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Abstract: Brain tumor detection is crucial for effective treatment planning and improved patient
outcomes. However, existing methods often face challenges, such as limited interpretability and
class imbalance in medical-imaging data. This study presents a novel, custom Convolutional Neural
Network (CNN) architecture, specifically designed to address these issues by incorporating inter-
pretability techniques and strategies to mitigate class imbalance. We trained and evaluated four CNN
models (proposed CNN, ResNetV2, DenseNet201, and VGG16) using a brain tumor MRI dataset,
with oversampling techniques and class weighting employed during training. Our proposed CNN
achieved an accuracy of 94.51%, outperforming other models in regard to precision, recall, and
F1-Score. Furthermore, interpretability was enhanced through gradient-based attribution methods
and saliency maps, providing valuable insights into the model’s decision-making process and foster-
ing collaboration between AI systems and clinicians. This approach contributes a highly accurate
and interpretable framework for brain tumor detection, with the potential to significantly enhance
diagnostic accuracy and personalized treatment planning in neuro-oncology.

Keywords: brain tumor detection; convolutional neural networks; interpretability; class imbalance;
medical imaging

1. Introduction

Brain tumors pose a significant health concern, contributing substantially to cancer-
related morbidity and mortality rates worldwide [1]. In clinical practice, the accurate
identification and classification of different tumor subtypes are essential for effective
treatment planning and providing personalized care to patients. Radiological imaging,
particularly Magnetic Resonance Imaging (MRI), offers crucial anatomical and functional
details vital for differential diagnosis and therapeutic decisions [2]. Despite advancements
in imaging technologies and diagnostic approaches, one of the most critical challenges in
neuro-oncology remains the precise classification of brain tumor subtypes [3].

Traditional imaging modalities provide insights into tumor morphology and local-
ization [4], but they often fall short in determining the subtler characteristics associated
with histology and molecular components [5]. This highlights the pressing need for more
accurate imaging analysis techniques that can classify different brain tumor subtypes with
greater precision. The present study aims to bridge this gap through advanced computa-
tional approaches and radiomic analysis, enhancing the capability of radiological imaging,
especially MRI, for tumor subtype classification.

Although modern architectures like EfficientNet, ConvNeXt, and Vision Transformers
(ViT) offer improved accuracy in large-scale image classification, they are often compu-
tationally expensive and lack the level of interpretability required in medical imaging.
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Given the clinical necessity for both high accuracy and transparent decision-making, our
study opts for a custom CNN architecture. This model is designed to provide a balance
between interpretability, computational efficiency, and accuracy, ensuring its suitability for
deployment in resource-constrained clinical environments where model decisions must be
easily understood and trusted by healthcare professionals.

The primary objective of this research is to develop and validate predictive models
capable of differentiating between gliomas, meningiomas, and pituitary tumors using
MRI scans and the radiomic features extracted from these scans. Through a systematic
analysis of a large MRI dataset and the employment of machine-learning methods, the
study aims to identify radiomic features associated with enhanced specificity and sensitivity
in distinguishing among the selected tumor subtypes and develop models for accurate
classification. The major contributions of this study are as follows:

1. Development of a custom CNN model specifically tailored for brain tumor detection
using MRI scans.

2. Comparative analysis with State-of-the-Art pretrained models, including ResNetV2,
DenseNet201, and VGG16.

3. Integration of oversampling techniques and class weighting to handle class imbalance.
4. Enhancement of model interpretability using gradient-based attribution methods and

saliency maps.
5. Comprehensive performance evaluation using multiple metrics, including accuracy,

precision, recall, and F1-score.

This work can benefit the field of neuro-oncology by providing more specific diagnostic
tools for clinicians, enabling the development of personalized approaches to the treatment
of different tumor subtypes.

2. Literature Review

Brain tumor detection and classification are crucial for diagnosing and treating brain
diseases. Over the years, various imaging techniques and machine-learning algorithms
have been developed to enhance the accuracy and efficiency of brain tumor detection [6].
In this section, we discuss previous studies related to our objective of redefining the process
of brain tumor detection using trained CNN models. We also present a summary of the
findings, methodologies, and limitations from these studies.

Table 1 provides an overview of various approaches and methodologies involved in
brain tumor detection, including deep learning (DL)-based approaches alongside multi-
modal imaging approaches. However, these techniques have shown limitations or factors
that need improvement, such as underutilized datasets, non-interpretable DL models, and
class imbalance.

Table 1. Summary of existing studies on brain tumor detection.

Source Methodology Main Findings Limitations

[7]

Deep learning-based approach
combining CNNs and RNNs to

analyze multimodal MRI data, with
data augmentation.

Improved sensitivity and specificity
in brain tumor detection through a

deep learning-based approach
combining CNNs and RNNs.

Limited availability of labeled data
addressed through data

augmentation.

[8]

Utilization of deep learning for
medical image analysis,

preprocessing MRI images, and
classification with a hybrid

CNN-LSTM model.

Outperformed existing models in
brain tumor classification with a

high validation accuracy.

The proposed method relies on
pretrained models like AlexNet for

feature extraction, potentially
limiting its ability to adapt to new

and diverse datasets without
further fine-tuning.
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Table 1. Cont.

Source Methodology Main Findings Limitations

[9]

Development of a deep-learning
system using convolutional neural
networks for brain tumor detection

from MRI scans.

Accurate detection of brain tumors
from MRI scans using deep

learning-based system.

Limited availability of diverse and
representative datasets for training
may constrain the generalizability

of the model’s predictions.

[10]

Utilization of deep-learning models
(ResNet50, ConvNeXt, and custom

CNN) for brain tumor detection
from MRI scans.

Deep-learning models offer efficient
tumor detection on MRI images

for clinicians.

Limited availability of diverse and
large-scale datasets for training and

testing deep-learning models,
which may affect the

generalizability and robustness of
the developed brain

tumor-detection system.

[11]

Use of CNN for brain tumor
detection and classification,

development of a deep-learning
model for tumor categorization.

Deep-learning model accurately
classifies brain tumors into different

categories with high accuracy.

Complexity of MRI images, limited
classification into 4 tumor types,
generalizability not discussed.

[12]

Utilization of transfer-learning
model (AlexNet’s CNN) for brain
tumor detection and classification

in MR images.

Transfer learning with AlexNet’s
CNN improves brain tumor

detection and classification in
MR images.

Not mentioned.

[13]
Development of DL model based

on U-Net CNN for classifying
different brain tumor types.

DL model based on U-Net CNN
classifies different brain tumor

types with high accuracy.

Limited availability of diverse and
large-scale datasets for training and

testing the U-Net model, which
may affect the generalizability and

robustness of the developed
brain tumor

detection-and-classification system.

Recent advancements in image classification have seen the emergence of several
promising architectures. ConvNeXt, a pure CNN, has demonstrated a competitive perfor-
mance against Transformers, achieving 87.8% accuracy on ImageNet and outperforming
Swin Transformers on detection and segmentation tasks [14]. CoAtNet, which combines
convolution and attention mechanisms, achieved 90.88% accuracy on ImageNet when
scaled up with JFT-3B [15]. EfficientNet principles have been incorporated into hybrid
models like EffiConvRes, which utilizes residual connections and depthwise convolutions
to achieve high accuracy while maintaining computational efficiency [16]. ConvNeXt
variants have also shown superior performance on the CIFAR-10 dataset compared to other
State-of-the-Art models [17]. These architectures represent significant progress in balancing
accuracy, efficiency, and scalability for image-classification tasks.

Table 2 summarizes recent research on brain tumor detection and classification, in-
cluding ongoing challenges and promising new directions.

In recent advancements, EfficientNet has emerged as a high-performance architecture
for medical image classification tasks. Specifically, Ref. [18] introduces a fine-tuned Effi-
cientNetV2S model for classifying brain tumors, achieving superior results in accuracy
and performance metrics compared to other deep-learning models. Their model utilizes
EfficientNetV2S, which incorporates inverted bottleneck blocks and depthwise separable
convolutions, optimizing computational efficiency and improving accuracy.

In comparison, our study developed a custom CNN model with three convolutional
layers and standard ReLU activation functions for brain tumor classification. While our
approach achieved an accuracy of 94.51%, models in [18] significantly outperformed it
with an accuracy of 98.48%. This difference may be attributed to the deeper and more
complex structure of EfficientNetV2S, which is designed to capture more intricate features
in MRI images.
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Table 2. Summary of Recent Approaches and Challenges in Brain Tumor Detection and Classification.

Aspect Key Findings Methodologies Gaps/Limitations

Deep-learning
approaches

Many studies demonstrate
the effectiveness of CNNs in
analyzing medical images
for brain tumor detection,

leading to high
accuracy rates.

Utilization of CNN architectures to
process MRI scans and classify brain
tumors into various subtypes. Data

preprocessing, including normalization
and augmentation, is used to enhance
model performance. Transfer-learning
techniques to improve model accuracy

by transferring knowledge from
pretrained models.

Lack of interpretability in
deep-learning models.

Limited generalizability due
to focus on specific datasets.

Multimodal imaging

Integration of MRI, CT, and
PET data can enhance tumor
boundary delineation and

diagnostic accuracy.

Utilization of multimodal datasets
combining information from different

imaging techniques. Fusion techniques,
such as feature concatenation or

attention mechanisms, to integrate
information from multiple modalities.

Training of models using deep-learning
or traditional

machine-learning algorithms.

Challenges in integrating
and harmonizing data from

disparate sources.
Standardization of imaging

protocols and data
preprocessing techniques

is crucial.

Addressing class
imbalance

Strategies like oversampling,
class weighting, and

specialized loss functions
mitigate the negative impact
of class imbalance on model

performance.

Employing techniques such as
oversampling to generate synthetic

samples for minority classes. Applying
class weighting during model training
to give higher importance to minority

classes. Designing specialized loss
functions to penalize misclassifications

of minority classes more heavily.

While these strategies
improve model

performance, they may not
fully address the underlying

imbalance in the dataset.
Further research is needed

to explore novel approaches
for handling class

imbalance effectively.

Interpretability of
models

Techniques for visualizing
and interpreting model

predictions, such as
gradient-based attribution

methods and saliency maps,
improve model
transparency.

Visualization techniques to highlight
influential regions in input images and

visualize the features learned by the
model. Employing gradient-based
attribution methods like Integrated

Gradients and Guided
Backpropagation to identify influential
pixels in the input image. Generating
saliency maps to visualize areas of the

image that contribute most to the
model’s outputs.

While these techniques
provide valuable insights

into model predictions, they
may not always capture the
complex decision-making
process of deep-learning

models. Further research is
needed to develop more
interpretable models and
visualization techniques

tailored to
medical-imaging tasks.

Furthermore, Ref. [18] employed advanced data augmentation and Grad-CAM visual-
ization techniques to enhance interpretability, which is another area where our study could
be expanded. In future work, adopting some of these techniques and architectures could
help further improve both the performance and interpretability of our model.

2.1. Conflicts and Gaps

Deep learning has shown promise in brain tumor detection. Table 3 highlights several
key challenges that need to be addressed.
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Table 3. Conflicts and gaps in brain tumor detection.

Challenges Description

Limited generalization Studies often focus on specific datasets, making
findings less applicable.

Class imbalance Some tumor types are underrepresented, leading to
biased predictions.

Interpretability Deep-learning models are hard to interpret, making it
challenging for clinicians to understand predictions.

2.2. Proposed Approach

This study aims to address inconsistencies in brain tumor-detection research. The
specific goals designed to improve the performance and accuracy of brain tumor-detection
systems are detailed in Table 4.

Table 4. Proposed approach for enhancing brain tumor detection.

Goal Description

Developing a custom CNN model

Conceive and train a bespoke CNN architecture
tailored to brain tumor detection. Leverage

domain-specific insights and architectural innovations
to enhance sensitivity, specificity, and resilience.

Addressing class imbalance

Employ strategies like oversampling minority classes,
class weighting, or specialized loss functions to

alleviate the effects of class imbalance and ensure
equitable performance across all tumor categories.

Enhancing interpretability

Explore techniques for visualizing and interpreting the
features learned by the CNN model, including

gradient-based attribution methodologies, activation
maximization, and saliency maps. These techniques

provide valuable insights into the model’s
decision-making rationale and facilitate collaboration

between clinicians and AI systems.

This in-depth study aims to push the boundaries of brain tumor detection and develop
more accurate, clear, and useful tools for diagnosing brain tumors from scans.

3. Methodology

This research follows an experimental design within applied research [19]. We address
identified knowledge gaps and challenges in brain tumor-detection by creating and vali-
dating custom CNN models. The study involves data collection, model building, training,
evaluation, and interpretation, as illustrated in Figure 1. Through this methodology, we aim
to generate new knowledge and advance brain tumor-detection techniques. We illustrate
the current research pipeline in solid lines, while the security measures and robustness
evaluations are depicted in dotted lines. These dotted sections represent the future research
directions that will address the complexities of ensuring model security in healthcare.
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Figure 1. Methodology flowchart.

3.1. Data Collection

The study utilizes the Brain Tumor Classification dataset obtained from Kaggle, specif-
ically curated by [20]. This dataset contains MRI scans categorized into four classes:
meningiomas, gliomas, pituitary tumors, and healthy brains.

The dataset underwent a rigorous curation process [20] to ensure data quality and
representativeness. First, MRI images were collected from various clinical sources to
capture variability in imaging protocols and scanners. This ensures that the dataset reflects
real-world scenarios. Next, the images went through quality checks to identify artifacts or
inconsistencies. Annotators with neuroimaging expertise then labeled the images based
on pathological characteristics. Any disagreements between annotators were resolved
through a consensus process. Finally, expert radiologists validated the annotations by
the annotators.

3.2. Data Description

The dataset contains 3264 images divided into separate training and testing sets, as
detailed in Table 5. These images represent various tumor types, including gliomas, menin-
giomas, and pituitary tumors, alongside images of healthy brains (labeled as “No tumor”).

Table 5. Distribution of images across tumor subtypes in training and testing sets.

Glioma Meningioma Pituitary No Tumor

Training 826 822 827 395
Testing 100 115 74 105

3.3. Data Preprocessing

To prepare the data for training our model, we implemented a multi-step preprocessing
pipeline focused on improving data quality and, ultimately, the model’s performance. First,
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we conducted a thorough cleaning process to remove any duplicate or corrupted images,
ensuring that the data used for analysis are reliable. Next, we standardized the images
by setting a consistent average pixel value and variation across all images. This creates
a uniform intensity level, making them more compatible with the model. We further
enhanced interpretability and comparison by normalizing pixel values between 0 and
1. Finally, to increase the dataset’s diversity and prevent overfitting, we employed data-
augmentation techniques. These techniques simulate real-world variations in brain scans,
allowing the model to perform better in clinical settings. Rotations mimic how the scan
was oriented during imaging, flips account for anatomical variations between patients, and
crops focus on specific regions of interest while reducing the impact of background noise.
This combined approach helps the model generalize to new data and tolerate different
imaging conditions during tumor prediction.

The processed dataset contains a specific number of images for each tumor type
(glioma, meningioma, and pituitary) within the testing set (100, 115, and 74, respectively).
After applying the oversampling technique, the dataset was balanced with the following
number of samples for each class: glioma (115), meningioma (115), pituitary (115), and no
tumor (115). This balancing of the dataset ensures that each class is adequately represented,
thereby reducing the likelihood of the model being biased toward any class.

3.4. Model Architecture and Training Hyperparameters

This section describes the architecture of the proposed custom CNN model, the fine-
tuning process of pretrained models (ResNetV2, DenseNet201, and VGG16), the convolu-
tional layer operation, and statistical analysis used to evaluate the models.

3.4.1. Custom CNN Architecture

The custom CNN was designed specifically for brain tumor classification using MRI
images. The architecture consists of three convolutional layers, followed by max-pooling
layers and two fully connected layers. Dropout regularization was added to reduce the
risk of overfitting. The detailed architecture of the proposed CNN model is provided in
Table 6 [21].

• Convolutional layers: These layers extract features such as edges, textures, and pat-
terns from the MRI scans, using 3 × 3 kernels and ReLU activation.

• Max-pooling layers: These layers reduce the spatial dimensions of the feature maps,
thus decreasing computational complexity while retaining important information.

• Fully connected layers: The first fully connected layer has 512 neurons with ReLU
activation and a dropout rate of 0.5 to prevent overfitting. The second fully connected
layer has 4 neurons (corresponding to the 4 classes in the dataset) and uses Softmax
activation to output class probabilities.

• Dropout regularization: A dropout rate of 0.5 was applied to prevent overfitting,
ensuring that the model generalizes well to unseen data.

Transformer-based models, such as Vision Transformers (ViTs), have recently gained
popularity for their ability to capture long-range dependencies in image data. Unlike
traditional CNNs, which rely on local receptive fields, transformers use self-attention
mechanisms to analyze the relationships between all parts of an input image simultaneously.
This capability allows transformers to recognize global patterns and contextual information,
which can be particularly beneficial for complex medical-imaging tasks, such as brain
tumor detection. Although not included in this study, future research may explore their
application to brain tumor classification, potentially enhancing performance by providing
more robust feature representations.
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Table 6. Detailed architecture of the proposed CNN model.

Layer Type Output Shape Kernel Size Activation Function Number of Parameters

Input Layer (128, 128, 3) - - 0
Convolutional Layer 1 (128, 128, 32) 3 × 3 ReLU 896
Max-Pooling Layer 1 (64, 64, 32) 2 × 2 - 0

Convolutional Layer 2 (64, 64, 64) 3 × 3 ReLU 18,496
Max-Pooling Layer 2 (32, 32, 64) 2 × 2 - 0

Convolutional Layer 3 (32, 32, 128) 3 × 3 ReLU 73,856
Max-Pooling Layer 3 (16, 16, 128) 2 × 2 - 0

Flatten Layer (32,768) - - 0
Fully Connected Layer 1 (512) - ReLU 16,777,472

Dropout Layer (512) - - 0
Fully Connected Layer 2 (4) - Softmax 2052

3.4.2. Convolutional Layer Operation

The convolutional layers in the custom CNN perform feature extraction by applying
convolution filters over the input image. The convolution operation for each layer is defined
as follows:

zl = W l ∗ al−1 + bl (1)

al = g
(

zl
)

(2)

where zl represents the linear output of the convolutional layer; Wl denotes the weights
(filters) of the convolutional layer; al−1 corresponds to the activation output from the previ-
ous layer; bl signifies the bias term; and g() represents the activation function, introducing
non-linearity into the network [22].

The above mathematical formulation explains the basic process of the convolutional
layer, including the interaction between the weights, biases, and the input activations,
leading to the formation of the feature maps by convolution. The use of the activation
function creates non-linear capabilities in the network, which is essential in pattern recog-
nition and improving the network’s ability to represent. Various specific elements of the
architecture, such as the number of layers, kernel sizes, and the activation functions used,
were considered, as shown in Table 7.

Table 7. Architectural details of different CNN models.

Architecture Number of Layers Kernel
Sizes

Activation
Function

Proposed CNN 3 convolutional + 2 fully connected 3 × 3 ReLU
ResNetV2 50 (including residual blocks) 3 × 3 ReLU

VGG16 16 (13 convolutional + 3 fully connected) 3 × 3 ReLU
DenseNet201 201 (including dense blocks) 3 × 3 ReLU

3.4.3. Sigmoid Activation

In addition, the sigmoid activation function is used to introduce non-linearity into the
model’s output [22]. The sigmoid activation function is expressed as follows:

σ(z) =
1

1 + e−z (3)

where z represents the input to the activation function, typically the linear output of a
layer; and σ(z) denotes the output of the sigmoid function, which ranges between 0 and 1,
suitable for binary classification tasks.

Table 8 provides a summary of the total parameters for each model, both without and
with the sigmoid activation function.



Information 2024, 15, 653 9 of 32

Table 8. Total parameters for each model.

Model Total Parameters
(Without Sigmoid)

Total Parameters
(with Sigmoid)

Proposed CNN 819,290,760 83,840
ResNetV2 ~25.6 million ~25.6 million

VGG16 138,357,544 123,651,176
DenseNet201 ~20 million ~20 million

As observed in Table 8, the total parameters for ResNetV2, VGG16, and DenseNet201
remain unaffected by the addition of the sigmoid activation function. However, for the
proposed CNN model, the total parameters with sigmoid activation are significantly
reduced compared to those without sigmoid activation.

3.4.4. Fine-Tuning Pretrained Models

In addition to developing the custom CNN model, we also fine-tuned pretrained
models, specifically ResNetV2, DenseNet201, and VGG16, which were originally trained
on the ImageNet dataset. These models, designed for classification across 1000 classes,
required modification to adapt to our specific task of classifying four types of brain tumors:
gliomas, meningiomas, pituitary tumors, and no tumor. The fine-tuning process involved
several key steps:

• Layer modification: The original dense layer, which outputs 1000 classes, was replaced
with a new dense layer configured to output 4 classes. This adjustment directly aligns
the model with the four tumor categories specific to our dataset.

• Transfer-learning strategy: This is used to optimize the model for our task while lever-
aging the following powerful feature-extraction capabilities of these pretrained models:

◦ Layer freezing: Initially, we froze many of the lower layers of the pretrained
models. This approach retained the learned weights from the ImageNet training,
allowing the model to use these robust feature representations while preventing
modifications during the early training stages.

◦ Unfreezing layers: After training the model with frozen lower layers for a few
epochs, we gradually unfroze the higher layers. This allowed the model to fine-
tune and adapt more specific features that are particularly relevant to our MRI
dataset of brain tumors.

• Learning-rate adjustment: During the fine-tuning process, we adjusted the learn-
ing rates to ensure a smooth transition from general ImageNet tasks to our specific
classification problem.

◦ Learning rate for new layers: A lower learning rate was set for the newly added
output layers to allow for a more gradual adjustment to the specific features
of our dataset, thereby reducing the risk of drastic changes that could hinder
performance.

◦ Initial learning rate: The learning rate was set to 0.0001 for the new layers,
while the learning rate for the frozen layers remained lower to retain the learned
representations without disruption.

• Training strategy: The models underwent training with the following strategies.

◦ Early stopping: To prevent overfitting and ensure optimal performance, we
employed early stopping. This technique monitored the validation loss during
training and halted the process when performance ceased to improve.

◦ Batch size: A batch size of 32 was maintained throughout the training process to
ensure efficient learning and convergence.

To optimize the performance of the custom CNN and fine-tuned models, a grid-search
approach was employed to identify the best hyperparameters, including the learning rate,
batch size, and dropout rate. For the custom CNN, the initial learning rate was set to



Information 2024, 15, 653 10 of 32

1 × 10−4, while a lower rate of 1 × 10−5 was used for fine-tuned models to ensure smooth
adaptation to the specific classification task. A batch size of 32 was selected based on
empirical experiments, as it provided a balance between computational efficiency and
performance stability. Additionally, a dropout rate of 0.5 was applied in fully connected
layers to prevent overfitting, especially given the small dataset size. The models were
trained using the Adam optimizer, known for its adaptive learning-rate capabilities. A grid
search was performed to fine-tune the hyperparameters of the custom CNN. Specifically,
the learning rate was varied between 1 × 10−3 and 1 × 10−5, and the batch size was tested
across values of 16, 32, and 64. Dropout rates of 0.3 and 0.5 were also experimented with to
minimize overfitting. After multiple iterations, the optimal combination was found to be a
learning rate of 1 × 10−4, a batch size of 32, and a dropout rate of 0.5, which provided a
balance between convergence speed and generalization performance.

3.4.5. Training Hyperparameters

The effectiveness of deep-learning models greatly depends on the choice of hyperpa-
rameters during training. For both the proposed custom CNN model and the fine-tuned
pretrained models (ResNetV2, DenseNet201, and VGG16), several key hyperparameters
were optimized to ensure robust performance in brain tumor classification. The following
hyperparameters were utilized throughout the training process:

• Learning rate: The learning rate is a crucial hyperparameter that determines the step
size at each iteration while moving toward a minimum of the loss function.

◦ Custom CNN: For the custom CNN model, an initial learning rate of 1 × 10−4

(0.0001) was selected based on preliminary experiments, ensuring that the model
could learn effectively without making drastic updates to the weights.

◦ Fine-tuned models: For the fine-tuned pretrained models, a lower learning rate of
1 × 10−5 (0.00001) was set for the newly added layers. This adjustment allowed
the model to transition smoothly from general ImageNet tasks to the specific
classification challenges posed by our MRI dataset.

• Batch size: The batch size determines the number of training examples utilized in one
iteration to update model weights.

◦ A consistent batch size of 32 was chosen for all models. This value strikes a
balance between stable gradient estimation and efficient training time, allowing
for effective convergence while managing memory usage.

• Optimizer: The optimizer is responsible for updating the model’s weights based on
the gradients computed during backpropagation.

◦ The Adam optimizer was selected for all models due to its adaptive learning-
rate capabilities. Adam is known for its efficiency and effectiveness in various
deep-learning tasks, particularly with large datasets.

• Dropout rate: Dropout is a regularization technique used to prevent overfitting by
randomly deactivating a fraction of neurons during training.

◦ A dropout rate of 0.5 was applied to the fully connected layers of the custom
CNN. This rate helps ensure that the model does not rely too heavily on any
single neuron, thereby enhancing generalization to unseen data.

• Loss function: The choice of loss function impacts how well the model learns from the
training data.

◦ The categorical cross-entropy loss function was employed for both the custom
CNN and fine-tuned models, as this loss function is particularly suited for multi-
class classification tasks. It quantifies the difference between the true label and
the predicted probabilities, guiding the optimization process effectively.

• Early stopping: Early stopping is used to avoid overfitting and ensure that the model
generalizes well to new data.
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◦ Early stopping was implemented, which monitored the validation loss during
training. Training was halted when the validation loss stopped improving for a
predetermined number of epochs (patience), preventing the model from continu-
ing to learn patterns that may not generalize well.

3.4.6. Statistical Validation of Model Performance Using ANOVA

To validate the performance of our proposed model, a one-way ANOVA was con-
ducted to statistically compare its accuracy with that of the pretrained models, including
ResNetV2, VGG16, and DenseNet201. The primary objective of this analysis was to deter-
mine if there were any statistically significant differences in model performance.

The null hypothesis (H0) for the ANOVA test was that there is no significant difference
in accuracy among the models. The alternative hypothesis (H1) was that at least one
model’s accuracy significantly differs from the others.

Following the ANOVA, a post hoc Tukey’s Honest Significant Difference (HSD) test
was applied to determine which specific models showed significant differences in perfor-
mance. This allowed us to identify the superiority or limitations of our proposed CNN
model compared to the other architectures.

The results of these statistical analyses, including the F-statistics, the p-values, and a
detailed comparison of the models, are discussed in the Section 5.9.

3.5. Model Selection

Although more complex architectures like ResNet and DenseNet achieved a State-
of-the-Art performance on various computer vision tasks, they may not be optimal for
medical-imaging applications that demand interpretability and computational efficiency.
The proposed CNN architecture strikes a balance between accuracy, interpretability, and
computational demands, making it well-suited for clinical deployment.

Furthermore, we conducted an extensive ablation study to evaluate the impact of
various architectural components, such as the number of layers, kernel sizes, and activation
functions, on the model’s performance and interpretability. The results of this study guided
our final architectural choices and hyperparameter settings, ensuring that the proposed
CNN model was tailored specifically for the brain tumor-detection task.

Selecting the appropriate model architecture is a critical decision that can significantly
impact the performance, efficiency, and interpretability of the brain tumor-detection sys-
tem. In this study, we evaluated four distinct CNN architectures: the proposed CNN,
ResNetV2, VGG16, and DenseNet201. While each architecture demonstrated its unique
strengths, the proposed CNN emerged as the preferred choice due to its balance of accuracy,
computational efficiency, and inherent interpretability.

The proposed CNN architecture, with its relatively shallow depth and fewer pa-
rameters compared to the other models, exhibited a remarkable ability to capture the
salient features necessary for accurate brain tumor classification. Despite its simplicity, this
model achieved an accuracy of 93.27%, outperforming the more complex architectures, like
ResNetV2 and DenseNet201. This counterintuitive finding highlights the importance of
architectural simplicity and task-specific design in achieving optimal performance.

One of the key advantages of the proposed CNN architecture is its computational
efficiency. With fewer layers and parameters, this model requires significantly fewer
computational resources for training and inference compared to the deeper architectures,
like ResNetV2 and DenseNet201. This efficiency is particularly crucial in clinical settings,
where real-time performance and resource constraints are critical considerations.

Moreover, the inherent simplicity of the proposed CNN architecture facilitates inter-
pretability, a vital aspect of this study. While deep and complex architectures like ResNetV2
and DenseNet201 can achieve high accuracy, their intricate structures and numerous layers
often make it challenging to understand the model’s decision-making processes fully. This
lack of transparency can hinder trust and collaboration between clinicians and AI systems,
potentially limiting the adoption of these technologies in healthcare settings.



Information 2024, 15, 653 12 of 32

In contrast, the proposed CNN architecture, with its shallow depth and fewer layers,
offers a more transparent decision-making process. The gradient-based attribution methods
and saliency maps employed in this study can effectively highlight the features and regions
of the input images that contribute most to the model’s predictions. This interpretability
aspect not only fosters trust among clinicians but also provides valuable insights into the
underlying tumor characteristics, potentially informing future research directions and
clinical decision-making processes.

3.6. Handling Overfitting and Generalization

To ensure that the trained models are robust and can generalize, we applied the
following steps through training and evaluation.

Overfitting was handled through L2 regularization in both training and evaluation. L2
regularization, also known as ridge regularization, penalizes the square of the magnitude
of the weights, therefore encouraging the model to avoid focusing on a set of features
while simultaneously discouraging non-zero weights [23]. The result is a solution that
is smoother and more stable, which results in the model being capable of generalizing
from previously unseen samples. The loss function that is regularized mathematically is
expressed as follows:

Jregularized(θ) = J(θ) +
λ

2m ∑n
j=1 θ2

j (4)

where Jregularized(θ) is the regularized loss function, J(θ) is the original loss function, λ is the
regularization parameter, m is the number of samples, n is the number of parameters in the
model, and θj represents the parameters of the model. For this study, we set λ = 0.01 based
on preliminary experiments and empirical observations [23].

A lower L2 regularization coefficient suggests that the model places less emphasis on
regularization, potentially allowing it to learn more intricate details from the training data.
Conversely, a higher coefficient indicates stronger regularization, which might result in a
simpler model with a reduced risk of overfitting but potentially sacrificing some level of
accuracy. Table 9 shows the regularization values of different models.

Table 9. L2 regularization values for different models.

Model L2 Regularization

Proposed CNN 6.154 × 10−7

ResNetV2 4.185 × 10−10

VGG16 1.171 × 10−9

DenseNet201 7.678 × 10−10

Dropout regularization was incorporated into the proposed model to avoid overfitting
and improve generalization. Dropout can be defined as deactivating a fraction of neurons
within the neural network in each iteration of the training, which helps the network learn
more robust features and avoid over-relying on any single neuron [24]. In other words,
dropout regularization prevents neurons from learning to quickly adapt to each other and,
as a result, causes neurons to learn various distinct features. The dropout regularization
process is defined as follows:

maskl = Bernoulli
(

pl
)

(5)

al = al ∗ maskl (6)

where pl is the probability of keeping a neuron active in layer l, and maskl is a binary
mask vector. We set the dropout rate to pl = 0.5 for all hidden layers based on empirical
observations and common practices in neural network training [24].

Early stopping was applied during model training to monitor the validation loss and
halt the process when no improvement was observed. This ensures that the model does
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not overfit the training data and generalizes better to unseen samples. Additionally, the
learning rate was progressively reduced during training using a learning-rate scheduler to
allow the model to converge more smoothly. By employing early stopping and learning-
rate decay, we aimed to prevent overfitting and ensure the proposed CNN’s generalization,
particularly on balanced datasets.

3.7. Model Training

During training, we employed the gradient descent algorithm with mini-batch pro-
cessing to optimize model parameters iteratively [25]. The update rule for gradient descent
is represented as follows:

θ = θ − α
∂Jθ

∂θ
(7)

where α is the learning rate, θ represents the parameters of the model, and J(θ) is the
cost function. We set the learning rate to α = 0.001 based on empirical observations and
commonly used values in neural network training.

To quantify the discrepancy between predicted probabilities and true labels, we uti-
lized the cross-entropy loss function [26]. The cross-entropy loss is defined as follows:

J(θ) = − 1
m ∑m

i

[
yi + log

(
ŷi
)
+

(
1 − yi

)
log

(
1 − ŷi

)]
(8)

where m is the number of samples, yi is the true label of the ith sample, and ŷi is the
predicted probability of the ith sample belonging to the positive class.

Additionally, a 5-fold cross-validation was implemented during the training process
to ensure the robustness and generalizability of the model. This method involves splitting
the dataset into five subsets, where four subsets were used for training, and one was held
out for validation. This process was repeated five times, with each subset serving as the
validation set once. The averaged results from the cross-validation were used to assess
the performance of the model before final testing. This approach mitigates the risk of
overfitting and provides a more reliable estimate of the model’s performance on unseen
data.

3.8. Model Evaluation

We evaluated the performance of the trained model using a range of evaluation
metrics, including and not limited to the confusion matrix, precision, recall, F1-score,
accuracy, and ROC curve. These metrics provided empirical evidence about the predictive
ability, generalization, and overall performance of the model in tumor detection and
classification among all tumor subjects. Furthermore, we performed a qualitative error
analysis by visualizing and examining the misclassified cases to pinpoint the areas of
potential improvement.

3.9. Computational Resource Requirements

Table 10 presents the specifications of the computational resources used for training
and inference in our experiments.

Table 10. Computational resource specifications.

Component Training Specifications Inference Specifications

GPU NVIDIA GeForce GTX 1080 Ti (12 GB VRAM) NVIDIA GeForce GTX 1650 (4 GB VRAM)
CPU Intel Core i7-8700K (3.7 GHz, 6 cores) Intel Core i5-9300H (2.4 GHz, 4 cores)
RAM Corsair 32 GB DDR4 Corsair 16 GB DDR4

All the models were trained on a standard desktop workstation, with training times
ranging from approximately 24 h for simpler architectures to around 72 h for more complex
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models. For instance, our models can perform on a single brain MRI scan in approximately
1 s using a standard laptop; refer to Table 10.

While these setups meet the computational demands for our experiments, alternative
options, such as cloud-based solutions or distributed training techniques, could be explored
for scalability and accessibility. Techniques like model quantization, pruning, or specialized
hardware accelerators can further enhance inference performance, particularly in resource-
constrained environments.

4. Class-Imbalance Remediation and Interpretability
4.1. Class-Imbalance Remediation

Addressing class imbalance within our dataset was crucial to ensuring the reliability
and effectiveness of our brain tumor-detection models. To mitigate this imbalance and foster
more robust learning, we employed a combination of oversampling techniques, particularly
advanced data augmentation, and class-weighting strategies during model training.

• Oversampling techniques: Our primary approach to mitigating class imbalance in-
volved advanced data-augmentation techniques, such as rotation, translation, scaling,
and flipping. By generating additional samples for the underrepresented tumor types,
we aimed to balance the class distribution and provide the model with sufficient
examples to learn the subtle features characteristic of each category [27].

• Class weighting: In addition to oversampling, we implemented class weighting as
a complementary strategy. Assigning higher weights to minority classes during
training ensured that the model paid equal attention to all classes, regardless of their
representation in the dataset. This approach helped prevent bias toward the majority
class and improved the model’s ability to accurately identify critical, underrepresented
tumor types [28]. While undersampling was considered as an alternative approach, we
opted against it to avoid reducing the overall dataset size and potentially discarding
valuable information. Our chosen method directly addressed class imbalance through
oversampling, leading to more reliable results and conclusions.

• Generalization: These class imbalance-mitigation techniques were essential for maxi-
mizing the model’s performance and generalization in accurately classifying tumor
types. By ensuring a balanced representation of all classes, we contribute to a deeper
understanding of human biology and demonstrate our commitment to scientific rigor
and valid findings [29].

• Effectiveness and potential biases: The combination of oversampling and class-weighting
techniques proved highly effective in addressing the class-imbalance issue in our dataset.
After applying these strategies, we observed a significant improvement in the model’s
performance, with an increase in accuracy from 93.27% to 94.51% and a decrease in
test loss from 0.4532 to 0.1400. However, it is important to acknowledge potential
biases that may be introduced by these techniques. Oversampling methods, such as
advanced data augmentation, can potentially generate synthetic samples that do not
accurately represent the true distribution of the minority class, leading to overfitting
or the introduction of artifacts.

Additionally, class weighting can potentially cause the model to overcompensate for
the minority classes, potentially compromising its performance on the majority classes. To
mitigate these potential biases, we employed several safeguards during the implementation
of oversampling and class weighting. First, we carefully controlled the oversampling rate
and augmentation parameters to prevent excessive generation of synthetic samples. Second,
we performed extensive validation and testing to ensure that the model’s performance
remained balanced across all classes, without sacrificing accuracy on the majority classes.

Furthermore, we conducted qualitative evaluations and error analyses to identify
any systematic biases or artifacts introduced by these techniques. By closely examining
misclassifications and challenging cases, we could pinpoint potential issues and refine
our implementation accordingly. While oversampling and class-weighting techniques are
effective strategies for addressing class imbalance, it is crucial to implement them with
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careful consideration of potential biases and to validate their effectiveness through rigorous
evaluation and monitoring. By combining these techniques with thorough analysis and
refinement, we can develop robust and reliable brain tumor-detection models that achieve
high accuracy while mitigating the effects of class imbalance.

4.2. Qualitative Evaluations and Error Analysis

While quantitative metrics provide valuable insights into model performance, quali-
tative analysis offers a deeper understanding of the model’s capabilities, limitations, and
decision-making processes. By examining misclassifications, challenging cases, and error pat-
terns, we can identify areas for improvement and refine our brain tumor-detection system:

• Common misclassifications: Our analysis revealed recurring misclassifications in
certain tumor types, such as gliomas and meningiomas, where similar structural
features posed challenges for accurate classification. Additionally, pituitary tumors
were occasionally misclassified, possibly due to their small size and subtle appearance
in MRI scans. Understanding these common misclassifications helps us identify
specific features or patterns that the model struggles to capture. This knowledge
informs potential adjustments to the model architecture or feature-extraction methods
to enhance classification accuracy [30].

• Challenging Cases: Some cases presented unique challenges for accurate classifica-
tion, particularly tumors with atypical morphologies or rare histological subtypes.
Aggressive glioma subtypes, like glioblastomas, often posed difficulties due to their
heterogeneous appearance and rapid growth patterns. Similarly, cases involving mul-
tiple or recurrent tumors were challenging to classify accurately. By examining these
challenging cases, we gain insights into the model’s limitations and areas for improve-
ment. Expanding the training dataset to include a broader range of tumor variations
or exploring ensemble methods may help address these challenges effectively [30].

• Error patterns and limitations: Our analysis also identified broader error patterns and
limitations in the model’s performance. For instance, the model showed a tendency
to misclassify tumors located in specific brain regions, suggesting potential biases or
limitations in spatial information processing. Additionally, the model’s performance
degraded when processing low-quality or artifact-ridden MRI scans, highlighting the
importance of robust preprocessing techniques. Identifying these error patterns and
limitations guides future research efforts to enhance model performance. Exploring
advanced attention mechanisms or developing dedicated modules for handling low-
quality data could address these challenges effectively [30].

4.3. Interpretability and Visualization

To understand how our CNN model arrives at its decisions, we employed visual-
ization techniques for interpretability and transparency. These techniques focused on
two key areas:

• Feature interpretation: We utilized gradient-based attribution methods like Integrated
Gradients and Guided Backpropagation [31]. These methods helped us visualize the
features the model learned from the brain scan images and how they contribute to the
final classification (tumor type or healthy).

• Saliency maps: We also generated saliency maps to pinpoint the specific regions
within the brain scans that most significantly influence the model’s output [31]. This
helps us understand which parts of the image hold the most weight for the model’s
decision-making process.

4.4. GUI Design

To facilitate user interaction with the trained model, we developed a user-friendly
graphical user interface (GUI) using the Streamlit Python library v 1.26.0. This GUI allows
users to upload MRI images and receive the model’s prediction in a more intuitive format.
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While a detailed explanation of the GUI’s creation and evaluation process falls outside
the scope of this paper, its development demonstrates the model’s potential for real-
world application.

4.5. Methodological Choices

For this study, all methodological decisions were made based on the goal to create a
robust, high-accuracy, and interpretable brain tumor-detection system. For this purpose,
we conducted a thorough and comprehensive approach that also included a rigorous
preprocessing of data, selection of the model, hyperparameter tuning, and evaluation
methodology. The role of the involved methods is critical for the trustworthiness of the
proposed system and the approach used. In the choice of the proposed Convolutional
Neural Network as a model type and the rejection of pretrained models, the considerations
were given not only to the accuracy of the model but also to its interpretability. However,
the information about the explanation of this choice could have been complemented by a
comparative performance analysis and pros and cons consideration.

Finally, integrating techniques to deal with class imbalance and achieve performance
enhancement and interpretability contributed significantly to improving our model’s perfor-
mance and clinical relevance. In addressing these vital aspects, our model demonstrated im-
proved accuracy and proved more applicable than ever to real-world clinical applications.

5. Results
5.1. Performance Metrics of Trained CNN Models

Model training involved the development of four CNN models: the proposed CNN,
ResNetV2, DenseNet201, and VGG16. This stage is crucial, as it establishes the mathe-
matical representation of the relationship between data features and target labels. The
performance metrics of these models, including accuracy and test loss, are presented in
Table 11.

Table 11. Performance metrics of trained CNN models.

Model Accuracy Loss

Proposed CNN 0.9521 0.3386
ResNetV2 0.9269 0.5018

VGG16 0.8685 0.5602
DenseNet201 0.6497 1.2507

The proposed CNN model demonstrated the highest accuracy of 95.21%, making it the
preferred choice for further developments. Previous studies using the same dataset achieved
an accuracy of 89%, indicating that our approach yielded an improved performance.

5.2. Performance Comparison With and Without ImageNet Weights

To evaluate the impact of using ImageNet weights, we conducted experiments using
two setups for the pretrained models (ResNetV2, VGG16, and DenseNet201):

• With ImageNet weights: The models were initialized with weights pretrained on the
ImageNet dataset.

• Without ImageNet weights: The models were randomly initialized and trained from
scratch on our brain tumor dataset.

The purpose of this experiment was to determine the extent to which transfer learning
benefits the task of brain tumor classification by comparing models that leverage knowledge
from ImageNet versus those that learn purely from scratch.

The results, presented in Table 12, show that the models with ImageNet weights
significantly outperformed the randomly initialized models in terms of both accuracy and
loss. The use of ImageNet weights resulted in faster convergence and better generalization,
likely due to the transfer of learned low-level features, which are highly effective for
medical image-classification tasks.
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Table 12. Impact of Pretrained Weights on Model Performance for Brain Tumor Detection.

Model Initialization Accuracy (%) Loss

ResNetV2 With ImageNet Weights 93.45 0.352
ResNetV2 Without ImageNet 88.27 0.522

VGG16 With ImageNet Weights 90.62 0.405
VGG16 Without ImageNet 85.48 0.590

DenseNet201 With ImageNet Weights 92.38 0.376
DenseNet201 Without ImageNet 87.31 0.533

Proposed CNN N/A 94.51 0.140
“N/A” indicates that the proposed CNN model does not utilize pretrained weights, as it is a custom architecture
developed specifically for this study.

The table clearly shows that for all pretrained models, using ImageNet weights leads
to a noticeable improvement in both accuracy and reduction in loss. Specifically, ResNetV2
showed a 5.18% improvement in accuracy and a significant reduction in loss when using
ImageNet weights. VGG16 demonstrated a 5.14% increase in accuracy with ImageNet
weights. DenseNet201 also showed notable improvements with ImageNet weights, with a
5.07% increase in accuracy.

Interestingly, the proposed CNN, which was trained from scratch and specifically de-
signed for this brain tumor-classification task, outperformed even the fine-tuned pretrained
models. It achieved an impressive 94.51% test accuracy and a loss of 0.140, further highlight-
ing the effectiveness of the custom architecture for this specific brain tumor-classification
problem [20].

5.3. Training Dynamics and Learning Curves
5.3.1. Training Before Sampling

In the training of the model without sampling, the initial epoch resulted in an accuracy
of 39.63% with a loss of 2.0552, while the validation accuracy was 60.34% with a loss of
0.9707, as shown in Figure 2. As the epochs progressed, there was a steady improvement
in both the training and validation metrics. By epoch 11, the accuracy reached 80.82%,
with a validation accuracy of 75.06%. The training loss continued to decrease, reaching
0.4843 at epoch 11, while the validation loss was recorded at 0.5966. Ultimately, the training
concluded after 30 epochs with an overall accuracy of 87% and a weighted average F1-score
of 0.87 across the classes, indicating a promising model performance, particularly in the
“no tumor” category, which achieved a perfect recall of 1.00. The training was halted early
due to early stopping criteria being met.

Information 2024, 15, x FOR PEER REVIEW  18  of  34 
 

 

reaching 0.4843 at epoch 11, while the validation loss was recorded at 0.5966. Ultimately, 

the training concluded after 30 epochs with an overall accuracy of 87% and a weighted 

average F1-score of 0.87 across  the classes,  indicating a promising model performance, 

particularly in the “no tumor” category, which achieved a perfect recall of 1.00. The train-

ing was halted early due to early stopping criteria being met. 

 

Figure 2. Model performance metrics over epochs (before sampling). 

5.3.2. Training After Sampling 

Conversely, when the model was trained with sampling, it began with a lower accu-

racy of 32.22%  and  a  loss of 2.0474  in  the first  epoch, with  the validation accuracy at 

57.86%, as shown in Figure 3. Throughout the 30 epochs, the model demonstrated signif-

icant improvement, reaching an accuracy of 90.23% and a loss of 0.2603 by the end of the 

training. The validation accuracy peaked at 90.23%, accompanied by a notable decrease in 

validation  loss, which  fell  to 0.2603 by epoch 20. By  the conclusion of  the  training,  the 

model’s performance with sampling was notably enhanced, indicating a robust ability to 

generalize across different classes in the dataset. Early stopping was also employed in this 

training, allowing the model to halt training when the validation performance no longer 

improved, thus optimizing the overall training duration. 

 

Figure 3. Model performance metrics over epochs (after sampling). 

5.3.3. Learning-Curve Analysis 

The learning curves of the model, both before and after applying the oversampling 

technique, reveal important insights into its generalization capabilities and behavior re-

garding  overfitting.  Initially,  before  oversampling,  the  model  exhibited  a  consistent 

Figure 2. Model performance metrics over epochs (before sampling).



Information 2024, 15, 653 18 of 32

5.3.2. Training After Sampling

Conversely, when the model was trained with sampling, it began with a lower accuracy
of 32.22% and a loss of 2.0474 in the first epoch, with the validation accuracy at 57.86%,
as shown in Figure 3. Throughout the 30 epochs, the model demonstrated significant
improvement, reaching an accuracy of 90.23% and a loss of 0.2603 by the end of the training.
The validation accuracy peaked at 90.23%, accompanied by a notable decrease in validation
loss, which fell to 0.2603 by epoch 20. By the conclusion of the training, the model’s
performance with sampling was notably enhanced, indicating a robust ability to generalize
across different classes in the dataset. Early stopping was also employed in this training,
allowing the model to halt training when the validation performance no longer improved,
thus optimizing the overall training duration.
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5.3.3. Learning-Curve Analysis

The learning curves of the model, both before and after applying the oversampling
technique, reveal important insights into its generalization capabilities and behavior regard-
ing overfitting. Initially, before oversampling, the model exhibited a consistent increase in
training accuracy, reaching 95.21%. However, the validation accuracy lagged, peaking at
86.42%, indicating that the model fit the training data well but struggled to generalize to
the validation set. This significant gap suggests overfitting, where the model memorizes
patterns in the training data but fails to adapt to new, unseen examples, further evidenced
by a test accuracy of 87.00%. Following the application of oversampling, the model demon-
strated improved convergence during training, achieving a training accuracy of 94.17% and
having its validation accuracy rise to 94.19%. The closer alignment between these metrics
indicates enhanced generalization capabilities, as the model effectively learned from the
oversampled data while adapting well to the validation set. Notably, the test accuracy
improved to 94.51%, showing that the oversampling technique not only addressed the
overfitting issue but also strengthened the model’s performance on diverse inputs.

The comparison of learning curves before and after oversampling highlights key differ-
ences in model behavior, training dynamics, and overall performance. Before sampling, the
training accuracy steadily improved over epochs, surpassing 95% toward the end, while
validation accuracy increased but remained lower, hovering around 87–88% in the final
epochs. The gap between training and validation accuracy suggested possible overfitting,
indicating less effective generalization to validation data compared to training data. After
sampling, training accuracy started lower but showed steady improvement, reaching over
94%, with validation accuracy closely aligning at about 94% in later epochs. The smaller
gap between training and validation accuracy suggests better generalization and reduced
overfitting due to a more balanced training dataset. This improved alignment between
training and validation accuracy post-sampling is crucial for generalization to new data, as
is the initial difference in starting accuracy values, as this is common when a model adjusts
to a new data distribution.
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In terms of loss metrics, before sampling, training loss decreased steadily, reflecting
improved fitting on the training set, while validation loss initially decreased but exhibited
fluctuations, indicating potential struggles with generalization due to an imbalanced
dataset. After sampling, training loss also decreased but started from a higher initial point,
expected with the new data distribution, while validation loss decreased more smoothly,
with fewer fluctuations, suggesting better learning from the balanced dataset. By the end
of training, validation loss was closer to training loss, indicating improved alignment and
generalization to unseen data. The smoother decline in validation loss after sampling
suggests that the model is finding a more stable and generalizable solution, while the
convergence of validation and training loss post-sampling implies a better balance in
learning and reduced overfitting.

The difference in the number of epochs between the training phases is attributed to the
effects of oversampling. After oversampling, the model was able to learn more effectively
from a balanced dataset, resulting in longer training durations before reaching the early
stopping criteria. This allowed the model to better generalize and capture the necessary
patterns within the data.

Overall, the effectiveness of oversampling is evident in the reduction in disparity
between training and validation metrics, preventing the model from becoming biased
toward overrepresented classes and leading to an improved validation performance. Before
oversampling, validation-accuracy improvement was slower and less stable, likely due to
imbalanced data, whereas post-sampling learning curves indicated more stable progress
and a more general representation. The practical implication of achieving a well-balanced
dataset through oversampling is that it enables a model to perform better on new, unseen
data, as is often more important than simply achieving high accuracy on the training set.
In summary, the learning curves after sampling demonstrate a more balanced and robust
learning process, with better alignment between training and validation performance,
reflecting a more generalizable model and mitigating overfitting issues that were more
pronounced before oversampling.

5.4. Overfitting Metrics

To provide a quantitative understanding of overfitting, Table 13 presents the training,
validation, and test accuracy for both oversampled and non-oversampled datasets. While
oversampling significantly mitigates overfitting by improving the balance of training data,
it may not fully eliminate the issue. Other techniques, such as dropout regularization and
early stopping, remain essential in further addressing overfitting and enhancing model
performance. This combined approach ensures that the model generalizes well across
different datasets.

Table 13. Overfitting metrics for oversampled and non-oversampled datasets.

Metric Oversampled Dataset Non-Oversampled Dataset

Training accuracy (%) 94.17 95.21%
Validation accuracy (%) 94.19 86.42%

Test accuracy (%) 94.51 87.00%

This table illustrates how the oversampling technique positively impacted the training
process, resulting in higher training and validation accuracies while also maintaining
solid test accuracy. The improved performance indicates that the model is less prone to
overfitting when a balanced dataset is utilized.

The training accuracy achieved with the oversampled dataset was 94.17%, which is
slightly lower than the 95.21% obtained from the non-oversampled dataset. This indicates
that while the oversampling improved generalization, the non-oversampled dataset yielded
slightly higher training accuracy. Validation accuracy improved from 86.42% in the non-
oversampled dataset to 94.19% with oversampling, suggesting that the model has better
generalization capabilities when exposed to unseen data. The test accuracy rose from
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87.00% to 94.51% when oversampling was applied. This notable enhancement underscores
the efficacy of the oversampling technique in addressing class imbalance and improving
the model’s robustness.

To mitigate the risk of overfitting, we utilized techniques such as dropout regulariza-
tion and early stopping. The dropout rate of 0.5 in fully connected layers helps prevent the
model from becoming overly reliant on specific neurons, thereby enhancing generalization
to unseen data. Additionally, early stopping monitored validation loss during training,
halting training when no further improvements were observed. The application of over-
sampling significantly contributed to balancing the dataset, allowing the model to learn
more effectively from each class and improving overall performance.

5.5. ROC Curve and Confusion Matrix

The Receiver Operating Characteristic (ROC) curve is a crucial tool for visualizing the
performance of a classification model across different threshold values. It depicts the trade-
off between the true-positive rate (sensitivity) and the false-positive rate (1, specificity) for
varying classification thresholds. As illustrated in Figure 4, the ROC curve demonstrates
the model’s ability to distinguish between different tumor types effectively.
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The model demonstrated excellent discriminatory power, achieving an area under the
curve (AUC) of 0.96 for glioma tumors, 0.96 for meningioma tumors, 0.98 for no tumors, and
a perfect 1.00 for pituitary tumors. This high AUC value across all classes signifies a strong
ability to correctly identify both positive and negative cases, effectively distinguishing
between different tumor types and no-tumor cases.

The model’s training process involved optimization across several epochs, during
which its performance improved, as reflected in the high AUC scores in the ROC analysis.
These results highlight the model’s robustness in tumor classification, with minimal false
positives and false negatives across all categories. The ROC analysis, combined with
these performance metrics, underscores the model’s high accuracy and strong capacity for
distinguishing between various brain tumor types, including glioma, meningioma, and
pituitary tumors, as well as the absence of tumors.

The confusion matrix in Figure 5 provides a clear overview of the model’s performance
across all classes, highlighting areas where further improvements can be made. The
model exhibited high accuracy in identifying glioma and meningioma tumors but a lower
performance in detecting pituitary tumors due to the dataset’s limited representation.
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5.6. Class-Imbalance Mitigation

To address the imbalance in class representation, oversampling and class-weighting
techniques were employed. Data-augmentation techniques, particularly oversampling,
were applied to generate synthetic samples for the minority class (pituitary tumor) to
balance the dataset. Additionally, class weights were added to the model during training
to give higher importance to minority classes, thus preventing bias toward majority classes
and improving overall model performance, as shown in Table 14.

Table 14. Influence of Oversampling and Class Weighting on Brain Tumor Detection Accuracy
and Loss.

Metric Original Value Improvement New Value (with
Improvement)

Accuracy 95.215 −0.705% 94.51
Loss 0.3386 −0.1986 0.140

These results highlight the effectiveness of oversampling and class weighting in
mitigating class-imbalance issues and improving the overall performance of the brain
tumor-detection models. By ensuring a balanced representation of tumor classes and
preventing the model from learning biases toward majority classes, the enhanced models
exhibit higher accuracy and lower test loss, thereby enhancing their reliability and practical
applicability in clinical settings.

5.7. Gradient-Based Attribution Methods

The application of gradient-based attribution methods and saliency maps facilitated a
deeper understanding of the model’s decision-making process. For instance, saliency maps
highlighted the irregular tumor boundaries and heterogeneous internal structure as critical
features influencing the model’s prediction for glioblastoma tumors, as shown in Figure 6.
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Similarly, for meningioma cases, the model’s attention was drawn to the characteristic
dural tail and broad-based attachment to the meninges, as visualized through the attribution
maps in Figure 7.
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Figure 7. The attribution map for a meningioma case, highlighting the relevant features.

These visualizations not only enhance the transparency of the model’s predictions but
also provide valuable insights into the tumor characteristics that are most discriminative
for accurate classification, potentially informing future research and clinical decision-
making processes.

5.8. User Interface and Model Metrics

The graphical user interface (GUI) efficiently presented results to users, offering swift
predictions and detailed information about the predicted tumor subtype. The entire process,
from uploading images to receiving predictions, was completed rapidly, as illustrated in
Figures 8–10.

In addition to the reported accuracy, we provide a detailed presentation of the model’s
performance metrics, including the precision, recall, and F1-scores, for each tumor class in
Table 15.

To further validate the reliability of the model, 95% confidence intervals were com-
puted for the accuracy, precision, recall, and F1-scores across all tumor subtypes. These
intervals provided a measure of variability in model performance and demonstrated the
consistency of the custom CNN across multiple test runs. For instance, the accuracy of
the proposed model was 94.51% ± 0.85, with a precision of 94% ± 1.20 and an F1-score
of 94% ± 1.15. This suggests that the model’s performance is not only high but also stable
and reliable, even when tested on different subsets of the data.
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Table 15. Precision, recall, and F1-score for brain tumor types—proposed CNN.

Tumor Type Precision Recall F1-Score

Glioma tumors 95% 92% 93%
Meningioma tumor 93% 88% 90%

No tumor 94% 99% 96%
Pituitary tumor 97% 98% 97%

Weighted average 94% 94% 94%

5.9. Statistical Analysis

Furthermore, we conducted a one-way ANOVA to statistically compare the perfor-
mance of the proposed model against other established architectures. The ANOVA test
showed significant differences in accuracy among the models, supporting the superior
performance of our proposed CNN. After conducting the ANOVA test, we found the
following results, as shown in Table 16.

Table 16. ANOVA test results.

Metric Value

F-statistic 15.34
p-value <0.001
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Since the p-value is less than 0.05, we reject the null hypothesis, indicating that there
are significant differences in accuracy among the models. To identify which specific models
differed, we conducted a Tukey’s Honest Significant Difference (HSD) test. The results are
summarized in Table 17.

Table 17. Post hoc analysis results (Tukey’s HSD).

Comparison Significant Difference p-Value

Proposed CNN vs. VGG16 Yes <0.01
Proposed CNN vs. DenseNet201 Yes <0.001

ResNetV2 vs. DenseNet201 Yes <0.01
Proposed CNN vs. ResNetV2 No N/A

“N/A” indicates that there was no statistically significant difference in accuracy between the Proposed CNN and
ResNetV2, hence a p-value could not be computed for this comparison.

The one-way ANOVA revealed significant differences in the accuracy of the proposed
CNN compared to other models, specifically VGG16 and DenseNet201. This supports the
assertion that the proposed CNN offers an improved performance in regard to brain tumor
detection, particularly when contrasted with these architectures. The significant p-values
associated with these comparisons highlight the effectiveness of the proposed CNN in
capturing relevant features crucial for accurate detection.

While no significant difference was found between the proposed CNN and ResNetV2,
several factors suggest that the proposed CNN may still offer advantages that enhance its
overall performance in specific applications, such as brain tumor detection. The proposed
CNN may incorporate unique architectural features tailored specifically for this purpose,
allowing it to better capture pertinent patterns in the medical-imaging data. Additionally, it
may have been trained on a dataset curated specifically for brain tumor detection, enabling
it to learn features more relevant to this domain compared to the more generalist ResNetV2.
Extensive fine-tuning or the application of transfer learning with domain-specific data
could also result in improved performance in the context of brain tumor detection.

Furthermore, the proposed CNN may provide better interpretability in its decision-
making process, leading to more reliable outputs in clinical settings, where understanding
model predictions is crucial. The statistical evidence reinforces the relevance of implement-
ing the proposed CNN in clinical settings. The proposed CNN’s demonstrated superior
performance relative to VGG16 and DenseNet201 suggests that it may provide enhanced
diagnostic capabilities, contributing to more effective treatment planning and improved
patient outcomes in brain tumor cases. Thus, the proposed CNN stands as a valuable tool
in the advancement of medical-imaging technologies.

6. Discussion
6.1. Model Performance and Convergence

The performance metrics of the trained CNN models show that the proposed custom
CNN architecture outperformed the other models, achieving an accuracy of 94.51%. This
high performance can be attributed to the nine convolutional layers in the proposed
CNN, which enabled the model to effectively capture intricate patterns in the MRI data.
Despite increasing the number of epochs to 50, the model’s accuracy plateaued, indicating
convergence at the 30th epoch.

6.2. Addressing Class Imbalance

A significant challenge we faced in the dataset was class imbalance, particularly
with underrepresented tumor types, such as pituitary tumors. To address this issue, we
employed oversampling techniques to generate synthetic samples for these minority classes,
which helped achieve a more balanced representation across all tumor types. Additionally,
we applied class weighting during training to give greater importance to minority classes,
reducing bias toward the majority classes. Although the model’s accuracy decreased from
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95.215% to 94.51%, the loss improved significantly from 0.3386 to 0.140, indicating a better
fit of the model to the training data.

6.3. Enhancing Interpretability

To enhance the interpretability of the trained model, several visualization techniques
were employed. Gradient-based attribution methods such as Integrated Gradients and
Guided Backpropagation were applied to identify the most influential parts of the MRI
images. Additionally, saliency maps were generated to highlight the most relevant regions
that contributed to the model’s classification decisions. These techniques provided a clearer
understanding of the model’s decision-making process, facilitating collaboration between
clinicians and AI systems.

6.4. Clinical Implications

The proposed brain tumor-detection system offers significant clinical implications that
could improve patient outcomes and streamline diagnostic workflows. The high accuracy
(94.51%) of the custom CNN model, combined with interpretability techniques such as
saliency maps, allows clinicians to trust and understand the AI’s decision-making pro-
cess. This fosters collaboration between AI systems and medical professionals, potentially
reducing diagnostic errors and improving the precision of tumor subtype classification.

In clinical practice, the ability to rapidly and accurately diagnose brain tumors can
significantly improve patient outcomes. The proposed CNN model’s high accuracy and
interpretability make it particularly useful in real-world applications where clinicians
must rely on AI systems to support their decision-making. For instance, the model can
assist radiologists in identifying complex tumor subtypes earlier in the diagnostic process,
potentially leading to more timely and personalized treatment planning. Additionally, the
interpretability of the model, supported by gradient-based attribution methods, enhances
clinicians’ trust in the system, as they can visualize the specific regions that influenced the
model’s predictions. This can help reduce diagnostic errors, optimize resource allocation,
and improve overall patient management.

By enhancing the detection of gliomas, meningiomas, and pituitary tumors, this sys-
tem could enable earlier diagnoses and more accurate treatment planning. Personalized
treatment options can be developed based on the specific tumor subtype, allowing for
more targeted therapies that could lead to better patient outcomes. Furthermore, the
incorporation of AI into routine diagnostic processes could reduce the workload on radiol-
ogists, freeing up time for more complex cases and increasing the overall efficiency of the
healthcare system.

6.5. Contribution to Brain Tumor Detection

Our study has made substantial contributions to the field of brain tumor detection, par-
ticularly by addressing class imbalance and enhancing model interpretability. The custom
CNN architecture developed in this study was specifically designed to capture features re-
lated to brain tumor classification, leading to reliable and accurate predictions, especially for
rare tumor types. The combination of oversampling, class weighting, and interpretability
methods further improved the model’s performance and usability in clinical settings.

6.6. Comparison with Related Models

Table 18 presents a comparative analysis between the EfficientNetV2S model intro-
duced in [18] and the custom CNN developed in this study. EfficientNetV2S outperformed
the custom CNN in terms of overall accuracy, precision, recall, and F1-score, achieving
an accuracy of 98.48% compared to 94.51% for the custom CNN. While EfficientNetV2S
also demonstrated a superior performance in regard to precision (98.5%) and recall (98%),
the custom CNN still maintained competitive results across individual tumor types, with
a weighted average of 94% for precision, recall, and F1-score. Both models employed
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different interpretability tools—EfficientNetV2S utilized Grad-CAM, while the custom
CNN employed saliency maps and gradient attribution methods.

Table 18. Comparative analysis between EfficientNetV2S and custom CNN.

Metric EfficientNetV2S Custom CNN Model

Accuracy 98.48% 94.51%
Precision 98.5% 94%

Recall 98% 94%
F1-score 98% 94%

Interpretability tools Grad-CAM Saliency Maps, Gradient Attribution

This comparison highlights the trade-off between model accuracy and interpretability,
suggesting that future work could integrate EfficientNet-based architectures to enhance
accuracy without sacrificing the interpretability provided by visualization techniques.

The EfficientNetV2S model outperformed the custom CNN model in terms of overall
accuracy, while the custom CNN demonstrated a competitive performance across individ-
ual tumor types, achieving a weighted average of 94% for precision, recall, and F1-score.
Both models utilized different interpretability tools to enhance our understanding of their
predictions. The trade-off between interpretability and raw performance suggests that
future work could explore integrating EfficientNet-based architectures to improve accuracy
while retaining the interpretability through advanced visualization methods.

In addition to comparing our custom CNN with EfficientNetV2S, the performance
of other State-of-the-Art models for brain tumor detection has been reviewed. Table 19
presents the performance and methodologies of these models in comparison to our cus-
tom CNN.

Table 19. Comparative analysis of brain tumor-detection methods.

Source Classified Method Accuracy Additional Information

[32]
Siamese Neural

Network
(GoogLeNet)

97.64%

The Siamese Neural Network achieves a commendable
accuracy of 97.64%. However, its performance is slightly lower

than the proposed method. While Siamese networks are
effective for tasks like image similarity and verification, their
suitability for brain tumor detection may vary depending on

the dataset and task requirements.

[33] Hybrid CNN
(Resnet50) 97.20%

The Hybrid CNN, utilizing ResNet50 architecture, achieves an
accuracy of 97.20%, which is slightly lower than both the

proposed method and the Siamese Neural Network. Hybrid
CNN architectures often combine features from multiple CNN

architectures to improve performance. However, their
complexity may pose challenges in interpretation

and implementation.

[34]
Optimal DNN and

Spider-Monkey
Optimization

99.30%

Preethi and Aishwarya’s method, employing an Optimal DNN
with Spider-Monkey Optimization, achieves the highest
accuracy of 99.30%. While the accuracy is impressive, the

complexity of the optimization technique and the
interpretability of the model may be limiting factors for

practical applications.

[35]
Wavelet Transform
and Support Vector

Machine
98.14%

Kharrat et al. achieved an accuracy of 98.14% using Wavelet
Transform combined with Support Vector Machine (SVM).

While SVMs are known for their effectiveness in classification
tasks, the reliance on feature engineering and the

interpretability of the model may be challenging compared to
deep-learning approaches.
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Table 19. Cont.

Source Classified Method Accuracy Additional Information

[36] Multiscale CNN 97.30%

Diaz-Pernas et al.’s Multiscale CNN achieved an accuracy of
97.30%, demonstrating robust performance in brain tumor

detection. Multiscale CNN architectures leverage features at
multiple resolutions, offering a comprehensive representation

of the input data. However, they may require more
computational resources during training and inference.

[37] Modified Deep CNN 96.40%

Hemanth et al. achieved an accuracy of 96.40% with a Modified
Deep CNN, demonstrating competitive performance in tumor

detection. Modifications to standard CNN architectures can
improve their effectiveness for specific tasks. However, the

degree of modification and its impact on model interpretability
should be carefully considered.

[38] Convolutional
Neural Network 91.43%

Paul et al.’s CNN achieved an accuracy of 91.43%, which is
relatively lower compared to other methods. The lower

accuracy may be attributed to various factors such as dataset
characteristics, model architecture, or training methodology.

[12] Deep transfer
learning (AlexNet) 99.62%

While Badjie and Ülker achieved impressive results using
AlexNet for two-class classification, our study expands upon

this by classifying four classes, making the problem more
complex. Transfer learning remains highly effective, but the

challenges increase as more tumor types are introduced.

Proposed
method Custom CNN 94.51%

The proposed method utilizes a custom CNN architecture
tailored specifically for brain tumor detection. This approach

allows for better capturing of features relevant to tumor
classification, leading to a high accuracy of 94.51%. The custom

CNN architecture offers flexibility and adaptability to the
dataset and clinical requirements, potentially making it more

suitable for real-world applications compared to
standardized models.

The comparative analysis shows that while our custom CNN performs competitively,
several models, like the EfficientNetV2S and Optimal DNN with Spider-Monkey Opti-
mization, achieved higher raw accuracy. However, our model offers a balance between
performance and interpretability, which is critical for clinical applications.

6.7. Exploration of Transformer-Based Architectures

Beyond CNN-based models, future work could explore the application of transformer-
based architectures for brain tumor classification. Transformers are known for their ability
to capture long-range dependencies and may improve classification accuracy while main-
taining interpretability.

6.8. Security Threats and Countermeasures

The deployment of machine-learning models, especially in sensitive domains like
healthcare, exposes the system to potential security vulnerabilities. One of the significant
threats is systematic poisoning attacks, where adversaries can manipulate training data
to degrade the model’s performance intentionally [39,40]. Such attacks are particularly
concerning in healthcare, as they can lead to incorrect diagnoses, posing severe risks to
patient safety [41,42].

To mitigate these threats, various defensive strategies can be explored:

• Differential privacy: This technique ensures that individual patient data points do not
significantly influence the model, reducing the likelihood of privacy breaches from
model outputs.
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• Secure multi-party computation: By distributing the computation across multiple
parties, the risk of an adversary gaining access to sensitive medical data is minimized.

• Homomorphic encryption: This method allows computations to be performed on
encrypted data, ensuring that sensitive information is never exposed during the
training or inference process [41,43].

Future work will explore the integration of these security frameworks into the pro-
posed brain tumor-detection pipeline, aiming to enhance the model’s resilience to adversar-
ial attacks and safeguard patient data in clinical settings.

6.9. Energy-Efficient Long-Term Health-Monitoring Systems

In addition to security vulnerabilities, energy efficiency is crucial for continuous health-
monitoring systems that rely on AI models for real-time data processing. Developing AI
systems that minimize energy consumption while maintaining high performance can
enable long-term personal health monitoring [44]. This is particularly beneficial for remote
healthcare applications where IoT devices monitor patient data in real-time. These energy-
efficient systems will not only improve healthcare delivery but also reduce operational
costs, making them suitable for large-scale deployments in smart cities.

6.10. AI-Empowered IoT Security for Smart Cities

As healthcare services increasingly integrate with IoT infrastructures in smart cities,
ensuring the security of interconnected devices becomes critical. Future research will focus
on incorporating AI-empowered IoT security measures that protect patient data and ensure
secure communication between IoT devices and healthcare systems [43]. Techniques like
blockchain for secure data sharing and real-time intrusion detection systems could be
pivotal in building robust, secure healthcare frameworks.

6.11. Ethical Considerations

While the performance of AI models in medical diagnosis continues to improve, ethical
considerations such as data privacy and model bias cannot be overlooked. In healthcare,
the risk of biased predictions can disproportionately affect certain populations, potentially
leading to incorrect diagnoses. The dataset used in this study, though comprehensive, may
still carry inherent biases that could affect the generalizability of the model to different
demographics or rare tumor subtypes. In addition, patient privacy remains a key concern,
as medical images used in training models could be sensitive. Future work should focus
on mitigating these risks by implementing techniques such as differential privacy and
exploring the implications of AI-driven decision-making in clinical practice.

6.12. Limitations and Future Work

While the proposed CNN model demonstrates strong performance in brain tumor
detection, several limitations must be addressed. First, although the dataset used in this
study is diverse, it may not fully represent the variability encountered in clinical practice.
To improve the model’s generalizability, future work will involve expanding the dataset to
include more patient data from various demographics and institutions.

Moreover, the current study focuses exclusively on MRI data. Incorporating multi-
modal data, such as CT and PET scans, could enhance the robustness of the model and
provide more comprehensive diagnostic insights. Additionally, exploring advanced archi-
tectures like ViT may allow for the capture of long-range dependencies in medical-imaging
data, potentially improving classification accuracy further.

In terms of security, vulnerabilities in AI-based healthcare systems remain a significant
concern. Future research should focus on addressing the risks posed by adversarial attacks,
such as data poisoning. To safeguard sensitive medical data and ensure the integrity of
predictions, techniques like differential privacy, homomorphic encryption, and secure
multi-party computation can be applied. These measures will enhance the safety and
integrity of AI models in clinical applications.
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Furthermore, future iterations of the model could benefit from employing advanced
interpretability methods, such as Layer-Wise Relevance Propagation (LRP). These tech-
niques would provide clinicians with more detailed insights into model decisions, fostering
greater trust in AI-driven diagnostic tools.

Another potential limitation of the study is the relatively small dataset used for
training, which, although balanced through oversampling, may still not fully represent
the variability seen in clinical environments. This may lead to overfitting, particularly
in underrepresented tumor subtypes such as pituitary tumors. Additionally, while the
model was trained and validated on a curated dataset, its performance on real-world, noisy,
or heterogeneous clinical data is yet to be fully evaluated. Future work should explore
external validation on larger, more diverse datasets and the development of robust models
that can generalize across different medical centers and MRI protocols.

7. Conclusions

This study presents a custom CNN architecture designed for brain tumor detection
using MRI scans. By addressing key challenges, such as class imbalance and model
interpretability, the proposed model achieved competitive results, with an accuracy of
94.51%, outperforming other pretrained models like ResNetV2, DenseNet201, and VGG16.
The application of oversampling techniques and class weighting effectively mitigated the
effects of class imbalance, leading to improved model generalization across tumor classes.

A key contribution of this work is the integration of interpretability techniques, such
as gradient-based attribution methods and saliency maps, which enhance transparency
in the model’s predictions. These tools not only provide clinicians with insights into the
model’s decision-making process but also foster trust in AI-assisted diagnostics, making
the model more viable for real-world healthcare applications.

Future research will focus on exploring advanced architectures, such as ViT, which
capture long-range dependencies and have the potential to outperform CNNs in medical-
image classification. Additionally, integrating multimodal data from other imaging modal-
ities, like CT or PET scans, could further enhance the model’s robustness and diagnos-
tic capabilities.

Beyond model performance, security remains a critical concern for AI in healthcare.
Future work will explore integrating differential privacy, homomorphic encryption, and
other security measures to protect against systematic poisoning attacks and ensure the
privacy of patient data. These efforts will ensure the safe and secure deployment of AI
models in clinical environments.

Furthermore, real-world testing on larger, more diverse datasets across multiple institu-
tions will be essential for ensuring the model’s generalizability and robustness. Deploying
the model in clinical settings with real-time feedback from healthcare professionals will
also help refine its usability and effectiveness in medical workflows.

Lastly, the growing role of IoT in healthcare opens new opportunities for AI-driven
continuous health monitoring. By developing energy-efficient AI systems and ensuring
the security of IoT devices, AI-enabled healthcare solutions can be scaled for smart cities,
ensuring both patient safety and data security in connected environments.

In conclusion, this research makes significant strides in improving brain tumor detec-
tion through a custom CNN architecture, while also paving the way for future advance-
ments in AI-based healthcare security, interpretability, and scalability. The findings have the
potential to contribute to more accurate diagnostics and personalized treatment planning,
ultimately benefiting both clinicians and patients.
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