophy

3.7. Experimental Setup

This study is conducted using a Macbook Pro with an M2 chip. It has a dedicated
GPU of 16 cores and 19 high-performance CPU cores with a process speed of up to 4.0 GHz,
which ensures optimal functionality of the computer hardware and software components.
We created a separate virtual environment for the proposed approach and a comparison of
different DL DCNN models. The TensorFlow framework is used for alexNet, leNet5, incep-
tionV1, inceptionV3, VGG16, and the proposed ensemble technique. Similarly, SqueezeNet,
resNet18, resNet34, resNet50, efficientNetB0, denseNet121, and denseNet169 are imple-
mented using the PyTorch framework.

3.8. Evaluation Protocols

We computed accuracy, precision, recall, and F1 scores to evaluate the performance of
DCNN models and the proposed technique. The confusion matrix, which includes true
positives (TPs), true negatives (TNs), false positives (FPs), and false negatives (FNs), is
also computed. The percentage of accurately anticipated cases in all instances is known as
accuracy (Acc). The percentage of true positives among all positive forecasts is measured
by precision (P). The percentage of genuine positives among all actual positive cases is
represented by recall (R), which is sometimes referred to as sensitivity or true positive rate.
The harmonic mean of recall and precision is known as the F1-score (F1).

Acc =
TPs + TNs

TPs + TNs + FPs + FNs
(11)

P =
TPs

TPs + FPs
(12)

R =
TPs

TPs + FNs
(13)

F1 = 2 × P × R
P + R

(14)

4. Results and Analysis

This section provides the discussion and comparison of results with our approach
and SOTA DCNN models. Table 4 shows the evaluation parameters of DCNN models and
the proposed ensemble technique. The performance metrics such as accuracy, precision,
recall, and F1 score are reported for two different BS and LR. The analysis provides a
comprehensive understanding of hyperparameters (i.e., RL and BS) and their importance
for each model.

The proposed ensemble model shows better performance with a BS of 64 and a LR of
0.0001 and achieves the highest, i.e., 92% accuracy and 91% F1-score. This indicates that
the ensemble method effectively uses the strengths of its constituent models and provides
superior performance compared to individual networks. The model also performs well
with a BS of 128 and the same LR, achieving an accuracy of 89% and an F1 score of 86%,
further highlighting its robustness.
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Table 4. Evaluation parameters for each DCNN model and proposed ensemble technique with
respective batch size and learning rate.

Model Batch size (BS) Learning Rate (LR) Accuracy (%) Precision (%) Recall (%) F1 Score (%)

Proposed
Ensemble Model

64
0.001 89 88 85 87

0.0001 92 90 92 91

128
0.001 83 83 80 81

0.0001 89 88 84 86

EfficientNetB0

64
0.001 88 97 88 85

0.0001 90 93 89 87

128
0.001 83 95 82 79

0.0001 89 93 88 86

ResNet50

64
0.001 80 86 87 78

0.0001 88 91 88 87

128
0.001 79 88 79 74

0.0001 84 86 83 83

DenseNet169

64
0.001 84 87 82 82

0.0001 65 72 65 64

128
0.001 83 85 82 81

0.0001 70 74 70 69

DenseNet121

64
0.001 83 90 81 80

0.0001 45 53 46 42

128
0.001 79 86 78 77

0.0001 65 66 66 64

SqueezeNet

64
0.001 81 83 79 77

0.0001 63 64 64 63

128
0.001 79 77 73 72

0.0001 54 58 56 54

ResNet34

64
0.001 79 88 79 74

0.0001 80 86 87 78

128
0.001 74 80 72 74

0.0001 79 88 78 77

ResNet18

64
0.001 79 78 78 77

0.0001 78 77 78 78

128
0.001 67 81 65 62

0.0001 72 70 69 73

VGG16

64
0.001 75 84 74 70

0.0001 71 75 70 69

128
0.001 79 83 75 72

0.0001 66 68 65 63
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Table 4. Cont.

Model Batch size (BS) Learning Rate (LR) Accuracy (%) Precision (%) Recall (%) F1 Score (%)

VGG19

64
0.001 70 75 70 71

0.0001 71 70 70 69

128
0.001 75 74 75 72

0.0001 69 68 66 66

LeNet5

64
0.001 69 71 68 66

0.0001 63 68 62 65

128
0.001 67 77 66 64

0.0001 64 71 64 62

EfficientNetB0 also shows high precision across different configurations, particularly
with a BS of 64 and LRs of both 0.001 and 0.0001. It achieves a precision of 97% with a
LR of 0.001. ResNet50 performs well with an LR of 0.0001, achieving an accuracy of 88%
and an F1 score of 87% with a BS of 64. With a larger batch size of 128, the performance
slightly drops. DenseNet169 shows a significant drop in performance with a lower LR of
0.0001, especially with a BS of 64, where the accuracy drops to 65% and the F1 score to
64%. Similarly, DenseNet121 shows poor performance with the same LR. These models
highlight the importance of selecting appropriate LRs and BS for optimal performance.

SqueezeNet shows moderate performance, with a decline in accuracy and other metrics
at a lower LR of 0.0001. For example, with a BS of 64 and an LR of 0.001, it achieves an
accuracy of 81% and an F1 score of 77%, but these metrics drop significantly with a lower LR.
The model emphasizes the importance of higher learning rates for maintaining performance.
ResNet34 and ResNet18 show stable performance across different settings, though they
perform better with an LR of 0.0001 and a BS of 64. ResNet34 achieves an accuracy of 80%
and an F1 score of 78% under these conditions. It is observed that these models are versatile
and can maintain consistent performance across different configurations.

Both VGG16 and VGG19 show better performance with a higher LR of 0.001. VGG16
achieves an accuracy of 79% and an F1 score of 72% with a BS of 128. The performance
of both models drops with a lower LR, indicating these models require higher learning
rates to achieve optimal results. LeNet5 shows the lowest performance among the models,
particularly with a lower LR. With a BS of 64 and a LR of 0.001, it achieves an accuracy
of 69% and an F1 score of 66%. The results indicate that LeNet5 is not recommended for
complex datasets. The proposed ensemble model outperforms individual DCNN models,
especially at an LR rate of 0.0001 and a batch size of 64 images.

Table 5 presents the evaluation parameters for various DCNN models and a proposed
ensemble technique using the best batch size and learning rate. The proposed ensemble
model demonstrates superior performance with an accuracy of 92% and an F1 score of
91%, using a batch size of 64 and a learning rate of 0.0001. EfficientNetB0 achieves 2%
and 4% less accuracy and an F1 score, respectively, under the same hyperparameters.
ResNet50 achieves 88% accuracy and recall, whereas an F1 score of 87%. DenseNet169 and
DenseNet121 achieve accuracy of 84% and 83%, respectively. SqueezeNet and ResNet34
show moderate performance, with accuracies of 81% and 80%. Overall, the ensemble model
outperforms individual models. Figure 4 shows the evaluation parameters as a bar graph
to understand the performance of individual models visually.

Figure 5 shows the validation accuracy and training accuracy plots for ten DCNN
models and our approach using BS and LR. The proposed ensemble model, using a BS of
64 and an LR of 0.0001, shows an increase in accuracy over the epochs, indicating better
performance and stability. EfficientNetB0 with a BS of 64 and LR of 0.0001 demonstrates
good accuracy but less than the proposed ensemble model. ResNet50 shows a similar trend
with robust training and validation accuracy.
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Table 5. Evaluation parameters for each DCNN model and proposed ensemble technique with best
batch size and learning rate against each model.

Model Batch size (BS) Learning Rate (LR) Accuracy (%) Precision (%) Recall (%) F1 Score (%)

Proposed
Ensemble Model 64 0.0001 92 90 92 91

EfficientNetB0 64 0.0001 90 93 89 87

ResNet50 64 0.0001 88 91 88 87

DenseNet169 64 0.001 84 87 82 82

DenseNet121 64 0.001 83 90 81 80

SqueezeNet 64 0.001 81 83 79 77

ResNet34 64 0.001 80 86 87 78

ResNet18 64 0.001 79 78 78 77

VGG16 128 0.001 79 83 75 72

VGG19 128 0.001 75 74 75 72

LeNet5 64 0.001 69 71 68 66
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(b) EfficientNetB0 using 64 BS and 0.0001, (c) ResNet59 using 64 BS and 0.0001, (d) DenseNet169
using 64 BS and 0.001, (e) DenseNet121 using 64 BS and 0.001, (f) SqueezeNet using 64 BS and 0.001,
(g) ResNet34 using 64 BS and 0.001, (h) ResNet18 using 64 BS and 0.001, (i) VGG16 using 128 BS and
0.001, (j) VGG18 using 128 BS and 0.001, (k) LeNet5 using 64 BS and 0.001.

DenseNet169, using a BS of 64 and an LR of 0.001, shows a notable performance
with increasing accuracy over epochs. Similarly, DenseNet121 under the same condi-
tions illustrates a solid training process but with some fluctuations in validation accuracy.
SqueezeNet, also trained with a BS of 64 and an LR of 0.001, indicates a gradual improve-
ment in accuracy, though with some validation instability.
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ResNet34, using a BS of 64 and an LR of 0.001, reflects a stable training curve but
exhibits some variance in validation accuracy. ResNet18 under similar conditions shows
consistent training accuracy but a more varied validation performance. VGG16, with a BS
of 128 and a LR of 0.001, shows a relatively steady increase in both training and validation
accuracy. VGG19, under the same conditions, shows a comparable pattern with stable
improvements. Lastly, LeNet5, using a BS of 64 and an LR of 0.001, indicates moderate
performance improvements with some variability in validation accuracy as compared to
other models. These plots highlight the robustness of the proposed ensemble method
compared to individual DCNN models under various training conditions.

The experimental analysis highlights the importance of appropriate hyperparameter
selection, particularly learning rates and batch sizes, in optimizing model performance.
The ensemble model’s ability to integrate the strengths of various networks results in a
robust and effective solution for high-accuracy tumor and non-tumor MRI classification.
The approach has proven its effectiveness for complex MRI datasets.

Comparison of Proposed Ensemble Model vs. Latest Techniques

Table 6 shows a quantitative comparison of our proposed ensemble approach with the
latest techniques in the literature for brain tumor classification using MRI images. In [21],
Pareek et al. use a machine learning method using an SVM with a linear kernel, achieving
78.12% accuracy. Decuyper et al. [22] combine deep learning for feature learning with SVM
for classification, resulting in 83.30% accuracy, 86.7% precision, and 79.2% recall. Gupta
et al. [23] utilize a machine learning technique involving segmentation-based fractal texture
analysis (SFTA), reporting 87% accuracy, 88% precision, and 86% recall.

Table 6. Quantitative comparison of our approach with the latest techniques available in the literature.

Reference Method Model Dataset Medical
Modality Performance

[21],
Pareek, M. et al. Machine Learning SVM with linear kernal MRI images Acc: 78.12

[22],
Decuyper, M. et al.

Deep Learning for
feature learning and

SVM for classification
DL-SVM MRI images Acc: 83.30, P: 86.7,

R: 79.2

[23],
Gupta, M. et al. Machine Learning Segmentation-based fractal

texture analysis (SFTA) MRI images Acc: 87%, P: 88%,
R: 86%

[24],
Saxena, P. et al.

Deep Learning based
DCNN model

(1) VGG16
(2) InceptionV3 MRIs Images (1) Acc: 90%, P: 90.9%

(2) Acc: 55%, P: 68.9%

[25],
Cheng, J. et al. Machine Learning Spatial Pyramid Matching

(SPM) MRI images Acc: 91.2%, P:89.7%,
R:90.8%, F1: 90%

Proposed Ensemble
Technique Deep Learning DCNN MRI images Acc: 92, P: 90, R: 92,

F1: 91

Saxena et al. [24] explore deep learning-based DCNN models, specifically VGG16 and
InceptionV3, with VGG16 achieving 90% accuracy and 90.9% precision, while InceptionV3
shows lower performance with 55% accuracy and 68.9% precision. Cheng et al. [25] use a
machine learning approach using Spatial Pyramid Matching (SPM), having 91.2% accuracy,
89.7% precision, 90.8% recall, and 90% F1-score. Whereas, our proposed ensemble technique
uses deep learning, with three DCNN models and achieves superior performance with
92% accuracy, 90% precision, 92% recall, and 91% F1. This comparison highlights the
effectiveness of our ensemble approach in enhancing the classification performance of brain
tumor detection using MRI images.

Figure 6 shows the false predictions made by the proposed ensemble technique for
MRI classification of brain tumors. There are cases where the model incorrectly identifies
the tumor type, such as misclassifying a glioma as a meningioma or failing to detect a
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non-tumor. Each example in the figure includes the model’s predicted label alongside the
actual diagnosis, providing a clear visual comparison of the errors. This allows identifying
the specific types of misclassifications the ensemble model is prone to–missing tumors
in some cases. It suggests areas where the model may need additional training data or
architectural modifications to better distinguish between similar tumor types and avoid
false negatives. Analyzing these failure cases is a crucial step in iteratively enhancing the
model’s performance for reliable clinical application.
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5. Conclusions

An ensemble of three well-performing DCNN models, i.e., DenseNet169, Efficient-
NetB0, and ResNet50, is shown in this study for the accurate classification of tumors
(glioma, meningioma, and pituitary) and non-tumor MRI samples. Our proposed ensem-
ble model significantly improves classification accuracy, precision, recall, and F1 score
compared to individual SOTA DCNN models. We implemented and compared ten SOTA
models and evaluated them with two LR and two BS to identify optimal hyperparameters
for each model. The ensemble model outperformed compared to other well-known DCNN
models at a BS of 64 and an LR of 0.0001. We also highlighted the better performance
of our approach and provided a comparison with the latest research. We used only a
single dataset, which may reduce the generalizability of our findings. While our ensemble
approach may perform well on this particular dataset, their performance across different
datasets, especially those with varying characteristics, such as image quality, noise levels,
or class imbalance, remains untested. Expanding this study to multiple datasets and a
wider range of hyperparameters could provide more robust and comprehensive insights
into the optimal settings for the SOTA DCNN models and our ensemble approach.

As a future direction, considering the limitations of our study, we aim to expand this
study by including diverse datasets with varying characteristics, such as different image
qualities, noise levels, and class imbalances. They are crucial to improving the generalizabil-
ity of our findings. Additionally, exploring a wider range of hyperparameters beyond the
two learning rates and batch sizes we used could help identify optimal configurations for
DCNN models and further refine our ensemble approach [26]. This would provide more
comprehensive insights into model performance across a variety of real-world scenarios.
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