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Abstract: Traffic sensors are vital to the development and operation of Intelligent Transportation
Systems, providing essential data for traffic monitoring, management, and transportation infrastruc-
ture planning. However, optimizing the placement of these sensors, particularly across large and
complex statewide highway networks, remains a challenging task. In this research, we presented a
novel search algorithm designed to address this challenge by leveraging information gradients from
K-nearest neighbors within an embedding space. Our method enabled more informed and strategic
sensor placement under budget and resource constraints, enhancing overall network coverage and
data quality. Additionally, we incorporated spatial kriging analysis, harnessing spatial correlations of
existing sensors to refine and reduce the search space. Our proposed approach was tested against the
widely used Genetic Algorithm, demonstrating superior efficiency in terms of convergence time and
producing more effective solutions with reduced information loss.

Keywords: traffic sensor location optimization; information gradient; spatial kriging; Node2Vec;
embedding; K-nearest neighbors; genetic algorithm

1. Introduction

Traffic sensors are vital components of Intelligent Transportation Systems, forming
the backbone of modern traffic management, particularly in the era of emerging artificial
intelligence (AI). These sensors enable real-time insights into traffic dynamics, optimizing
traffic flow and significantly improving road safety. Moreover, the data they gather are
essential for AI-driven tools, which harness predictive analytics and real-time decision-
making to transform traffic management practices. This synergy between traffic sensors and
AI technologies results in more efficient and responsive transportation systems, underlining
the critical role that traffic sensors play in contemporary traffic management solutions.

While traffic sensors are essential, it is impractical to equip every road segment with
permanent sensors due to resources and budget constraints. As road networks continue
to expand, determining the optimal locations for sensor installation to maximize public
benefits has become increasingly important. This challenge falls within the scope of the
traffic sensor location problem (TSLP), which focuses on strategically selecting specific
network links or nodes for sensor installation to effectively capture network-wide traffic
flows. TSLP also plays a crucial role within the broader framework of Transport Sys-
tem Modeling (TSM) [1], which are essential for understanding mobility patterns and
supporting the simulation, design, planning, and control of transport systems. Beyond tra-
ditional data, leveraging diverse data sources can significantly enhance TSM. For instance,
Alonso et al. [2] combined floating car data (FCD) with traffic information from traditional
loop detectors to develop fundamental diagrams for analyzing traffic conditions on urban
road networks. In addition to FCD, other forms of probe data can also be incorporated.
Combining insights from fixed-location sensors with mobile or probe sensor data can
further enhance transport system modeling, enabling more informed decisions on network
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operations, infrastructure investments, and congestion management. Furthermore, it is also
important for TSLP to account for potential discontinuities induced by certain barriers [3].

It is worth noting that while TSLP could be formulated for different objectives, such as
travel times estimation [4,5] or speed monitoring [6], the most common and important goal
of the TSLP is to enhance the observability of traffic flows at the network level [7], which
can be categorized in different ways, such as the flow information on specific link/path
segments [8] or the O/D trips [9]. In this paper, we focused on the segment-level flow
estimation across the entire state of Georgia, which belongs to the flow observability defined
in [7].

Addressing the TSLP for large-scale networks presents a multifaceted challenge. Tradi-
tional approaches to addressing the TSLP aim to enhance flow observability by utilizing lin-
ear or nonlinear programming and network theory to formulate and solve the problem [7].
These methods involve setting up systems of equations based on the sensor data, with the
observability determined by the rank of the matrix formed by these equations. However, ap-
plying this framework to sensor planning on real-world large networks presents significant
challenges [10]. First, while TSLP is a multifaceted challenge complicated by factors such as
sensor types, the likelihood of sensor failures, budgetary limitations, etc., the fundamental
challenge for TSLP arises from the increasing size of road networks, resulting in escalated
computational complexity. Formulating the problem within algebraic and network theory
domains becomes exceedingly complex for large transportation networks. Second, solving
the resulting large systems of equations is often computationally intractable, particularly
when dealing with large-scale networks like those in metropolitan areas [10]. Consider a
road network containing m road segments (or links); the search space is 2m [2]. If n sensors
are to be deployed in this road network, the search domain is m!

n!(m−n)! , which would still be
formidable for metropolitan-wise networks or even city-wide networks. To address these
challenges, leveraging consolidated network analysis approaches with AI in the transport
sector can provide valuable insights into solving TSLP more efficiently.

In practice, sensor location planning often lacks systematic methodology and involves
some degree of subjectivity. For instance, in Georgia, the process for planning continuous
counting stations (CCSs) follows three primary stages: criteria-based candidate selection,
field evaluation, and installation of new CCS sites. The process considers factors such as
traffic patterns, critical nodes on high-volume roads, and areas of interest to the Georgia
Department of Transportation (GDOT) to ensure effective planning and federal compli-
ance [11]. Normally, the budget is fixed so that the number of sensors that can be installed
is predetermined. The challenge then becomes identifying the optimal locations for these
sensors across a vast statewide network. This paper focuses on optimizing sensor locations
given the number of sensors and proposes a novel framework along with an efficient
algorithm to address the statewide TSLP.

2. Problem Formulation and the Proposed Framework
2.1. Problem Formulation
2.1.1. Data Input

In this paper, we used 2015 Georgia’s statewide highway network, which consists of
43,370 segments with 326 Continuous Count Stations (CCSs). For the purpose of this study,
traffic sensors were referred to as CCS. To demonstrate our approach, we focused on the
major highway network (functional class 1, 2 and 3) which includes interstates, freeways
and expressways and principal arterials, resulting in 15,318 road segments with 246 CCS,
depicted as red dots in Figure 1.

Then, we constructed a directed graph G = (V, L) to capture the directional traffic flows
and network topology [12], where V is the set of nodes, with each node representing a road
segment in the network, and the L is set of edges, indicating direct connection between road
segments. The graph representation of Georgia’s statewide highway network is depicted
in Figure 2.
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Figure 2. Directed graph representation for the Georgia statewide highway network.

The distribution of direct neighbors is shown in Figure 3, revealing that the majority
of the nodes have two neighbors, followed by the segments with three and four neighbors
regarded as intersections, while only a few segments with one neighbor indicated the ends
of road segments.
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2.1.2. TSLP Objective Function

The TSLP in this study can be stated as conditional upon the existing sensor locations,
choosing the locations of new sensors to optimize the network coverage by maximizing
network-level information gain. Optimality is sought in an embedding space that considers
network topology [13]. Maximizing information gain is equivalent to minimizing the
Kullback–Leibler (KL) divergence between the data distribution, P(x), and the model
distribution, Q(x). P(x) captures how sensors are distributed, while Q(x) is approximated
by kernel density estimation (KDE) of segments for the entire network [14]. The KL
divergence also referred to as information divergence or relative entropy serves as a metric
for quantifying the discrepancy between the two distributions. The general form of KL is
given by Equation (1) below:

DKL(P ∥ Q) = ∑xϵχ
P(x)log

(
P(x)
Q(x)

)
(1)

The model distribution Q(x) is derived from the outputs, i.e., from a travel demand
model. Meanwhile, the data distribution P(x) corresponds to the choice set of locations,
encompassing both the existing sensor sites (xe) and the planned sensor sites (xp). The goal
is to select the sites of planned sensors (xp) to minimize the KL divergence between P(x)
and Q(x) within the embedding space, as previously discussed. This objective function is
formally expressed in Equation (2).

min
xp

∑{xe , xp} P(x)log
(

P(x)
Q(x)

)
, xp ∈ χKriging (2)

where χkriging denotes the reduced search space by Kriging variance, which will be dis-
cussed in Section 3.2.

2.2. Proposed Solution Framework

Our framework to handle the TSLP in a statewide network is illustrated in Figure 4.
To accelerate the search process, we used kriging analysis to reduce the search space by
identifying areas with high kriging variance as target zones. The TSLP then solved the
same optimization problem within this reduced target network (Equation (2)). Our search
method, referred to as K-Nearest-Neighbor Information Gradient Descent (KNN-IGD),
was inspired by the stochastic gradient descent method used in machine learning, where
gradients are computed with respect to model parameters. In our case, the gradient was
computed with respect to spatial locations in the embedding space of the network topology.
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Given the large number of factors influencing sensor placement, our algorithm generated a
solution set of candidate segments, which can then be further reviewed by domain experts
to determine the precise sensor locations.
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3. Methods

In this section, we will discuss several key techniques employed, including topology
embedding, spatial kriging analysis, and our KNN-IGD algorithm.

3.1. Topology Embedding

To accurately capture meaningful representations of the directed graph while preserv-
ing its topological structure, we employed the Node2Vec method introduced by Grover
and Leskovec [15]. Node2Vec is a scalable, learning-based approach designed to encode
network topology into a vector embedding space. It effectively learns vector representa-
tions that capture the intricate relationships between nodes, making these embeddings
highly useful for various graph analysis tasks. The specific parameters for Node2Vec in our
implementation are detailed in Table 1.

Specifically, we set p = q = 1 as our goal to encode the network topology while
preserving its structural integrity without introducing bias toward either the local or
global structure of the network. To visualize the embeddings generated by Node2Vec,
we used Uniform Manifold Approximation and Projection (UMAP). UMAP has proven
highly effective in providing a competitive low-dimensional manifold representation while
preserving more of the global structure in the embeddings [16]. As shown in Figure 5,
UMAP strikes a balance between local and global connectivity. The current CCS locations
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are represented by red dots, reflecting a representative sampling of network segments
within the embedding space.

Table 1. Parameters of Node2Vec algorithm.

Parameter Value Description

lwl 30 Walk length, i.e., the number of nodes in each walk
Nnw 200 Number of walks per node

p 1 The likelihood of backtracking the walk and immediately revisiting a
node in the random walk.

q 1 The In-Out parameter q allows the traversal calculation to
differentiate between inward and outward nodes.

ddim 8 The output node2vec embeddings dimension
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3.2. Spatial Kriging Analysis

Spatial kriging is a geostatistical technique used to interpolate the value of a random
field (such as elevation, rainfall, or chemical concentrations) at specific locations based on
observations from nearby points [17]. This method accounts the for statistical relationship
between measured points and provides the Best Linear Unbiased Estimator (BLUE) [18].
Given the scale of the network, we first narrowed the search space. In this study, we
applied ordinary kriging [19], using latitude and longitude as coordinates for existing
sensors (i.e., CCSs) across the network, with Annual Average Daily Traffic (AADT) as the
measurement variable. The kriging variance of AADT is shown in Figure 6. The results
indicate lower variance in the Atlanta metropolitan area, attributed to the higher density of
existing sensors, whereas rural regions of Georgia display higher variance due to sparser
sensor coverage.

In this study, the target area was determined by applying a percentile threshold (α) to
the kriging variance, focusing on regions with higher variance [20]. It is important to select
an appropriate threshold value to balance the confidence of finding optimal solutions with
the computational load. For demonstration purposes, we set α = 50%, i.e., reducing the
search space by half. The resulting target area, where the kriging variance exceeds the 50th
percentile, is visually depicted in Figure 7. Figure 8 further illustrates the corresponding
highway network within this high-variance region.
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3.3. K-Nearest-Neighbor Information Gradient Descent (KNN-IGD)

Depending on the screening threshold selected, the target area often remains large,
making traditional optimization methods impractical. To address this, we proposed a
practical, scalable approach that leverages graph representation and information theory.
Starting with random candidate locations, our method navigates the embedding space
by following information gradients relative to K‘s nearest neighbors while occasionally
exploring beyond the neighbor set when there is no information gained from the neigh-
bors. The implementation of KNN-IGD is detailed in Algorithm 1, with key aspects
discussed subsequently.

Algorithm 1. KNN-IGD

Input:
Number of sensors: n; the network screening threshold: α; the number of nearest neighbors: k;
exploration rate: θ; search space: S.

1. Initialization:

Generate a set of randomly sampled n nodes (Sn ) in the reduced search space per α.
Snear = ∅ //Snear tracks explored and current neighbor locations. //
S f ar = S //S f ar tracks unexplored potential locations. //
S∗

n = Sn //S∗
n retains the currently selected locations of n sensors. //

2. While
(

S f ar ! = ∅
)

:

3. For each node i in Sn:

4. IGji =
(

KLj∈Sknn
− KLi

)
× AADT j // Sknn is the neighbor set of node i. //

5. j∗ = argmin
j∈Sknn

(
IGji

)
6. Snear ∪ Sknn
7. Update Mknn by masking visited nodes
8. If IGj∗ i < 0:
9. S∗

n[i] = j∗ // update S∗
n //

10. Else: // explore the locations in the far set. //
11. S f ar = S \ Snear // S f ar is the complmentary set of Snear. //
12. ϵ ∼ Uni f orm(0, 1):
13. If ϵ < θ: randomly sample a node i′ from S f ar

14. IGji′ =
(

KLj∈Sknn
− KLi′

)
× AADT j

15. j∗ = argmin
j∈Sknn

(
IGji′

)
16. Snear ∪ Sknn
17. Update Mknn by masking visited nodes
18. If IGj∗ i′ < 0:
19. S∗

n[i] = j∗ // update S∗
n //

20. If S∗
n == Sn: // check if there is any update over the current iteration. //

21. Return S∗
n

22. Else: Sn = S∗
n // update Sn for next iteration. //

3.3.1. KNN Matrix

The K-Nearest Neighbors (KNNs) [21] is a widely used non-parametric algorithm
known for its simplicity and effectiveness in various applications. At its core, KNN operates
on the principle of similarity within a feature space, assuming that similar instances are
likely to be found near one another. For a given data point, the algorithm identifies its k
nearest neighbors based on a chosen distance metric, typically Euclidean distance, to make
predictions or classifications.

Let S = {x1, x2, . . . , xN} be the set of target segments in the embedding space, where
each embedding xi ∈ Rd encodes the topological structure of a segment within the highway
network into a d-dimensional vector space. For each segment (node), K is the number of
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nearest neighbors. For this study, the embedding dimension was d = 8. The Euclidean
distance between two embedding vectors xi, xj is computed using Equation (3).

d
(
xi, xj

)
=

√
∑d

m=1

(
xim − xjm

)2, (3)

where m indexes embedding dimension. For each vector xi in the set S, the distances
d
(

xi, xj
)

are computed for all xj ̸=i ∈ X. The K nearest neighbors are then found by selecting
the K shortest distances. Consequentially, the KNN matrix MN×K is constructed, where
N is the number of segments in the search set, and K is the number of nearest neighbors.
In this study, N = 7624 and K = 10. The parameter K controls the local search area of each
node within the embedding space, with larger K values encompassing more neighbors to
be evaluated during the searching process.

3.3.2. Information Gradient

Gradients play an important role in many optimization techniques, particularly in
machine learning and other computational fields [22]. Gradient effectiveness refers to how
well gradients guide an algorithm toward an optimal solution within a given problem
space. By providing critical information about the direction of improvement, gradients
enable efficient convergence toward a local or global minimum or maximum. In our case,
the goal was to minimize information loss, as defined by KL in Equation (1), which we refer
to as the “information gradient” in this paper. Starting from a given node, we retrieved
its K nearest neighbors using the KNN matrix described previously and computed the
volume-weighted information gradient for each neighbor node using Equation (4).

IGji =
(
KLj∈Sknn − KLi

)
× AADT j, (4)

where IGji is the volume-weighted information gradient when moving from node i to
its neighbor node j. Sknn is the neighbor set of node i. AADT j is the traffic volume for
neighbor j. Weighting by AADT aims to maximize the observation of traffic flow.

3.3.3. Exploitation and Exploration

Similar to the exploitation and exploration concept in reinforcement learning [23], our
implementation occasionally encounters situations where the gradient becomes minimal,
particularly when K is small. In these cases, KNN-IGD struggles to make progress in
gaining information. This occurs when the differences in KL divergence between a node
and its neighbors are too small, causing the algorithm to become “stuck” in a local optimum,
repeatedly selecting the same neighbor without exploring other regions of the search space.
To address this issue, we introduced an exploration mechanism that allows the search to
extend beyond the neighbor set. In this context, exploitation refers to searching within the
neighbor set, while exploration involves sampling beyond it. As shown in Algorithm 1, we
used parameter ϵ to control the probability of exploration when there is no information
gained from the neighbor set.

3.4. Genetic Algorithm

To demonstrate the efficacy of our KNN-IGD algorithm, we compared it with the
Genetic Algorithm (GA), which has been extensively applied to complex real-world opti-
mization problems. GA is inspired by the principle of biological evolution [24], iteratively
exploring a set of candidate solutions and leveraging population characteristics to guide
the search toward optimal solutions [25]. It mimics the process of natural evolution, where
a population of candidate solutions, referred to as individuals, evolves through biological
operators such as selection, crossover, and mutation [26]. The process begins with a ran-
domly generated population. in each generation, the fitness of each individual is evaluated
using a fitness function. Individuals with higher fitness scores are more likely to be selected
for reproduction through crossover and mutation, creating a new population [27]. This
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iterative process continues until either a predetermined fitness threshold is reached or a
maximum number of generations is completed [28].

The effectiveness of Genetic Algorithms in identifying global optima is well-documented
in the literature. Its ability to maintain a diverse set of solutions makes it particularly well-
suited for exploring large, complex search spaces, helping to avoid premature convergence
to local optima, a common issue in optimization algorithms. A previous work [13] has
demonstrated strong performance of GA in optimizing sensor locations. In this study, we
used GA as a baseline to compare it with our proposed KNN-IGD algorithm.

4. Results

Given the inherent randomness in both GA and KNN-IGD, we evaluated their perfor-
mance based on sampling distribution rather than single fixed-point outcomes. Specifically,
we run each algorithm multiple times, benchmarking them against a random sample from
the target search set [29]. This approach allows us to compute statistics for a more reliable
and meaningful comparison [30].

4.1. Implementation of GA as a Baseline

For a fair comparison, the GA was implemented with optimized parameters [31], as
shown in Table 2.

Table 2. GA optimized parameters.

Parameter Value

Number of generations 200
Number of parents mating 30
Population size 100
Number of genes 7624
Gene space [0, 1]
Parent selection roulette wheel
Crossover single point
Mutation random
Mutation percent for genes 10

4.2. Comparison of KNN-IGD and GA

In our experiments, we set the number of new sensors to n = 5. We run both KNN-
IGD and GA 10 times, resulting in 50 segments selected by each method. In terms of
computation time, the average convergence time for GA was 46.85 s, whereas KNN-IGD
took only 11.79 s. To visually compare the performance of KNN-IGD and GA against
random sampling, we plotted the sample distributions in Figure 9. The results show that
KNN-IGD samples fall into the lower KL region compared with GA and random sampling
(RS), demonstrating superior performance.

To statistically validate the effectiveness of KNN-IGD, we conducted one-tailed
t-Test [32], with the results summarized in Table 3. Particularly, three hypotheses were
constructed and tested. The small p-values strongly support the rejection of the null
hypotheses. The KL values for the solution set generated by KNN-IGD are significantly
smaller than those produced by GA, and the KL values for GA are significantly smaller
than those for RS. Note that smaller KL values indicate better solutions with lower
information loss.

Table 3. One-tailed t-test results.

Null Hypothesis (H0) t-Statistic p-Value

KLKNN−IGD ≥ KLRS −26.91 <0.001
KLGA ≥ KLRS −20.24 <0.001

KLKNN−IGD ≥ KLGA −10.34 <0.001



Information 2024, 15, 654 11 of 13

Information 2024, 15, x FOR PEER REVIEW 11 of 14 
 

 

4.2. Comparison of KNN-IGD and GA 
In our experiments, we set the number of new sensors to n = 5. We run both KNN-

IGD and GA 10 times, resulting in 50 segments selected by each method. In terms of com-
putation time, the average convergence time for GA was 46.85 s, whereas KNN-IGD took 
only 11.79 s. To visually compare the performance of KNN-IGD and GA against random 
sampling, we plotted the sample distributions in Figure 9. The results show that KNN-
IGD samples fall into the lower KL region compared with GA and random sampling (RS), 
demonstrating superior performance. 

 
Figure 9. Histogram of KL values for KNN-IGD, GA, and RS. 

To statistically validate the effectiveness of KNN-IGD, we conducted one-tailed t-Test 
[32], with the results summarized in Table 3. Particularly, three hypotheses were con-
structed and tested. The small p-values strongly support the rejection of the null hypoth-
eses. The KL values for the solution set generated by KNN-IGD are significantly smaller 
than those produced by GA, and the KL values for GA are significantly smaller than those 
for RS. Note that smaller KL values indicate better solutions with lower information loss. 

Table 3. One-tailed t-test results. 

Null Hypothesis (𝑯𝑯𝟎𝟎) t-Statistic p-Value 
𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾−𝐼𝐼𝐼𝐼𝐼𝐼 ≥ 𝐾𝐾𝐾𝐾𝑅𝑅𝑅𝑅 −26.91 <0.001 
𝐾𝐾𝐾𝐾𝐺𝐺𝐺𝐺 ≥ 𝐾𝐾𝐾𝐾𝑅𝑅𝑅𝑅 −20.24 <0.001 

𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾−𝐼𝐼𝐼𝐼𝐼𝐼 ≥ 𝐾𝐾𝐾𝐾𝐺𝐺𝐺𝐺 −10.34 <0.001 

For quantitative comparison, Table 4 presents the KL mean, standard deviation, and 
entropy calculated from samples generated using RS, GA, and KNN-IGD. 

Table 4. Comparison of sample statistics. 

Methods Mean SD Entropy 
RS 1.27 0.21 6.62 
GA 0.60 0.10 6.46 

KNN-IGD 0.42 0.06 6.25 

Figure 9. Histogram of KL values for KNN-IGD, GA, and RS.

For quantitative comparison, Table 4 presents the KL mean, standard deviation, and
entropy calculated from samples generated using RS, GA, and KNN-IGD.

Table 4. Comparison of sample statistics.

Methods Mean SD Entropy

RS 1.27 0.21 6.62
GA 0.60 0.10 6.46

KNN-IGD 0.42 0.06 6.25

As shown in Table 4, the solution set generated by KNN-IGD has the lowest KL mean,
followed by GA and RS, indicating the highest solution quality with minimal information
loss among the three methods. Additionally, KNN-IGD exhibits the lowest standard
deviation and entropy, demonstrating the highest confidence in its solution set compared
with GA and RS.

5. Conclusions

In this paper, we present a flexible framework for addressing the traffic sensor
location problem by leveraging graph representation and information theory. The
framework involves representing a target highway network as a directed graph, followed
by embedding the graph into a vector space. Our search method, KNN-IGD, navigates
this embedding space by following information gradients relative to K nearest neighbors
and occasionally exploring beyond the neighbor set when no further information gain is
detected. To expedite the search process, we leverage spatial correlations among existing
sensors and apply spatial kriging analysis to identify target zones with high kriging
variance. While this study focuses on continuous count stations, typically equipped
with inductive loops embedded in the pavement, some researchers have suggested the
use of Automated Vehicle Monitoring (AVM) and FCD [33] for Origin-Destination flow
estimation. Incorporating FCD and other probe sensor data alongside spatial kriging
analysis of sensor data can improve traffic volume estimation. By leveraging both kriging
and KNN-IGD methods, this integration has the potential to enhance the accuracy of
traffic flow predictions, particularly in areas with limited sensor coverage. However,
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due to the sampling nature of these data sources, they do not provide reliable traffic
volumes directly. Nevertheless, such data could complement spatial kriging analysis
by identifying areas with higher uncertainty in traffic flow. By integrating diverse data
sources, fixed-location sensors can serve as ground truth for correlating with mobile
sensor data, offering an alternative way to estimate traffic volumes in areas lacking count
stations. This approach could significantly reduce the costs associated with operating
and maintaining statewide fixed-location sensor networks.

For benchmarking, we compared KNN-IGD to the widely used GA and random
sampling. KNN-IGD demonstrated significantly faster convergence than GA. Based on the
one-tailed t Test, the solution sets of both KNN-IGD and GA showed substantial information
gain compared with RS. Furthermore, KNN-IGD outperformed GA, providing significantly
higher information gain. These results highlight the effectiveness and robustness of KNN-
IGD in identifying optimal sensor locations within a large-scale, statewide network. While
the framework is applied to the traffic sensor location problem in this study, its versatility
allows it to be easily adapted for spatial optimization challenges in other domains.

Despite the promising results, we acknowledge certain limitations in this study and
suggest future research directions. While GA was chosen as a competitive baseline, other
optimization algorithms could also be evaluated as well. Moreover, the information
gradient was computed using KL divergence based on a Node2Vec topological embedding.
Exploring alternative embedding methods could provide further improvements. Another
valuable direction is the integration of multisource data, such as probe data, to further
enhance information gain, which warrants further investigation.
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