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Abstract: Autonomous vehicles (AVs) represent a transformative innovation in transportation,
promising enhanced safety, efficiency, and sustainability. Despite these promises, achieving robust-
ness, reliability, and adherence to ethical standards in AV systems remains challenging due to the
complexity of integrating diverse technologies. This survey reviews literature from 2017 to 2023,
analyzing over 90 papers to explore the integration of knowledge graphs (KGs) into AV technologies.
Our findings indicate that KGs significantly enhance AV systems by providing structured semantic
understanding, improving real-time decision-making, and ensuring compliance with regulatory
standards. The paper identifies that while KGs contribute to better environmental perception and
contextual reasoning, challenges remain in their seamless integration with existing systems and in
maintaining processing speed. We also address the ethical dimensions of AV decision-making, advo-
cating for frameworks that prioritize safety and transparency. This review underscores the potential
of KGs to address critical challenges in AV technologies, offering a hopeful and optimistic outlook for
the development of robust, reliable, and socially responsible autonomous transportation solutions.

Keywords: autonomous vehicles; knowledge graphs; perception systems; decision-making; seman-
tic understanding

1. Introduction

Autonomous vehicles (AVs) lead a transportation revolution, promising enhanced
safety, reduced traffic congestion, and improved energy efficiency [1,2]. AVs are commonly
defined as driverless vehicles capable of operating on standard road infrastructure without
human intervention. However, the term AV can encompass a range of automation levels [3].
According to the Society of Automotive Engineers (SAE), vehicle automation is classified
into six levels, from Level 0 (no automation) to Level 5 (full automation), as illustrated
in Figure 1. Our paper focuses on AVs operating at Levels 3 to 5. At these levels, AVs
can perform most or all driving tasks, with Level 5 representing full autonomy in any
environment and Level 3 requiring occasional human intervention. While the default
definition of an AV aligns most closely with Levels 4 and 5, this paper also considers
a broader view, addressing AV systems that may include vehicles operating at Level 3
automation, where human intervention is occasionally required.

The journey from early prototypes in the mid-20th century to today’s advanced AV
systems has been marked by significant research and technological breakthroughs. In the
United States, major tech companies and automakers, such as Waymo [4] and General
Motors [5], are pioneering innovations and conducting extensive real-world testing. Despite
these advancements, regulatory hurdles and public acceptance remain critical challenges,
as noted by the National Highway Traffic Safety Administration (NHTSA) [6].

In China, rapid AV development is propelled by strong government support and a
vast market, with large-scale data availability and extensive testing positioning the country
as a global leader. Notably, China led the development of the first international standard for
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autonomous driving test scenarios, as reported by the Ministry of Industry and Information
Technology (MIIT) [7].
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Figure 1. Autonomous driving under limited conditions (A) and application in a more diverse envi-

ronment (B) by Strategic Innovation Promotion Program (SIP): source available from 

https://www.sip-adus.go.jp/exhibition/a2.html (accessed on 10 September 2024). 

The journey from early prototypes in the mid-20th century to today’s advanced AV 

systems has been marked by significant research and technological breakthroughs. In the 

United States, major tech companies and automakers, such as Waymo [4] and General 

Motors [5], are pioneering innovations and conducting extensive real-world testing. De-

spite these advancements, regulatory hurdles and public acceptance remain critical chal-

lenges, as noted by the National Highway Traffic Safety Administration (NHTSA) [6]. 

In China, rapid AV development is propelled by strong government support and a 

vast market, with large-scale data availability and extensive testing positioning the coun-

try as a global leader. Notably, China led the development of the first international stand-

ard for autonomous driving test scenarios, as reported by the Ministry of Industry and 

Information Technology (MIIT) [7]. 

Meanwhile, Japan’s approach emphasizes safety and the integration of AVs with ex-

isting transportation systems, addressing the needs of an aging population and advancing 

smart city initiatives. Reports from Japan’s Ministry of Economy, Trade and Industry 

(METI) [8] and the Japan Automobile Manufacturers Association (JAMA) [9] highlight Ja-

pan’s significant progress in developing AVs capable of navigating complex urban envi-

ronments. These global advancements underscore the critical need for sophisticated sys-

tems that encompass perception, decision-making, control, and communication to navi-

gate the complexities of real-world environments successfully. However, transitioning 

from human-driven to fully autonomous vehicles presents significant challenges across 

technology, regulation, and public acceptance. 

Knowledge graphs (KGs) have emerged as a powerful tool to manage complex, in-

terconnected data, offering significant potential to address key challenges in AV technol-

ogies. By enhancing data integration, contextual understanding, and operational effi-

ciency, KGs can revolutionize how AVs interpret and navigate their environments. Cur-

rent AV perception systems, relying on sensors like cameras, LiDAR, and radar, often 

struggle with accurately understanding complex driving scenarios, especially in unpre-

dictable conditions such as varying weather, lighting, or sudden obstacles [10–12]. Misin-

terpretations—whether due to false positives, incorrect object classification, or delayed 

processing—can compromise vehicle safety and reliability [13]. KGs help mitigate these 

SAE Autonomous 
Driving Levels

Level 1

Level 2

Level 3

Level 4

Level 5

Logistics/Moving Service

Owner Car

Practical Application of 
Logistic/Mobility Service 

Ultimate Self-Driving Society

Depopulation Measures

Measures to address driver shortages and resolve social issues

Freedom of Movement

Factory automated guided vehicles

Golf Cart

Automatic Brake

Pedal Misapplication Control

Extension from 
Expressway to 
Generate Road

International Cooperation

Economic Development

Traffic Accident Reduction

Traffic Congestion Reduction

Improve the value of Cars

Limited
(Area, Road, Environment, Traffic Conditions, Speed, Driver, etc.)

US Standardization Organization

No Limit

Figure 1. Autonomous driving under limited conditions (A) and application in a more diverse
environment (B) by Strategic Innovation Promotion Program (SIP): source available from https:
//www.sip-adus.go.jp/exhibition/a2.html (accessed on 10 September 2024).

Meanwhile, Japan’s approach emphasizes safety and the integration of AVs with exist-
ing transportation systems, addressing the needs of an aging population and advancing
smart city initiatives. Reports from Japan’s Ministry of Economy, Trade and Industry
(METI) [8] and the Japan Automobile Manufacturers Association (JAMA) [9] highlight
Japan’s significant progress in developing AVs capable of navigating complex urban en-
vironments. These global advancements underscore the critical need for sophisticated
systems that encompass perception, decision-making, control, and communication to nav-
igate the complexities of real-world environments successfully. However, transitioning
from human-driven to fully autonomous vehicles presents significant challenges across
technology, regulation, and public acceptance.

Knowledge graphs (KGs) have emerged as a powerful tool to manage complex, inter-
connected data, offering significant potential to address key challenges in AV technologies.
By enhancing data integration, contextual understanding, and operational efficiency, KGs
can revolutionize how AVs interpret and navigate their environments. Current AV per-
ception systems, relying on sensors like cameras, LiDAR, and radar, often struggle with
accurately understanding complex driving scenarios, especially in unpredictable condi-
tions such as varying weather, lighting, or sudden obstacles [10–12]. Misinterpretations—
whether due to false positives, incorrect object classification, or delayed processing—can
compromise vehicle safety and reliability [13]. KGs help mitigate these issues by providing
a structured representation of diverse data, allowing AVs to better understand and interpret
their surroundings [14]. KGs improve object recognition and scene interpretation, especially
in challenging situations like distinguishing between a stationary object and a pedestrian
about to cross the street.

In addition to perception, AVs must make rapid, safe, and ethically sound decisions in
complex environments like urban streets, where pedestrians, cyclists, and other vehicles
create dynamic scenarios [15]. These decisions must minimize harm while aligning with
societal values, such as prioritizing pedestrian safety, even at the risk of a collision with
another vehicle. AVs also face challenges related to uncertainty (incomplete or unclear

https://www.sip-adus.go.jp/exhibition/a2.html
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sensor data) and ambiguity (situations that can be interpreted in multiple ways, like
whether a pedestrian is about to cross). Traditional rule-based systems [16], while effective
in predictable environments, struggle to adapt to unexpected situations, such as sudden
pedestrian movements or unclear traffic signals. KGs address these limitations by enabling
AVs to connect real-time sensor inputs with pre-established knowledge, making context-
aware decisions in complex, uncertain scenarios [14,17]. This integration could significantly
enhance the safety, adaptability, and trustworthiness of autonomous driving systems.

Existing research on AVs often focuses on individual system components, such as
perception, decision-making, and control. However, there is a gap in understanding how
KGs can significantly enhance these systems by improving how they process and interpret
information. Despite their potential, only some reviews address how KGs can be cohesively
integrated with AV technologies. Yurtsever et al. [18] comprehensively review general AV
technologies, covering core functions, system architectures, and key challenges. While their
work establishes a solid foundation for understanding AV systems, it does not explore
emerging technologies like KGs. Similarly, Badue et al. [19] offer an in-depth examination
of AV technologies, discussing aspects like architecture, perception, decision-making, and
control mechanisms while highlighting key advancements. However, this survey also
could focus on KGs. Zhao et al. [20] present an extensive overview of AV technologies,
addressing critical components such as perception, localization, mapping, planning, and
control. Their work emphasizes challenges related to real-time decision-making, safety,
scalability, and sensor integration but does not delve into the potential role of KGs in
enhancing these systems. While these surveys provide valuable insights, there is a clear
need for more comprehensive reviews that specifically examine how KGs could transform
AV technologies.

Luettin et al. [14] focus specifically on the role of KGs in AVs, exploring their ap-
plication in tasks like perception, decision-making, validation, and scene understanding.
However, their survey does not extensively address the challenges involved in implement-
ing KGs, leaving a gap in understanding the practical hurdles of integration.

Our survey addresses a gap in the literature by specifically exploring the role of KGs
in AV systems. Unlike other works, such as those by Yurtsever et al. [18], Badue et al. [19],
and Zhao et al. [20], which do not delve into the potential of KGs, our work emphasizes
their importance in providing semantic understanding, decision-making support, and the
ability to tackle complex AV challenges. While Luettin et al. [14] provide a good starting
point by discussing the application of KGs in AV tasks like perception and decision-making,
their work does not sufficiently address the challenges involved in implementing KGs
in real-world systems. Our contribution fills this gap by examining not only the benefits
but also the practical hurdles of integrating KGs into AV systems, such as scalability, data
availability, and the complexity of real-time decision-making. The comparison between our
work and closely related survey studies is presented in Table 1.

This paper comprehensively reviews state-of-the-art AV technologies and the current
state of integrating KGs into AV technologies. Moreover, we identify research challenges
and propose future directions for developing robust, reliable, and socially responsible au-
tonomous transportation solutions. By synthesizing existing knowledge and shedding light
on emerging trends, this survey aims to contribute to the advancement of AV technologies
that are proficient, ethically sound, and accepted by society.

The paper is organized as follows. Section 2 presents the review strategy. Section 3
covers fundamental concepts and recent advancements in AV technologies, such as percep-
tion, localization, path planning, and decision-making. Section 4 examines the role of KGs
in enhancing AV systems, focusing on their contributions to semantic understanding, data
integration, and real-time decision-making. In addition, it investigates the practical inte-
gration of KGs with AV technologies, addressing challenges and impacts on performance.
Section 5 explores the ethical dimensions of AV decision-making, emphasizing the need for
tailored ethical frameworks. Finally, Section 6 presents the conclusions.
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Table 1. Comparison between our work and related survey studies.

Survey Coverage [18] [19] [20] [14] Ours

Perception
√ √ √ √ √

Localization
√ √ √ √ √

Mapping
√ √ √ √ √

Moving Object Detection and Tracking
√ √ √ √ √

Traffic Signalization Detection
√

Path Planning
√ √ √

Behavior Selection
√

Motion Planning
√ √ √

Obstacle Avoidance
√

Control
√ √

Sensors and Hardware
√

Road and Lane Detection
√

Assessment
√

Decision-Making
√ √ √ √ √

Human–Machine Interaction
√ √

Datasets and Tools
√

Semantic Segmentation
√

Trajectory Prediction
√

Simulator and Scenario Generation
√ √

KGs Applied to AVs
√ √

• Object Detection
√

• Semantic Segmentation
√ √

• Mapping
√

• Scene Understanding
√ √

• Object Behavior Prediction
√

• Motion Planning
√

• Validation
√

• Scene Representation
√

• Object Tracking
√

• Road Sign Detection
√

• Scene-Graph Augmented Risk Assessment
√

• Scene Creation
√

Current Challenges and Limitations
√ √

Future Directions
√

Development in Industry
√

Ethical and Practical Considerations in AV
Technologies

√

√
indicates that the survey study includes coverage of the respective topic.

2. Review Strategy

Defining the review strategy is a fundamental aspect of a systematic review [17].
This section details the review strategies employed in this paper. The review strategy
we propose is structured to explore studies that contribute to the integration of KGs into
AV technologies. It is composed of three key elements: research questions, publications
retrieval, and articles in review. The following research questions, as presented in Table 2,
were acquired to guide the article analysis.

Table 2. Overview of research questions and focus areas.

Research Question Focus

What are the key applications in AV technologies and KGs? Application
Which aspects of KG integration does the article address? Contribution
What methods do the article discuss for integrating KGs with AV systems? Methodology
What are the limitations of AVs, and what future research does the article suggest? Limitations and Future Work

For a comprehensive review, we retrieved publications from reputable databases,
including IEEE Xplore and Google Scholar. These databases were selected for their broad
coverage of relevant journals and conferences, ensuring a thorough review. Keywords used
in the search include “knowledge graphs”, “autonomous vehicles”, and “integration”. The
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initial search yielded a significant number of results from the databases, with publications
dated between 2017 and 2023. Articles were then selected for detailed review based on the
following filtering process:

1. Relevance: Articles were selected not only for focus on the integration of KGs with
autonomous vehicle technologies but also for their contribution to understanding the
background and fundamentals of AV technologies.

2. Manual Screening: Abstracts of the identified articles were manually reviewed to as-
sess alignment with the research questions. Only studies that were directly relevant to
AV technologies and KG integration or offered valuable insights into AV technologies
were retained for further analysis.

3. Institutional Expertise: To capture cutting-edge research and institutional expertise,
we specifically included sources from Toyota Research Institute, Kanazawa University,
The University of Tokyo, and the National Institute of Advanced Industrial Science
and Technology (AIST) as part of the filtering process.

4. Peer-Review Status: We ensured that the review is based on peer-reviewed sources.
Preprint articles from repositories such as ArXiv were excluded unless their final,
peer-reviewed versions were available. Articles with discrepancies between preprint
and published versions were cross-checked, and only the final published versions
were retained for analysis.

After applying these criteria, approximately 85 articles were identified as most relevant
for inclusion in this review. Figure 2 illustrates the percentage of papers published each
year between 2017 and 2024, reflecting the final set of articles selected for analysis.
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3. Background and Fundamentals

This section aims to provide a comprehensive overview of the key components of AV
technologies. In support of this analysis, we reference around 50 journals and conferences
that have made significant contributions to AV research. Notable among them are the
IEEE/CVF International Conference on Computer Vision (ICCV), IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), Robotics: Science and Systems (RSS), IEEE
Transactions on Intelligent Transportation Systems, IEEE Robotics and Automation Letters,
and the International Conference on Robotics and Automation (ICRA). These venues are
renowned for their substantial impact on AV-related topics, as summarized in Table 3,
which is based on a selection of surveys referencing these notable sources.
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Table 3. Selected conferences and journals contributing to AV technologies.

Conferences/Journals Publisher References/Published Year

IEEE/CVF International Conference on Computer Vision (ICCV) IEEE [1] 2021, [21] 2023, [22] 2023, [23] 2019
Workshop on the Algorithmic Foundations of Robotics Springer [24] 2018
Autonomous Robots Springer [25] 2016
Conference on Robot Learning (CoRL) PMLR [26] 2020, [27] 2019
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS) IEEE [28] 2023, [29] 2020

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) IEEE [2] 2020, [10] 2023, [30] 2019, [31] 2018

International Conference on Robotics and Automation (ICRA) IEEE [32] 2020, [33] 2019, [34] 2018, [35] 2022, [36] 2024,
[37] 2022

International Conference on Learning Representations (ICLR) ICLR [38] 2018, [39] 2020
IEEE/International Conference on Intelligent Transportation Systems (ITSC) IEEE [40] 2020
IEEE Robotics and Automation Letters IEEE [41] 2022, [42] 2021, [43] 2020
Robotics: Science and Systems (RSS) MIT Press [44] 2019, [45] 2020
IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP) IEEE [46] 2018

IEEE Winter Conference on Applications of Computer Vision (WACV) IEEE [47] 2019
Remote Sensing MDPI [48] 2022, [49] 2021, [50] 2022

Sensors (Basel, Switzerland) MDPI [11] 2023, [17] 2023, [51] 2020, [52] 2022, [53] 2024
[54] 2023, [55] 2020,

International Association of Traffic and Safety Sciences (IATSS) Elsevier [56] 2019
International Conference on Multisensor Fusion and Integration for
Intelligent Systems IEEE [57] 2017

International Conference on Intelligent Informatics and Biomedical
Sciences (ICIIBMS) IEEE [58] 2017

IEEE Transactions on Cybernetics IEEE [59] 2022
IEEE Transactions on Intelligent Transportation Systems IEEE [60] 2022, [61] 2022
Accident Analysis and Prevention Elsevier [62] 2023
International Conference on Pattern Recognition (ICPR) IEEE [63] 2020

PMLR: Proceedings of Machine Learning Research, IEEE: Institute of Electrical and Electronics Engineers,
MIT: Massachusetts Institute of Technology, MDPI: Multidisciplinary Digital Publishing Institute.

Furthermore, key contributors to the AV field, such as V.C. Guizilini, A. Gaidon, and
R. Ambrus, have collectively authored significant papers on essential AV topics. Their
extensive work underscores the depth of research covered in our survey. Table 4 outlines
the primary research contributions made by these scholars.

Table 4. Contributions of scholars in AV technologies.

Scholar Research Focus No. of Published
Papers

Conferences/
Journals

V.C. Guizilini
Semantic segmentation [1,2,39]; Monocular Depth
Estimation [21,26,30,39]; Sparse View Synthesis [22]; Calibration [28];
Ego-Motion Estimation [27]; Occupancy Prediction [33]

10 ICCV, IROS, ICLR,
CVPR, CoRL, ICRA

A. Gaidon

Semantic segmentation [1,2,39]; Monocular Depth
Estimation [21,26,30,39]; Sparse View Synthesis [22]; Calibration [28];
Object Detection [31]; Flow Estimation [29]; Ego-Motion Estimation [27];
Occupancy Prediction [33]; Sparse Visual Odometry [44]; Pedestrian
Locomotion Forecasting [47]; Near-Accident Driving [45];
Behavior Cloning [23]; Pedestrian Intent Prediction [43]

18

ICCV, IROS, ICLR,
CVPR, CoRL, ICRA,
IEEE Robotics and
Automation Letters,
RSS, WACV

R. Ambrus
Semantic segmentation [1,39]; Monocular Depth
Estimation [21,26,30,39]; Sparse View Synthesis [22]; Calibration [28];
Multi-Object Tracking [32]; Ego-Motion Estimation [27]

9 ICCV, CoRL, IROS,
ICRA, ICRL, CVPR

To further elucidate the landscape of AV research, we analyze the popularity and
focus areas of key components in AV technologies. Table 5 details the popularity of these
components and the reasons behind their emphasis on research. This analysis highlights
which components are receiving significant attention and are experiencing substantial
growth. Among these, we briefly discuss the components where the research focus is
either already high or is experiencing significant growth through Section 3.1 to Section 3.6.
By examining the interrelationships between these components, we aim to demonstrate
how advancements in each area contribute to AV systems’ performance and reliability.
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For a clear and concise overview of the research focus across different AV technologies,
refer to Table 6.

Table 5. Popularity and reasons for key components of AV technologies.

Key Component Popularity Reasons

Sensors and perception systems Very high High research volume on sensor accuracy and data processing.
Localization and mapping High Significant focus on SLAM and GPS-based localization.
Path planning High Advancements in planning algorithms for efficient AV navigation.
Control systems Moderate to high Ongoing research in control mechanisms integral to AV operation.
Decision-making High Significant focus on machine learning and AI-based decision-making.
Human–machine interface (HMI) Moderate Increasing considerations for user experience.
Communication systems Moderate Growing interest in 5G and V2X technologies.
Safety and redundancy Moderate to high Substantial interest in AV reliability and public acceptance.
Ethical and legal considerations Moderate Rising importance due to regulatory and societal impact.
Societal impact and infrastructure Moderate Long-term AV integration amid growing policy discussions.

Table 6. Overview of research focus in AV technologies.

Key Component Research Focus

Perception

Segmentation [1,2,38]; Street-View Change Detection [25]; Monocular Depth
Estimation [21,26,30,39]; Sparse View Synthesis [22]; Calibration [28,57];
Multi-Object Tracking [32]; Object Detection [31]; Flow Estimation [29]; Ego-Motion
Estimation [27]; Occupancy Prediction [33]; Visual Odometry and Image
Registration [44]; Driver Alertness Detection [46]; Pedestrian Locomotion
Prediction [47,63]; Traffic Lights and Arrow detection [51]; Interpreting
Environmental Conditions [56]; Recognition and Matching Road Surface
Features [52]; Turn Signal Recognition [58]; Gaze Tracking [62]; Spatio-Temporal
Image Representation [61]

Localization and Mapping

Updating and Maintaining Maps [25]; Depth-Aware Map [26]; Multi-Camera
Maps [28]; Ego-Motion Estimation [27]; Creating and Updating Occupancy
Maps [33]; Visual Odometry [41,44]; Probabilistic Localization [34]; Mapping with
GNSS/INS-RTK [48]; Transferring Lane Graphs and Different Map
Representation [53]; Generating 2.5D maps using LIDAR and Graph SLAM [49];
2.5D Maps for Multilevel Environments and Vehicle Localization [50]; Map
Generation and Localization [57]; 3D LiDAR Mapping and Location [35];
3D Mapping [36,42]

Path Planning

Flow Estimation [29]; Point-to-Point Navigation [34]; Control-Aware Prediction [37];
Planning Near-Accident Driving Scenarios [45]; Safety Trajectory Generation [58];
Driver’s Target Trajectory [54]; Interactive Trajectory Prediction [60]; Lane-Change
Styles Classification [64]

Control

Generating Control Commands [34]; Control-Aware Prediction [37]; Controlling
Vehicle’s Actions [45]; Automated Lane-Change Control [64]; Safety Verification [24];
Interpretable Policies [40]; Behavior Cloning [23]; Chassis Performance [59];
Controlling Vehicle Steering [55]

Decision-Making

Weather Conditions in Decision-Making [56]; Predicted Probability Distribution [34];
Control-Aware Prediction [37]; Switching Between Different Driving Modes [45];
Decision-Marking on Predicted Driver’s Behavior [58]; Driver’s Target
Trajectory [54]; Decision-Making on Lane-Changes [64]; Interpretable Policies [40];
Behavior Cloning [23]; Chassis Performance [59]; Decision-Based Dynamic Traffic
Conditions [61]; Pedestrian Intent Prediction [43]; Monitoring Duration on
Takeover Time [62]

Human–Machine Interaction (HMI)
Sparse View Synthesis and Scene Visualization [22]; Real-Time Feedback based on
Driver State [46]; Driving Simulation and User Interaction [64]; Controlling Vehicle
Steering [55]; Monitoring Duration and Eye Tracking [62]
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3.1. Perception

The perception of AVs has evolved significantly, incorporating advanced techniques
to handle the complex and dynamic environments encountered during operation. These
systems rely on data from various sensors, including cameras and LiDAR. Approaches
include using cameras alone, LiDAR alone, or combining both through sensor fusion to
enhance perception. Since sensors are essential for determining both the state of the AV
and its environment, Table 7 provides an overview of the different sensors integrated into
autonomous vehicles.

Table 7. A summary of common types of sensors used in AVs.

Sensor Type Placement in Automated Car Some Exampled Use Cases

Cameras Front, sides, rear, roof Lane-keeping, pedestrian detection, object recognition
LiDAR 1 Roof, bumpers, sides 3D object detection, terrain mapping, localization
Radar 2 Front and rear bumpers Adaptive cruise control, collision detection
Ultrasonic Sensors Front and rear bumpers, sides Parking assistance, close-range obstacle detection
GPS Roof, dashboard Route planning, navigation, localization
IMU Integrated in-vehicle systems Stabilization, motion tracking, localization
Odometry Sensors Wheels or chassis Localization, motion planning, distance tracking
V2X 3 Sensors Roof, exterior antennas Traffic management, safety alerts, cooperative driving
Infrared (IR) Sensors Front bumper, roof Night vision, obstacle detection in low visibility
Magnetic Sensors Bottom of the vehicle Lane-keeping in autonomous shuttles
Barometric Pressure Sensors Inside vehicle sensor suite Altitude measurement, terrain planning
Laser Rangefinders Front and rear of the vehicle Object detection, parking assistance
Proximity Sensors Front and rear bumpers Parking, collision avoidance
Environmental Sensors Exterior, often on the roof Adjusting driving in response to weather

1 LiDAR: light detection and ranging; 2 Radar: radio detection and ranging; 3 V2X: vehicle-to-everything.

Building on this foundational sensor data, key areas of focus in perception include
segmentation [1,2,38], which divides visual data into meaningful parts, enabling the iden-
tification and localization of objects. Street-view change detection [25] enhances these
systems by recognizing environmental alterations that could impact navigation. Monocular
depth estimation [21,26,30,39] helps the system understand the 3D structure of a scene
using just one camera, which is especially important when other sensors, like LiDAR, are
not available.

Innovations such as sparse view synthesis [22] and rigorous calibration methods [28,57]
ensure that sensor data are both accurate and comprehensive, aiding in reliable object de-
tection and scene interpretation. Multi-object tracking [32], 3D object detection [31,63],
and LIDAR-based flow estimation in bird’s eye view (BeV) [29] enhance obstacle state
estimation by accurately predicting the dynamic state of objects from consecutive point
cloud data, enabling AV systems to maintain situational awareness and predict potential
hazards in real time.

Advanced techniques like ego-motion estimation [27], occupancy prediction [33], and
visual odometry [44] further enhance the vehicle’s understanding of its surroundings,
ensuring robust navigation even in challenging conditions. Additionally, the detection of
driver alertness [46], pedestrian locomotion [47,63], and traffic signals [51,57] contribute
to the system’s ability to interact safely and effectively with human operators and other
road users.

By recognizing and adapting to environmental conditions [56] and road surface fea-
tures [52], these systems can adjust their behavior to ensure safe operation. However, the
reliability of perception systems remains paramount, with ongoing research addressing
challenges such as sensor noise, adverse weather, poor lighting, and high traffic density, all
of which can affect the accuracy and safety of autonomous driving systems.
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3.2. Localization and Mapping

Localization ensures that an AV accurately identifies its position in the environment.
This is typically achieved by fusing data from a global positioning system (GPS), inertial
measurement units (IMUs), and visual-based sensors, such as LiDAR and cameras. Lo-
calization approaches generally fall into two categories: simultaneous localization and
mapping (SLAM), which performs localization and mapping concurrently, and offline
mapping, where the map is constructed separately. Mapping, essential for creating detailed
HD maps, can be classified into online and offline approaches. LiDAR remains a primary
sensor for HD map generation, although vision-based methods also contribute through
visual SLAM and deep learning techniques. HD map generation typically involves col-
lecting and aligning point clouds, labeling map elements, and frequent updates, making it
labor intensive.

Updating and maintaining maps [25] is necessary to ensure that the system’s under-
standing of its environment remains accurate over time, especially in dynamic settings.
Techniques such as depth-aware mapping [26] integrate depth information from sensors
like LiDAR to enhance map detail and accuracy, while multi-camera approaches [28]
leverage data from multiple cameras to create comprehensive map representations.

Ego-motion estimation [27] updates the vehicle’s position on the map and is further
refined using probabilistic localization methods [34] that estimate the most likely position
based on sensor data. Similarly, creating and updating occupancy maps [33], which
delineate occupied and accessible spaces, is vital for safe navigation and obstacle avoidance.
Visual odometry [41,44] estimates movement through the environment, complementing
other mapping techniques.

Advanced mapping methods that integrate global navigation satellite system/inertial
navigation system–real-time kinematic (GNSS/INS-RTK) positioning [48] offer high-precision
localization. Different map representations [53]—such as grid maps and topological maps—
affect how the system navigates and localizes itself in various scenarios.

Additionally, generating 2.5D maps using LiDAR and Graph SLAM [49] provides
a simplified yet effective 3-dimensional representation of the environment, particularly
useful in multilevel environments [50], like parking garages, for precise vehicle localiza-
tion. The dual process of map generation and localization [57] underpins the system’s
ability to navigate effectively, with 3D LiDAR mapping [35] offering detailed environmen-
tal scans that support robust localization even in complex terrains. Comprehensive 3D
mapping frameworks [36,42] integrate these diverse techniques, facilitating the creation
and continuous updating of maps critical for autonomous navigation.

3.3. Path Planning

Path planning in autonomous systems involves generating safe and efficient trajec-
tories for navigating complex environments. Control-aware prediction [37] enhances this
process by considering vehicle dynamics and control constraints when predicting future
states and planning paths. Flow estimation [29] also plays a role in understanding traffic
patterns and the movement of other vehicles, which is crucial for effective path planning
and collision avoidance.

In scenarios where potential accidents are a concern, planning near-accident driving
scenarios [45] ensures that the vehicle can respond appropriately to sudden environmental
changes or hazards. Point-to-point navigation [34] calculates optimal routes between
specific locations, ensuring the vehicle reaches its destination efficiently.

Safety trajectory generation [58] is a crucial aspect of path planning, aiming to create
trajectories that minimize risk and enhance overall safety. This involves considering the
movements of the vehicle and other road users to avoid collisions and ensure smooth
operation. The driver’s target trajectory [54] provides a reference for planning and aligning
the vehicle’s trajectory with the expected path of human drivers.

Interactive trajectory prediction [60] involves adapting the planned trajectory based
on real-time interactions with other road users, such as adjusting to changes in traffic con-
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ditions or the actions of nearby vehicles. Additionally, lane-change style classification [64]
helps the system understand different lane-change behaviors, which can inform planning
strategies and improve the overall driving experience. Together, these advanced methods
address the challenges of real-time decision-making and long-term prediction, significantly
enhancing both path and trajectory planning in autonomous driving systems.

3.4. Control

Control in autonomous systems encompasses various strategies and technologies to
ensure the vehicle operates safely and effectively. Safety verification [24] is crucial for
validating that the control systems adhere to safety standards and prevent dangerous
behaviors. Control-aware prediction [37] is also a key strategy that integrates vehicle
dynamics into the prediction process. This ensures that the control commands are not just
realistic but also feasible, given the vehicle’s capabilities and constraints, resulting in a
better alignment of the planned trajectories with the vehicle’s control limits.

Interpretable policies [40] are also a significant aspect of control strategies. These
policies are designed to be transparent and understandable, fostering better analysis and
trust in the decision-making process. They guide the vehicle’s actions in different situations,
making the control system more robust and reliable.

Additionally, controlling a vehicle’s actions [45] focuses on implementing control
strategies to execute the planned maneuvers, ensuring that the vehicle performs the desired
actions accurately. This includes generating control commands [34] that translate high-level
plans into specific actions for the vehicle. Behavior cloning [23] involves training control
systems using data from human drivers to replicate their driving behaviors, which can
enhance the vehicle’s ability to handle complex driving scenarios.

Chassis performance [59] refers to the system’s ability to manage and optimize the
vehicle’s physical movements, including steering and acceleration. Controlling vehicle
steering [55] is a specific aspect of control that involves adjusting the vehicle’s direction to
ensure precise maneuvering. Automated lane-change control [64] involves managing the
vehicle’s transitions between lanes, typically integrating with path planning to ensure smooth
and safe lane changes. Controlling lateral and longitudinal vehicle movements [61] covers the
broader scope of managing both the vehicle’s side-to-side and forward/backward movements,
which is essential for maintaining desired trajectories and ensuring smooth operation.

In summary, effective control strategies integrate predictive models, transparent decision-
making, and precise maneuver execution to enhance AVs’ overall safety and performance.

3.5. Decision-Making

Decision-making in autonomous systems involves complex processes to ensure safe
and effective driving by interpreting data and predicting outcomes. Control-aware pre-
diction [37] integrates vehicle dynamics into the decision-making process, helping ensure
that decisions are feasible and align with the vehicle’s capabilities. Pedestrian intent pre-
diction [43] enables the vehicle to make informed decisions to avoid potential collisions
and ensure safety. This involves analyzing pedestrian movements and predicting their
future actions.

Moreover, switching between different driving modes [45] allows the vehicle to adapt
to different driving conditions and scenarios, enhancing its flexibility and responsiveness.
This capability is vital for transitioning between manual and autonomous driving modes
or different levels of automation. Behavior cloning [23] leverages data from human drivers
to replicate their decision-making processes, providing a basis for the vehicle to handle
complex driving scenarios by mimicking human behavior. Another technique, predicted
probability distribution [34], helps evaluate the likelihood of various outcomes based
on current data, aiding in making more informed decisions by assessing potential risks
and benefits.
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Weather conditions in decision-making [56] involve incorporating environmental
factors such as rain, snow, or fog into the decision-making process, ensuring that the
vehicle can adapt to changing weather conditions and maintain safe operation. Additionally,
decision-making on predicted driver behavior [58] focuses on anticipating and responding
to the behavior of other drivers, enhancing the vehicle’s ability to interact safely and
effectively in mixed-traffic scenarios. The driver’s target trajectory [54] aligns the vehicle’s
actions with the driver’s intended path, ensuring that the vehicle’s decisions support the
overall driving goals.

Monitoring the duration of takeover time [62] involves assessing the time required
for a driver to take control of the vehicle from autonomous mode, which is crucial for
ensuring a smooth transition and maintaining safety. Additionally, decision-making on lane
changes [64] encompasses strategies for safely and efficiently changing lanes, integrating
with path planning and control systems to execute smooth lane transitions. Decision-
making based on dynamic traffic conditions [61] involves adapting decisions based on
real-time traffic data, ensuring that the vehicle can effectively navigate through varying
traffic scenarios.

Despite advancements, decision-making in autonomous systems faces challenges
such as accurately predicting complex driver behaviors, adapting to dynamic and adverse
conditions, and ensuring seamless transitions between different driving modes, all of which
are critical for enhancing overall system reliability and safety.

3.6. Human–Machine Interaction (HMI)

HMI in semi-autonomous systems optimizes communication between the driver and
the vehicle, improving safety and usability. In driver assistance systems (Levels 2–3), the
vehicle relies on driver inputs for tasks like steering and monitoring the environment.
Technologies such as sparse view synthesis and scene visualization [22] help enhance
the vehicle’s perception of its surroundings, which is then communicated to the driver
through real-time feedback systems [46]. This feedback includes driver state monitoring to
ensure the driver is engaged, enabling timely interventions when needed. Furthermore,
eye tracking and monitoring duration [62] provide insights into driver attention patterns to
refine interaction interfaces.

In fully autonomous systems (Levels 4–5), the HMI’s main role is to keep the passenger
informed about the route, the vehicle’s status, and any important conditions. Since the
vehicle handles all driving tasks, the passenger does not need to take control. Instead,
the HMI focuses on providing clear updates, such as navigation and system performance.
Studies involving driving simulations and user interactions [64] help improve these inter-
faces, making sure they are easy to use and provide passengers with the information they
need in a simple and intuitive way.

4. Knowledge Graphs and Ontologies

KGs are pivotal in structuring and representing knowledge through graph formats,
where nodes represent entities and edges capture relationships between them. According
to Hogan et al. [65], a KG is “a graph of data with the objective of accumulating and
conveying real-world knowledge”, with entities being either tangible objects or abstract
concepts and relationships indicating how these entities are connected. KGs utilize factual
triples (e.g., Albert Einstein, WinnerOf, Nobel Prize), formalized under the Resource
Description Framework (RDF). Formally, a KG is represented as G = (H, R, T), where H
denotes a set of entities, T includes entity-literal pairs, and R represents the relationships
connecting these elements.

Different graph models can be used to construct KGs, including directed labeled
graphs, which feature nodes connected by directed, labeled edges to represent binary
relationships intuitively; hyper-relational graphs, which are directed multigraphs with
nodes and edges that can have associated key–value pairs for more complex representations;
and hypergraphs, which extend the concept of binary edges to model multiple and complex
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relationships, including nested graphs within hypernodes [14]. These models provide
flexible frameworks for capturing diverse data structures.

Building on these fundamental structures, knowledge graph embeddings (KGEs)
convert the symbolic information in KGs into low-dimensional vectors that reflect the se-
mantic meanings of entities and relationships [14]. Unsupervised KGE methods generate
embeddings based on the inherent structure and attributes of the KG, using approaches
such as statistical relational learning and embedding techniques [66,67]. In contrast,
supervised KGE methods optimize embedding for specific tasks using labeled data
and include techniques such as graph neural networks (GNNs), graph convolutional
networks (GCNs), and graph attention networks (GATs) [68,69]. Recent surveys, includ-
ing Monka et al. [70], illustrate the growing interest in integrating KGs with machine
learning methods, highlighting their applications in fields like automated driving. Thus,
while the graph models provide the structure and organization of knowledge, KGEs
enhance its practical application by translating this structured data into meaningful
representations for different tasks.

In the context of KGs, ontologies provide a formal schema that defines the types of
entities and relationships within a specific domain. Philosophically, ontology refers to the
study of categories and their interrelations, but in computer science, it represents a formal
and explicit specification of a shared conceptualization [14]. Ontologies address semantic
heterogeneity and enable interoperability by establishing a common understanding of
terms and their interrelationships. In the domain of automated driving (AD), ontologies are
essential for modeling and integrating knowledge related to vehicles, drivers, routes, and
driving environments. They ensure consistent interpretations of concepts such as vehicle
types, driver behaviors, and traffic scenarios.

Building upon this base, specific ontologies tailored to different aspects of AD pro-
vide structured frameworks for integrating domain-specific knowledge. For example,
Vehicle Model Ontologies enhance data interoperability by representing vehicle-related
concepts, including types, components, and sensors. Driver Model Ontologies focus on
characterizing driver behaviors and styles, supporting driver assistance systems, while
Driver Assistance Ontologies underpin decision-making and information sharing related
to driver assistance features and human–machine interactions. Additionally, Routing and
Context Model Ontologies facilitate route planning and contextual modeling by addressing
elements like road geometry, traffic signs, and environmental conditions. Cross-Cutting
Ontologies encompass different aspects of driving automation, such as different levels of
automation, risk assessment, and interactions with human–driven vehicles. Collectively,
these ontologies promote semantic consistency across systems and enhance the capabilities
of AD systems by enabling the comprehensive integration of complex scenarios and diverse
data sources [14].

4.1. Knowledge Graphs Integrated into AV Technologies

KGs have been increasingly recognized for their crucial role in autonomous driv-
ing, particularly in enhancing situation comprehension. The integration of KGs into
these domains provides a structured approach to handling and interpreting complex
driving scenarios and sensor data, thereby improving the decision-making process of
autonomous vehicles. We have been presented with Section 3, in which foundational
understanding sets the stage for exploring the challenges and research opportunities
that KGs can address when integrated into AV technologies. In the following subsection,
we delve into KGs’ contributions to AVs from 12 papers. These contributions highlight
how KGs enable more efficient and explainable models, ultimately leading to safer
and more reliable AV systems. Table 8 provides an overview of KGs’ contributions to
AV applications.
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Table 8. Key contributions of knowledge graphs in AV applications.

Research Focus Approach Key Contributions

Scene Representation CoSI [71]
Integrates heterogeneous sources into a unified KG structure for
situation classification, difficulty assessment, and trajectory
prediction using GNN architecture.

roadscene2vec [72] Generates scene graphs for risk assessment, collision prediction,
and model explainability.

Semantic Scene Graph [73] Captures traffic participants’ interactions and relative positions.

nSKG [74] Represents scene participants and road elements, including
semantic and spatial relationships.

Object Tracking 3D multi-object tracking
[75]

Graph structures integrate detection and track states to improve 3D
multi-object tracking accuracy and stability.

Road Sign Detection KGs with VPE [76] Combines KGs with variational prototyping encoder (VPE) for
improved road sign classification and accurate annotation.

Scene Graph-Augmented
Risk Assessment Scene graph sequence [77]

Scene graphs with multi-relation GCN, LSTM, and attention layers
assess driving maneuver risks, improving object recognition and
scene comprehension.

Scene Creation Ontologies [78] Ontologies model expert knowledge for generating diverse traffic
scenes and enhancing scenario creation for AV testing.

AGO [79] Automotive global ontology (AGO) as a knowledge organization
system (KOS) for semantic labeling and scenario-based testing.

Lane Graph Estimation LaneGraphNet [80] Estimates lane geometry from BEV images by framing it as
a graph estimation problem.

TopoNet [81] Uses a scene graph neural network to model relationships in
driving scenes, understanding traffic element connections.

4.1.1. Scene Representation

The research effort [71] on context and situation intelligence (CoSI) introduces a KG-
based framework aimed at enhancing situation comprehension in driving scenarios, as
illustrated in Figure 3. This framework integrates diverse information sources—such
as driver state, destination, personal preferences, and the surrounding environment—
into a unified KG structure. Figure 3 provides an excerpt of the CoSI knowledge graph
(CKG), demonstrating how environmental information is represented through instances
(assertional box) of ontological concepts (terminological box). The CoSI ontology, which
underpins this KG, models the key aspects as follows:

• Scene: Refers to a snapshot of the environment, including both static and dynamic ele-
ments, as well as the self-representations of actors and observers and the relationships
among these entities.

• Situation: Represents the complete set of circumstances considered when choosing an
appropriate behavioral pattern at a specific moment. It includes all relevant conditions,
options, and factors influencing behavior.

• Scenario: Describes the progression over time across multiple scenes, including actions,
events, and goals that define this temporal development.

• Observation: Involves the process of performing a procedure to estimate or determine
the value of a property of a feature of interest.

• Driver: A user with attributes specific to the driving context.
• Profile: Structured representation of user characteristics.
• Preference: A concept used in psychology, economics, and philosophy to describe a

choice between alternatives. For instance, a person shows a preference for A over B if
they would opt for A rather than B.
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Figure 3. CoSI knowledge graph [71] proposed by Halilaj et al. An excerpt of the CoSI KG representing
respective situations occurring in two consecutive scenes: (1) the bottom layer depicts scenery
information among participants; (2) the top layer includes concepts such as classes and relationships
representing the domain knowledge; and (3) the middle layer contains concrete instances capturing
the scenery information based on the ontological concepts [71].

This is a great example of ontology, which helps integrate and interpret both sensor
data and driver-related information, including preferences and abilities. By representing
this information as entities and their inter-relationships and incorporating semantic axioms,
the KG enables advanced reasoning and inference capabilities. The use of axiomatic rules
and KG embedding techniques in a GNN architecture has shown significant improvements
in situation classification, difficulty assessment, and trajectory prediction.

Additionally, Wickramarachchi et al. [82] highlight the benefits of knowledge graph
embeddings (KGEs) in facilitating neuro-symbolic fusion. This approach improves the
predictive performance of machine learning models in autonomous driving by integrating
symbolic reasoning with neural network capabilities.

Further, Wang et al. [83] presented an approach to predicting pedestrian trajectories.
As illustrated in Figure 4, the framework is composed of two main modules: the spatio-
temporal interaction aware module and the trajectory distribution aware module, followed
by a trajectory decoder. First, the spatio-temporal interaction-aware module captures both
spatial and temporal relationships between pedestrians. This module includes spatial
self-attention, which focuses on the most relevant pedestrian interactions at each time step,
and a graph convolutional network (GCN) that models pedestrian interactions by treating
them as nodes in a graph, with edges representing interactions between them. Additionally,
it employs a temporal asymmetric network to process the temporal evolution of trajectories,
with a stronger emphasis on recent movements, and a temporal self-attention mechanism
to highlight the most critical time steps. The module also incorporates a spatial asymmetric
network, which accounts for the unequal influence pedestrians have on each other based
on their positions and movements. Residual connections ensure that important features
are preserved as they pass through the model. Second, the trajectory distribution aware
module handles uncertainty in trajectory prediction by encoding both observed trajectories
(past movements) and ground truth trajectories (actual future paths). This allows the
model to capture the underlying distribution of possible future movements, enabling it
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to generate potential future trajectories that reflect the inherent variability in pedestrian
behavior. Lastly, the trajectory decoder uses a combination of the temporal asymmetric
CNN (TA-CNN), which focuses on the temporal dynamics of predicted trajectories, and
the trajectory embedding CNN (TE-CNN), which converts the learned features into spatial
coordinates. This results in the generation of multiple plausible future trajectories, offering
possible pedestrian paths. By modeling both spatio-temporal interactions and trajectory
distributions, the framework enhances the understanding of pedestrian movement in
complex environments, improving decision-making and planning.
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Road scene-graph representations, when combined with graph learning techniques,
have recently surpassed deep learning methods in action classification, risk assessment, and
collision prediction. Ref. [72] introduced roadscene2vec, an open-source tool designed to
facilitate research into road scene-graph applications. roadscene2vec provides capabilities
for generating scene graphs from video clips or CARLA (Car Learning to Act) simulator
data, creating spatio-temporal embeddings with various models, and visualizing and
analyzing scene graphs. It supports risk assessment, collision prediction, transfer learning,
and model explainability evaluation. Similarly, Zipfl et al. [73] introduced a semantic scene
graph model where traffic participants are represented as nodes, and their relationships
are captured as semantically classified edges. This model provides a structured way to
describe traffic scenes beyond just the road geometry, focusing on traffic participants’
interactions and relative positions. Using graph-based representations for dynamic objects
in traffic scenes, such as pedestrians and vehicles, highlights an approach to organizing
and interpreting complex scene data.

In addition, the SemanticFormer [84] approach uses a semantic traffic scene graph to
represent and process high-level information about traffic participants, road topology, and
traffic signs. The ontologies of the traffic scene are shown in Figure 5. The ontology depicted
in the figure represents a comprehensive semantic framework for modeling traffic scenes,
particularly designed for applications such as trajectory prediction, behavior analysis, and
decision-making in autonomous driving. This structured KG integrates static and dynamic
entities in a traffic scene, capturing their relationships and interactions over time. The graph
follows a modular approach, where different components represent the environment (road
structures, lanes, intersections) and participants (vehicles, pedestrians, obstacles). These
components, when interconnected through predefined relationships, form a foundation for
understanding and predicting real-world driving scenarios.
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Figure 5. Traffic scene ontologies proposed by Sun et al. [84]. Agent ontology defines agent attributes
like category, speed, position, and trajectory, and relationships to map like distance to lane, and path
distance. Map ontology defines map elements like lane snippet, lane slice, traffic light, etc., and
relations within map elements like left/right lane and switch via double dashed line [84].

The elements in the ontology include the EgoVehicle, representing the autonomous
vehicle navigating the scene, and Participants, which encapsulate all dynamic entities, such
as Humans, Vehicles, and MovableObjects. The human participants are further subclassed
into entities like Children, Adults, and Police Officers, reflecting their distinct behaviors
and interactions in a traffic environment. Similarly, vehicles are divided into types like Cars,
Bicycles, Trucks, and Motorcycles, capturing the diverse range of interactions and speeds
these entities exhibit on the road. In addition to dynamic entities, the ontology models
static objects such as RoadSegments, LaneDividers, Intersections, and CarparkAreas. These
elements define the structure of the road environment and are essential for path planning
and navigation. Relationships like switchVia or hasNextLaneSnippet model how vehicles
can move between lanes, offering information into potential lane-switching behaviors or
turns at intersections. The inclusion of StaticObjects, such as BicycleRacks or TrafficCones,
also ensures that the autonomous vehicle can account for obstacles that may affect route
planning or cause obstructions.

Geometric and positional data, represented through entities like Point and Polygon,
offer spatial information about road elements and participants. This information is crucial
for defining the location and shape of lanes, intersections, or other key objects in the scene.
The integration of Geometry into the ontology allows the autonomous vehicle to map its
environment and understand the spatial constraints in real time. The temporal aspect of
the ontology is managed through elements like Scene and Sequence. A Scene represents a
snapshot of the traffic environment, containing all entities and their relationships at a given
moment. Multiple scenes can be grouped into a Sequence, forming a temporal chain that
models the evolution of a traffic situation over time. This temporal structure is critical for
predicting the future trajectories of participants, as the system can understand not only
the current state of the environment but also how it is likely to change. In summary, this
ontology provides a structured framework that captures the complexities of real-world
traffic environments, integrating spatial, temporal, and relational data. Modeling both the
static infrastructure and the dynamic behaviors of participants serves as a foundational
tool for enhancing the decision-making capabilities of autonomous vehicles, enabling them
to navigate safely and effectively in diverse and unpredictable scenarios.

Additionally, [74] introduces an approach using KGs to model various entities and
their semantic connections within traffic scenes. It presented the nuScenes knowledge
graph (nSKG), which explicitly models scene participants and road elements, including
their semantic and spatial relationships. Similarly, Sun et al. [85] investigate the effects of
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spatial resolution, the relationship between graphs and trajectory predictions, and methods
for embedding knowledge into graphs.

Urbieta et al. [79] introduced and formalized knowledge-based entity prediction (KEP),
which improves scene understanding by predicting potentially missing entities using a
knowledge-infused learning approach. The proposed solution includes (1) a dataset-
agnostic ontology for describing driving scenes, (2) a comprehensive scene representation
with knowledge graphs, and (3) a novel mapping of KEP to link prediction (LP) using KGE.
Evaluations are performed with real urban driving data.

4.1.2. Object Tracking

Focused on 3D multi-object tracking, Zaech et al. [75] use graph structures to integrate
detection and track states, improving tracking accuracy and stability. This approach aligns
with enhancing scene understanding through dynamic object tracking. The learning-based
graph approach integrates object detections and tracks, creating a unified representation of
the environment that supports effective scene understanding.

4.1.3. Road Sign Detection

Accurate road sign annotation is crucial for AI-based road sign recognition (RSR)
systems but is often hindered by annotators’ difficulties with diverse road sign systems.
Ref. [76] propose a novel method combining knowledge graphs with a machine learning
algorithm—variational prototyping encoder (VPE)—to enhance road sign classification. An-
notators use the road sign knowledge graph to query visual attributes, receiving candidate
suggestions from the VPE model.

4.1.4. Scene Graph Augmented Risk Assessment

Despite significant autonomous driving progress, navigating complex road conditions
remains challenging. There is notable evidence that assessing the subjective risk level
of different decisions can improve AD safety in normal and complex driving scenarios.
Traditional deep learning methods often fail in modeling traffic interactions and need
more explainability. Thus, [77] proposes a novel approach using scene graphs with a multi-
relation graph convolution network, long-short term memory network, and attention layers
to assess driving maneuver risks. By leveraging KGs, this research demonstrates how KGs
can enhance object recognition and scene comprehension, aligning with scene graphs to
model relationships between traffic participants. This integration supports improved object
detection algorithms and a more comprehensive understanding of driving environments.

4.1.5. Scene Creation

To address the challenges of identifying diverse scenarios, Bagschik et al. [78] proposed
the use of ontologies to model expert knowledge and generate a wide array of traffic scenes.
Ontologies facilitate the creation of detailed and varied scenarios by translating specialist
knowledge into structured formats that can be used for computer-aided processing. This
approach enhances the scenario creation process, ensuring that automated vehicles undergo
rigorous testing across a comprehensive set of scenarios, contributing to their safety and
development. Furthermore, [79] proposed the automotive global ontology (AGO) as a
knowledge organization system (KOS) implemented with the Neo4j graph database. The
AGO is demonstrated through two use cases—semantic labeling and scenario-based testing.

4.1.6. Lane Graph Estimation for Urban Driving

Lane-level scene annotations are crucial for trajectory planning in autonomous vehicles
but are labor intensive and costly. Zurn et al. [80] propose a novel method for estimating
lane geometry from bird’s-eye-view images by framing it as a graph estimation problem.
Lane anchor points are represented as graph nodes, and lane segments as graph edges. The
model, trained on multimodal data from the NuScenes dataset, estimates lane shapes and
connections, resulting in a directed lane graph. The LaneGraphNet model demonstrates
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strong performance on urban scenes in the NuScenes dataset, offering a promising step
towards automated HD lane annotation. Traditional methods need help with lane connec-
tivity and often overlook interaction modeling, while traffic element-to-lane assignments
remain limited to the image domain. To address these challenges, Li et al. [81] introduced
TopoNet, which uses a scene graph neural network to model relationships in driving scenes.
This end-to-end framework abstracts traffic knowledge and understands the connections
between traffic elements and lanes beyond traditional perception tasks. Figure 6 shows
how TopoNet built the connections between traffic elements and lanes.
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4.2. Challenges and Potential Solutions in Existing Work

In this section, we outline the limitations identified in integrating KGs and semantic
technologies as presented in Section 4.1, followed by potential solutions and directions for
future research.

4.2.1. Maturity of Semantic Technologies

Semantic technologies, which enable machines to understand and reason with human
language, have made significant strides. However, their integration into automotive appli-
cations still presents challenges, particularly regarding performance and interoperability. In
AVs, processing large amounts of data in real time remains an issue, and the task of merging
different systems and data sources, such as sensors and maps, is complicated by varying
formats and standards. Triple stores, specialized databases for storing and querying data
relationships, play a key role in addressing these challenges [71]. The balance between
virtual data access, which allows for flexible, on-the-fly queries, and materialization, which
speeds up queries by pre-storing data, is crucial for optimizing performance. Advances
in triple stores are helping to improve query efficiency, but further research is needed to
refine these techniques. Future work needs to focus on optimizing this balance to more
effectively handle the vast and complex data involved in AD.
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4.2.2. Knowledge Graph Embeddings (KGE) and Data Preparation

Preparing data for KGE can be complex, particularly when information is dispersed
across multiple relationships [71,77]. Special queries and the creation of views can help
manage this complexity, but more advanced methods are needed. Future research should
explore automated techniques for optimizing KGE in dynamic, multi-relational contexts.
Additionally, current datasets often lack the volume and variety necessary for complex
semantic inferences. Expanding datasets to include risk and accident scenarios and em-
ploying advanced methods like scene captioning and risk classification could address these
limitations. Scalability remains a concern as datasets grow larger, requiring more efficient
data processing methods.

4.2.3. Handling Long Frame Gaps and Occlusions in Tracking

Tracking systems often struggle with long frame gaps and occlusions, leading to ID
switches and false positives. Developing adaptive methods that intelligently manage these
trade-offs is crucial for improving tracking continuity. Advanced occlusion models and
temporal context-aware algorithms present promising avenues for AV research [75].

4.2.4. Intersection and Lane Detection Challenges

Complex intersections and lane configurations present significant challenges for lane
detection models, often leading to inaccuracies. Enhancing these models with additional
contextual information (traffic signal and sign information, road markings and signage,
surrounding vehicle behavior, GPS and map data, road geometry), improving data augmen-
tation techniques, and expanding training datasets to cover a broader range of scenarios
can improve model robustness in these challenging environments.

4.2.5. Expanding Predictive Capabilities and Scalability

While current predictive systems excel in specific scenarios like “pedestrian crossing”
and “lane changes”, they fall short in more complex situations, such as near-miss maneu-
vers. Expanding predictive models to include a wider range of use cases, particularly
in diverse cultural contexts, is necessary for more comprehensive behavior prediction in
autonomous vehicles. Integration with AV behavior planners is a critical next step [72].
Additionally, the scalability of deploying GNNs on large graphs, as seen in dataset-specific
ontologies, is another critical challenge [74]. Techniques to manage the increased computa-
tional complexity and memory requirements associated with large graphs are necessary to
fully realize the potential of GNNs in AV applications.

4.2.6. Validation of Automated Driving Systems

One of the primary challenges in validating highly automated driving systems is the
impractical requirement of millions of test kilometers to cover critical situations [71]. This
challenge can be addressed by utilizing simulation data for validation, which is expected to
generalize well to real-world scenarios. However, the effectiveness of simulation data needs
further exploration, such as validation with real-world data, transfer learning techniques,
and human-in-the-loop testing, to ensure reliability in diverse and unpredictable real-
world conditions.

5. Discussion for Ethical and Practical Considerations in AV Technologies

In this section, we discuss ethical and practical considerations in AV technologies.

5.1. Challenges of Knowledge Graphs in AVs

As we presented in Section 3 through Section 4, KGs are known for their ability
to represent complex information in a way that helps humans understand relationships
between objects and situations. However, their exact role in helping AV systems recognize
and make decisions is still debated. While KGs can improve decision-making by organizing
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information about the environment and objects, it is unclear how essential or effective they
are when it comes to the fast, real-time decisions that AV systems need to make.

Recent research has explored how KGs can serve as valuable tools for contextual
enrichment in AV systems, particularly in areas such as environmental perception and
situation awareness. For instance, KGs have been employed to improve the semantic un-
derstanding of traffic environments, support sensor data fusion, and provide a knowledge
base for real-time decision-making. However, integrating KGs into AV systems must bal-
ance improving decision accuracy with maintaining the processing speed needed for safe
operations. For instance, KGs can help an AV interpret “traffic signs” or predict “pedestrian
behavior” in contexts like “construction zones” or “school areas”, but this information must
be processed quickly enough for the vehicle to respond in real time, such as “stopping
for a crossing pedestrian”. KGs may not serve as a standalone solution but rather as a
component within a broader decision-making framework, particularly in machine learning
pipelines where they enhance prediction accuracy and contextual reasoning.

Future research should focus on evaluating the real-time performance of KGs in
AV decision processes and determining whether they offer tangible benefits compared
to machine learning approaches. Key questions include how well KGs scale with the
complexity of AV environments and how they integrate with high-performance machine
learning algorithms that enable fast decision-making.

5.2. Ethical Decision-Making in AVs: Moving Beyond Human Analogy

One of the critical aspects of AV decision-making lies in its ethical dimension. Unlike
human drivers, who rely on intuition and often make decisions under time pressure with
limited information, AVs are pre-programmed to follow specific rules and logic. However,
this raises an important concern: how are AVs programmed to make ethically sound
decisions in real-world scenarios, particularly when their perception of the environment
differs fundamentally from that of humans?

In AVs, decision-making algorithms need to consider the limitations of machine
perception, which depends on sensors like cameras, lidar, and radar. Unlike human
senses, which directly interpret the environment, these sensors generate data streams that
the AV must process. Because machines perceive the world differently from humans,
the ethical frameworks guiding AV decisions need to reflect the specific strengths and
weaknesses of these sensors. Instead of just copying human decision-making, the ethical
guidelines for AVs should be tailored to how these machines actually see and understand
their surroundings.

Recent incidents in AV development, such as the Boeing MCAS (maneuvering char-
acteristics augmentation system) disaster [86], underscore the risks of poorly designed
decision-making systems that fail to account for complex, real-world situations. In AVs,
ethical decisions should be tightly coupled with safety regulations, focusing on minimizing
harm while adhering to legal standards. The debate around whether AVs should be pro-
grammed to make difficult ethical choices (e.g., who to protect in an unavoidable accident)
often leads to the spread of “fake ethics” that are not grounded in the practical realities of
AV technology.

To mitigate such concerns, developing decision-making algorithms that prioritize
risk avoidance and minimize harm is crucial, rather than only replicating human ethical
dilemmas in AV systems. Furthermore, the ethical reasoning framework of AVs should be
transparent and accountable, ensuring that decisions can be traced and reviewed in the
event of an incident.

5.3. Addressing Fake Ethics in AVs

In discussions about ethics and AVs, speculative scenarios often emerge, such as
an AV having to choose between “saving a mother and a child” or “avoiding a cat”.
These hypothetical situations, while interesting in ethical debates, do not reflect the real
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operational challenges AVs face. Such scenarios lead to “fake ethics”, which distract from
the real goal of AV development—preventing accidents and ensuring safe driving.

For example, human drivers are expected to follow traffic laws and avoid dangerous
situations, like speeding through a crowded intersection. AVs should be programmed the
same way: to avoid risks entirely rather than needing to make moral decisions in split
seconds. The focus should be on designing AV systems that can recognize and react safely
to potential hazards before they escalate into accidents. Take a real-world case: instead of
asking an AV to choose between hitting a pedestrian or swerving into oncoming traffic, the
goal should be to avoid either scenario in the first place by programming the vehicle to
slow down when approaching a crowded area. This proactive approach avoids the need for
moral decision-making altogether. Additionally, concerns about AVs being programmed
to take risks that human drivers would avoid, such as speeding through yellow lights to
save time. Rather than forcing AVs to make risky decisions, developers should ensure
that AVs always prioritize safety, such as stopping at yellow lights even when they could
technically make it through. Ultimately, the ethical focus for AVs should be on preventing
accidents and minimizing harm, not on programming them to make difficult moral choices
in high-pressure moments.

5.4. Accountability in AV Decision-Making

A critical concern raised in AV ethics is accountability—specifically, who or what
is responsible when an AV makes a decision that results in harm or an accident. Unlike
human drivers, who may act unpredictably or make judgment calls, AVs operate under
strict programming, meaning that every decision can be traced back to the algorithms that
govern their behavior.

There are growing concerns that if AVs are programmed to take risks that human
drivers would not be expected to take, the responsibility for accidents could shift toward the
manufacturers or software developers. For example, if an AV is designed to prioritize the
safety of its passengers over pedestrians in certain scenarios, such programming could be
interpreted as premeditated risk-taking, raising legal and ethical questions about liability.

To address these concerns, regulations must ensure that AVs follow responsible driving
behaviors similar to the standards and legal rules that apply to human drivers. Develop-
ers of AV systems need to be responsible for making sure their algorithms do not create
unnecessary risks on the road, such as making unsafe lane changes or failing to prioritize
emergency vehicles. Additionally, AV decision-making processes should be reviewed and
checked regularly. In addition to legal responsibility, there is also a need for AVs to be
equipped with fail-safe mechanisms that can respond appropriately when unexpected
situations arise. This could include handing control back to a human driver or execut-
ing predefined safety maneuvers when the system cannot confidently make an ethically
sound decision.

6. Conclusions

This paper has surveyed the integration of knowledge graphs (KGs) into autonomous
vehicle (AV) technologies, addressing the research questions outlined in Section 2. In
response to the first question—what are the key applications in AV technologies and KGs—
we discussed the critical components of AV systems in Section 3, including perception,
localization, path planning, and decision-making, and highlighted the significant challenges
these systems face in real-world environments. In Section 4, we explored the specific
ways in which KGs can enhance these components by providing a structured framework
for organizing and interpreting complex environmental data, contributing to improved
perception, localization, path planning, and decision-making within AV systems.

For the second question—which aspects of KG integration does the article address—
we discussed the application of KGs in AV systems in Section 4, demonstrating how they
can enhance perception and decision-making by providing structured and contextualized
data from diverse sources. We highlighted that while KGs have the potential to improve
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AVs’ ability to interpret traffic environments and make more informed decisions, their
practical integration still faces challenges, particularly in terms of scalability, robustness,
and real-time performance across various driving conditions.

In relation to the third question—what methods do the article discuss for integrating
KGs with AV systems—we presented the approaches for KG integration, particularly in
enhancing sensor data processing and real-time decision-making. These methods involve
employing KGs to provide contextualized data that enhances the performance of existing
AV systems. Future work is required to evaluate and refine these methods in diverse and
unpredictable driving scenarios.

Lastly, in response to the question—what are the limitations of AVs, and what future
research does the article suggest—we discussed the limitations, including the need to
improve the scalability and real-time performance of KG-based systems. In Section 5, we
also explored the ethical considerations in AV decision-making, emphasizing that AVs
should prioritize safety and risk minimization over replicating human ethical reasoning.
Transparency and accountability in AV decision-making are crucial, as is ensuring that
manufacturers take responsibility for any pre-programmed risks embedded in AV systems.

In conclusion, while the integration of KGs into AV technologies holds great potential
for addressing the complexities of perception and decision-making, significant research
gaps remain. Enhancing the scalability, robustness, and real-time processing capabilities of
KGs is essential to meet the stringent demands of AV systems. Future research should focus
on real-world evaluations of KG performance across diverse scenarios, as well as deeper
integration with machine learning pipelines. Ethical concerns, particularly those related to
safety and accountability, must remain central to the development of AV technologies. By
addressing these challenges, KGs could unlock new possibilities for creating more reliable,
ethical, and safe autonomous driving systems.
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