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Abstract: In this age of big data and natural language processing, to what extent can we leverage
new technologies and new tools to make progress in organizing disparate biomedical data sources?
Imagine a system in which one could bring together sequencing data with phenotypes, gene ex-
pression data, and clinical information all under the same conceptual heading where applicable.
Bio-ontologies seek to carry this out by organizing the relations between concepts and attaching the
data to their corresponding concept. However, to accomplish this, we need considerable time and
human input. Instead of resorting to human input alone, we describe a novel approach to obtaining
the foundation for bio-ontologies: obtaining propositions (links between concepts) from biomedical
text so as to fill the ontology. The heart of our approach is applying logic rules from Aristotelian logic
and natural logic to biomedical information to derive propositions so that we can have material to
organize knowledge bases (ontologies) for biomedical research. We demonstrate this approach by
constructing a proof-of-principle bio-ontology for COVID-19 and related diseases.

Keywords: natural language processing; natural logic; ontology; knowledge graphs; relation extraction

1. Introduction

Ours is an era marked by two major interests and practical areas of focus: big data
and natural language processing. With new language-based technologies proving their use-
fulness in many different practical fields and businesses, perhaps one could apply natural
language processing to an older application: making a knowledge base for biological data.
The field of bio-ontology seeks to combine sequencing data with phenotype information
and other sources of information to develop new tools for biomedical applications [1].
Bio-ontologies take biological concepts and tie them to data, thus making for a principled
approach to cross-link different biomedical data-sources. Furthermore, one can make a logi-
cal inference in bio-ontologies to derive new facts from existing data sources. Bio-ontologies
can also be used to answer questions about various biomedical concepts, thus being useful
for practical biomedical applications. Bio-ontologies rely on the use of logical propositions
to give relations between different concepts in the ontology. Logical propositions are true
statements about concepts which are asserted to be related in some way.

A serious practical obstacle to the construction of vast and broadly applicable bio-
ontologies is the dependence on human input to the creation of various structures. There are,
however, many publicly accessible datasets which provide a great deal of text describing
diseases, biological entities, conditions, and gene expression data [2,3]. It is, however,
quite difficult to translate natural language into first-order logic or other formal logic
in standard use for logical inference in ontologies (it is an ongoing area of research [4]).
In fact, philosophers of logic and language P. F. Strawson [5] and Bertrand Russell [6]
famously agreed that there was no logic in natural language. Russell preferred to work
directly in first-order logic. One idea of how to overcome this is to use a logic that works
in natural language [7–9], which, following the pioneering work of Montague [10–12] and
Sommers [13], has become once again a thriving area of research in logic. There is an older
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tradition, the Aristotelian logic tradition, which reasons in natural language [14,15]. We
combine tools from both traditions and grammatical rules in order to give a new approach
to obtaining propositions for an ontology from natural language data. We then build a
proof-of-principle bio-ontology for COVID-19 and related diseases from these propositions.
Existing work in bio-ontologies for COVID is based on two principle approaches: the first
is manual entry of all relations and entities into existing ontology frameworks [16–18], and
the second is a more automatic and NLP-based approach to building a COVID bio-ontology
(based on named-entity recognition approaches [19]). Our approach in contrast uses a
novel ontology approach based on Aristotelian logic, and an accompanying methodology
for implementing inference in that logic to obtain relations and entities for a COVID bio-
ontology from the text of scientific papers using dependency parsing (with minimal manual
post-processing).

In this paper, we will show in the Results section how to use tools from the Aristotelian
logic tradition [14,15], grammar, and natural logic [20] to derive some propositions from the
CORD-19 dataset [21] of COVID-19 papers (as a proof-of-principle demonstration). In the
same section, we develop logic rules which can be used to derive propositions from natural
language. We also developed a new proposition tool, justified in part by the logic rules,
which gathers propositions from text documents. We give some of the outputs of this tool
on various biomedical Wikipedia pages. In sum, we show the usefulness of the logic rules
for gathering propositions from text documents. Finally, we apply all of these tools and
more to deriving new propositions to CORD-19 data from a subset of PubMed, building a
proof-of-principle COVID-19 bio-ontology. Besides the novel collation of Aristotelian logic
rules to the extraction of propositions for the purpose of building ontologies, in this work,
we introduce a unique combination of dependency parsing to implement the logic rules
and regular expressions to match Aristotelian-based logical propositions. This is the first
such implementation of these Aristotelian logic rules using state-of-the-art NLP techniques.
Previous implementations of all these rules in Aristotelian logic inference were carried
out manually.

Before describing the Methods and Results, we will give a general overview of Aris-
totelian logic.

A Primer on Aristotelian and Natural Logics

For natural and Aristotelian logic, propositions of the form “Every canis lupus is a grey
wolf” are called universal affirmative (type A) propositions because they affirm that the
concept “grey wolf” applies universally to the species canis lupus. Propositions in general
are statements which can be either true or false, rather than questions or exclamations.
The general form of propositions has two terms, a subject S and a predicate P, the latter of
which we affirm or deny of the former in some respect (called the quantity). So, our type-A
proposition has the predicate “a grey wolf” and the subject “canis lupus”. The first word in
our type-A proposition determines how we affirm the predicate of the subject; in our case,
we do so universally. There are three other types of propositions: “Some S is a P” (type I),
“Some S is not a P” (type O), “No S is a P” (type E). Type I propositions affirm P of S in
particular, that is, for some conceivable subject S, P applies to it. Besides these more abstract
kinds of terms, there are also singular terms like Socrates, which are of singular quantity.
We will see that when we discuss reasoning (inference rules), we can treat propositions like
“Socrates is a rational animal” as if it had universal quantity [14].

Words like “Socrates” refer to a particular man living in Athens at a particular time.
The way in which words refer to individuals, if at all, is called the medieval “supposition
theory”. Supposition determines what we can say about the terms and in what way
we can say it. So, for example, in “Every dog is an animal”, the term dog stands in for
(supposits for) individual dogs, rather than just the universal nature (general concept)
of dogs. When the term stands for individuals, we say it has personal supposition. In
contrast, if we say “Canis familiaris is a species of animal”, then canis familiaris stands
only for the universal nature of dogs, rather than individual dogs. When only the universal
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nature is supposited for, we call this “simple supposition”. We must mind these two
kinds of supposition; otherwise, we would have a silly consequence like “Fido is a species
of animal”. When the term has personal supposition and stands for “all the individual
subjects” to which the word applies, we call it common universal complete supposition
(universal, for the sake of brevity). One can also have a personal supposition of a term
which is individual (only applying to an individual man) or more generally particular
determinate (only applying to “a certain determinate few” of what it signifies). If a term T
has a particular determinate supposition (which generalizes individual supposition), we
give the term a set I of individuals for which it supposits, denoting it as TI . There are many
other modes of supposition than we have described here, but we are only discussing those
that will be useful for our applications [14].

Once we have propositions in the kinds of forms we have above, we can reason
our way to other propositions. Logical inference works by taking the propositions and
combining them to infer other propositions. The simplest form of argument in Aristotelian
logic is called the syllogism, which has the following form:

Q Major is Middle (Major premise)
Q Middle is Minor (Minor premise)
Therefore, Q Major is Minor (Conclusion) where Q is a quantity (Every, Some, No), and

Major, Minor, and Middle are terms. The most powerful form of valid (that is, correct)
syllogism is called Barbara (a Latin moniker that denotes three propositions of type A),
giving a Major, Minor, and Conclusion that are all of type A. So, for example:

Every dog is an animal
Every animal is a creature
Therefore, Every dog is a creature.

2. Materials and Methods
2.1. Datasets

For the dataset we used to generate the propositions/ontology in the Results section,
we primarily used the CORD-19 dataset of COVID-19-related papers assembled by the
Allen Institute [21] from PubMed. CORD-19 also was used where indicated to generate
the proof-of-principle results for the rules of logic in the Results. In addition, the NCBI
Taxonomy database [22] was used for the ontology so as to give an access point to associated
sequencing and gene-expression datasets for entries.

2.2. Dependency Analysis

We use the spaCy toolkit [23] for automatic dependency analysis, and displaCy [23]
for dependency analysis carried out by hand (for the latter, the proof-of-principle results in
the exposition of the rules).

2.3. Proposition Tool

We will discuss in this subsection the code and approach used for the proposition tool
used in the Results. The code can be found in biomedical_text_processing\biomedical
_processing.py in the Supplementary Files, in the zip file biomedical_text_processing
.zip. All other code is there as well. The general flow for the approach is diagrammed in
Figure 1, which visualizes the process taken to process each sentence.

The function map_nouns_and_preps_v3 is the main output function in
biomedical_processing.py. Given a list of sentences, the goal of this function is to break
down each sentence into different propositions that contain the most important information.

A few things that happen in this function in order to obtain the output. There are three
nested for-loops. Also, there is an important variable true_subj that allows for a “carry
over” of a given subject if a newly named/specific subject is not found in a sentence. This
is justified by rules DA, SA, and PC in the Results section.
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The first for-loop simply goes through all of the sentences in the list of sentences
that you give it. Within that first for-loop is a second for-loop that goes through the noun
chunks within the current sentence. Finally, within the second for-loop is a third loop that
constructs the output sentences. Importantly, due to an earlier edit, the second loop is not
truly going through all of the noun chunks in a sentence, but instead is only taking the first
noun chunk it sees and going from there.

Figure 1. A flow chart which gives the pipeline for each sentence put through the proposition tool.

Besides holding the second for-loop, the first for-loop also does the preliminary pro-
cessing of the string using the spaCy language model. (e.g., doc = nlp(sentence)).

The second for-loop goes through a few steps looking at the dependencies within the
sentence (using the spaCy dependency parser). First, it checks whether or not the current
noun chunk contains a subject for the sentence via the is_subj function. If it is a subject,
then it is assigned to the true_subj variable. We then continue through the loop. After
this, the function get_all_right_children is used to create a string of all of the words
in the right subtree of the root verb (or the verb that the subject is the immediate child
of). Finally, this new string is given to the split_sent function. This split_sent function
“splits” up the sentence by coordinating conjunctions, commas and ending parentheses
(which does assume that parentheses hold additional information). To go into some detail,
given a sentence, it copies over each word into a new sentence segment until it sees one of
the above-mentioned conjunctions or commas, at which point it adds the current segment
to an output list and begins to build the next segment from the sentence. These steps are
justified by rules CC and CD with the uncertain variant (excluding the word “possibly” in
parentheses) from the Results section. The resulting list of sentence segments is then passed
to the third for-loop. The third for-loop brings together the true_subj and the segments
obtained from the split_sent. The word “is” was inserted into the string.

cur_subj =
true_subj + ‘‘is’’ + ‘‘ ’’.join([str(i) for i in cur_child_sent])
else:
cur_subj = true_subj + ‘‘is’’ + i

Above is given some code from biomedical_processing.py.

2.4. Keywords and Relations: Filtering and Ontology

In order to filter out many of the propositions, we narrowed down to just those that contained
keywords of interest (various disease names and related words) and particular kinds of relations
between them. The filtering is carried out in biomedical_text_processing/filterData.py
and biomedical_text_processing/findPatterns.py.

For keywords, we chose various disease names, symptoms, and classification terms
of interest based on CORD-19, Bio-GPT [24] and Wikipedia. This is the keywords list we
used: [’Mycoplasma pneumoniae’, ’Mycoplasma pneumonia’, ’leprosy’, ’MERS’, ’Middle
East respiratory syndrome’, ’SARS-CoV-2’, ’COVID-19’, ’Spanish flu’, ’Zika virus’, ’MERS-
CoV’, ’SARS-CoV-1’, ’Coronavirus’, ’bacterial pneumonia’, ’viral pneumonia’, ’bacterial
infection’, ’SARS’, ’Pneumonia’, ’Influenza A virus’, ’Swine Flu’, ’Dengue virus’, ’Dengue
fever’, ’Influenza virus’, ’Leishmaniosis’, ’viral infection’, ’flu’, ’parasitic disease’, ’Molli-
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cutes’, ’Herpesviridae family’, ’Equine herpes virus type 1’, ’EHV-1’, ’disease’, ’disorder’,
’infection’, ’pandemic’, ’symptom’, ’virus’, ’bacteria’, ’pathogen’].

The relations (copulae) we are interested in are based on the Hearst patterns [25]
and Aristotle to find hypernymy (relations between A and B where A is a kind of B),
synonymy, and causation for ontology. From Aristotelian considerations on genus, species,
and causation, we have the following: “A defined as B”, “A classified as B”, “A also known
as B” (for synonymy), “A caused by B”, “A causes B”, From the literature on patterns known
to be useful for building ontologies in the natural language processing community [25],
we have: “A is B”, “A part of B”, “A member of B”, “A which is called B”, “A which
is (example|class|kind) of B”. Based on these patterns, combined with the keywords,
we filtered all of the propositions to those just containing at least two keywords and the
relation. Then, to make the ontology, we needed a final list of relations. Besides the relations
given above, we added some others which were based on what was in the propositions
selected from the dataset post-sampling: [’caused by’, ’defined as’, ’classified as’, ’also
known as’, ’causes’, ’initiated’, ’is’, ’part of’, ’such as’, ’member of’, ’which is called’, ’which
is an example of’, ’which is a class of’, ’which is a kind of’, ’grouped’, ’has’, ’of family’,
’indicates’, ’complication of’, ’involves’, ’family of’, ’belongs to’].

2.5. Sub-Sampling of Short Propositions

The proposition-generating process was based on finding a subject and then splitting
up the remaining clauses by branching on coordinating conjunctions. It stands to reason
that this could fail to produce the information content of a sentence in the fragments so
derived. This insight can be formed into a probabilistic model.

If the probability of a bad split per word in the split sentence is ρ, then if one tries
to figure out the probability of a good split with k words, it ends up being (1 − ρ)k. The
probability of a good split decreases very quickly with increasing k (the number of words).
Therefore, if you want a very high probability of a good split, you must choose split
sentences with a small number of words.

The assumption that the accuracy decreases in k, and does so in an exponentially
decreasing manner is supported by the following experiment on the outputs of the propo-
sition tool. We ran an experiment to characterize errors in gathering propositions using
dependency parsing. The output of the proposition tool then is grouped according to
length, from 4 words of output to 11 words (as there were only empty outputs with less
than 4 words). We took a random set of 45 words sampled without replacement from each
group. The number of outputs for each length group is 46 for 4 words, 175 for 5 words,
221 for 6 words, 361 for 7 words, 477 for 8 words, 467 for 9 words, 631 for 10 words, and
for 11 words. Out of the 45 sampled outputs, we only kept those which were distinctively
informative and which made sense. We did not count something as distinctively informa-
tive when it just had generic pronouns like “the virus” or “two patients” as the subject. We
also excluded overly vague propositions or those which looked nonsensical or unlike a
proposition (not having a subject, verb, or object form in some broad sense). The number
of propositions which we kept as valid outputs for each group is nvo = [41, 32, 38, 27,
23, 29, 32, 26] (for the groups k = [4, 5, 6, 7, 8, 9, 10, 11]). The accuracy was estimated
by the nvo list divided by 45 (the sample size). Least-squares fits for the accuracy as a
function of k were found of exponential, quadratic, cubic, logarithmic, and linear mod-
els using WolframAlpha [26]. The best fitting models had equations 1.03678e(−0.0556514k),
0.488095k2 − 8.94048k + 68.0357, −0.0757576k3 + 2.19264k2 − 21.0238k + 94.7403, 54.9423 −
12.1917log(k), 0.95873 − 0.0359788k. All of these fitted functions have an accuracy decreas-
ing in k. Furthermore, the best fitting model (in terms of R2 value) is the exponential
fit, which had R2 = 0.982 (in contrast with a R2 of 0.577, 0.591, 0.492, and 0.423 for the
quadratic, cubic, logarithmic, and linear model fits).

As such, we only use the outputted (split) propositions that are very short. This
was implemented in biomedical_text_processing/sample_props.py, which samples all
propositions less than or equal to 7 in length.
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2.6. How the Final Proposition Output Was Made

In order to prepare the final propositions that were given as input to the ontol-
ogy builder to make them of better quality and more machine-readable, we carry out
the following:

First, we clean up miscellaneous grammatical and words that are not of interest. For
example, words like “the”, punctuation or other symbols, and those which seem unrelated
to the true subject or to the true predicate term. For instance, we remove the strange
abbreviation “DCs” in the proposition “DCs MERS-CoV causes infection”.

Second, we fill in missing context/words based on what makes sense or correct
misspelled words. For example, “MERS is disease Qatar” becomes “MERS is disease
from Qatar”.

Third, we split conjunctions using rule CC. For example, “Chikungunya virus is
arbovirus arthritis” becomes the two propositions “Chikungunya virus is arbovirus” and
“Chikungunya virus causes arthritis” (incorporating the correct word for the relation).

Fourth, we normalize the order after the relations “is” and “causes” of terms and
their modifiers. In particular, the order within the predicate was standardized to “term
modifier”. For example, “COVID-19 is disease infectious”. If the term was actually the
“modifier term” itself, then that order was retained by putting a dash in between the two in
the target ordering. For example, “COVID-19 is respiratory-disease”.

Fifth, we reorder the predicate so that all of the words are combined in the right order
(combined with a “-” as before).

2.7. Obtaining the Subject and Predicate for the Ontology

We can use regular expressions to obtain the subject and predicate for the ontology by
taking a relation from the list of relations and applying the following pattern: (.*) relation
(.*). We gather the two terms subject and predicate from the two capture groups. Then, we
use the NLTK [27] word tokenizer on the predicate to give the predicate term as follows:

1. if “is” or “causes” are the relation, then make the first word of the predicate the entry
for the ontology, and the following words be modifiers for the relation. For example,
“Equine herpesvirus causes infection perinatal foal” takes the entry to be infection and
the relation to be “causes perinatal foal”.

2. If other relations are there, the entry is the entire predicate.

These are implemented in biomedical_text_processing/buildOntology.py.

2.8. Estimating the Accuracy of the Infectious Disease Ontology

Accuracy was based on the outcome of the relationship outlined actually happening
rather than being exclusively true (so for instance, if there are two chairs in a room, then it
is also true that there is one chair in the room). The estimate given is an underestimation
of the accuracy, as there were some cases that were uncertain (which we counted as an
error). The sources used for verifying the accuracy of the bio-ontology entries are WHO,
StatPearls, CDC, Merck Veterinary manual, Nature group, NCBI Bookshelf, and various
scholarly publications.

3. Results

In order to answer queries about biomedical subjects and phenotypes and their asso-
ciated gene sequences, one can hope to combine massive natural language datasets like
PubMed with information from various freely available sources online (like Gene Expres-
sion Omnibus [3] or Wikipedia). One can then use this approach to make a data-driven
bio-ontology, which can link biological concepts and phenotypes with sequence data [1].
We show later in this section how to build a bio-ontology for infectious diseases based
on a subset of PubMed (CORD-19, containing papers on COVID-19 and related diseases),
linking entities with their NCBI Taxonomy IDs [22]. The latter allows easy lookup in the
Gene Expression Omnibus or the NCBI Nucleotide [28] database.
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Bio-ontologies, as we have seen, are an approach to logically analyzing queries about
various biological concepts and associated phenotypes/sequences. One of the primary
challenges of working with ontologies (including bio-ontologies) is the difficulty of building
a sufficiently general database, since usually ontologies need to be generated by program-
mers working in tandem with experts to create the various propositions about concepts.
Our novel approach towards making a more general bio-ontology is to use a data-driven
approach that derives propositions in the ontology from various freely available natural
language datasets and then uses logical inference to infer connections between the various
concepts described in the ontology. The results outlined in this section develop a set of
tools and techniques that can be used to derive propositions from natural language data.
These tools and techniques will be used, for instance, in building a bio-ontology.

One of the primary difficulties with using logical inference on natural language
datasets is the difficulty of translating English sentences into logical propositions—a pre-
requisite for obtaining concepts in an ontology. The difficulty can stem from apparent
disparities between the form of logical propositions in formal logics, which come in the
form of mathematical formulas using operators and the form of English sentences. Our
approach to reducing the difficulty of translation into propositions is to make use of natural
logic (generalized quantifiers [20]) and older forms of formal logic—medieval [15] and
modern forms of Aristotelian logic [14]. The forms of logic we will apply and combine here
operate in natural language primarily, not using the kinds of mathematical formalism more
common in mathematical logic. The opportunity with such approaches is that we have no
need to translate a sentence like “Every canis lupus is a grey wolf” into a formula in order
to make it into a proposition. We merely recognize it as a proposition of the forms of logic
we combine here. Even though English sentences are rarely in such a nice form, one can
also distill the deep structure of the sentence into several propositions of that form [29]. We
will show methods using logic and natural language processing (NLP) to obtain the deep
structure of sentences.

In this section, as a whole, we will show a proof-of-principle set of results that verifies
the value of the new approach after giving some background information on the logic.
The proof-of-principle results illustrate different instances of our approach used to both
obtain logical propositions about epidemiology from natural language data (including
CORD-19 [21], Wikipedia) and infer new propositions as well.

There are other forms of inference rules we will describe as needed in the following
sections, but we will focus on particular rules and gleanings from the natural and Aris-
totelian logic literature that we will apply to real sentences from datasets to give us results.
Finally, we will then combine all of the rules and other natural language processing (NLP)
tools to give us the rest of the results.

3.1. Particular Rules

First, we will cover particular rules from the Aristotelian logic and grammar literature
that we will find of use, along with some proof-of-principle results showing that these
rules can help in building bio-ontologies. All of the rules are visualized and summarized in
Figure 2.

3.1.1. Anaphora

In many sentences of the English language, including those about biological entities,
there are many uses of pronouns to stand in for the subject of a sentence. Anaphora in
linguistics refers to the use of pronouns to stand in for the subject of a sentence. For example:

Socrates sees his donkey.
In this case, we have the pronoun “his” standing in for “Socrates”. In order to derive

propositions for a bio-ontology we should find some way to handle anaphora. It turns
out that the Aristotelian logic tradition has a way of making the kinds of substitutions
one needs to resolve anaphora. We call such a pronoun a relative of identity. Terence
Parsons [15] formalizes the rule as follows (based on Peter of Spain and other sources):
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Figure 2. A diagram summarizing all the logic rules presented in this section.

Rule SA (Singular Antecedents):
A proposition containing a relative of identity with a singular antecedent is equivalent

to the proposition that results from replacing that relative with its antecedent.
Of course Rule SA can be applied to pronouns like “It” as well. A counterexample

is given by Walter Burley [15] to the rule’s application in the case of non-singular terms
without particular determinate supposition. The example is “A man runs and he argues”,
which is not equivalent to “A man runs and a man argues”. The latter proposition is more
general, since we can imagine it to be true when one man runs and another argues, rather
than just when the same man does. So, if we have non-singular terms, they must have a
particular determinate supposition in order to use the above rule (in our case, the particular
man who supposits for “a man” must be the same man as in the antecedent). This results
in the following variant of Rule SA.

Rule DA (Particular Determinate Antecedents):
A proposition containing a relative of identity that has an antecedent with a particular

determinate supposition is equivalent to the proposition that results from the substitution
of the relative with its antecedent (with the same supposition as the antecedent).

Of course, the new proposition will have to have a mark to denote the set of indi-
viduals I which goes with the particular determinate supposition. Let · mean indefinite
quantification, e.g., “a man”. Using this notation, for instance, the marking of the particular
determinate supposition would be “[·man]{m} runs and he argues”, where ·man stands for
a particular individual man m so I = {m}. Using rule DA thus results in “[·man]{m} runs
and [·man]{m} argues”. The second proposition unambiguously identifies that m is the one
arguing, rather than some other man; thus, Burley’s critique of this case does not apply.
Importantly, in our use of DA, if there is no notation given, it is assumed that the same set
is given for the substituted term as in the original term.

An example for SA: The proposition “Bob walked home and he listened to music” is
equivalent to “Bob walked home and Bob listened to music” by Rule SA (since Bob is a
singular term).

An example for DA: The proposition “Some professor taught his morning lecture and
he ate lunch afterwards” is equivalent by rule DA to “Some professor taught his morning
lecture and the same professor ate lunch afterwards” (since some professor refers to a
particular professor).
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Finally, we can apply these rules across multiple sentences by taking sentences with
a pronoun as a subject to be incomplete propositions. In order to make sentences with
pronouns into a proposition, we use the following rule based on ordinary English gram-
mar [30].

Rule PC (pronoun completion):
To make a sentence containing a pronoun (an incomplete proposition) into a proposi-

tion, combine the sentence with all previous incomplete propositions or propositions until
the resulting sentence is a proposition (e.g., has a non-pronoun subject).

Example: “Bob decided to teach his class in the most exciting way possible. He
brought in a circuit board and did some demos” is equivalent by rule PC to “Bob decided
to teach his class in the most exciting way possible. Bob brought in a circuit board and did
some demos”.

We can now give a derived result using these rules. Consider the following sentence
from [31]:

“Compared with other pathogens, M pneumoniae is atypical in many ways: it is one of
the smallest self-replicating organisms, has a reduced and highly stable genome (0.8 Mbp),
lacks a cell wall, grows slowly (generation time 6 h), requires close contact for transmission,
and has a distinct disease presentation (atypical pneumonia), the pathogenesis of which
might involve host cell-mediated immunity”.

To identify the antecedent for the pronoun “it”, we find the subject of the first part of
the sentence (preceding “it”) by using spaCy’s dependency parser with noun chunks. We
find that “M Pneumoniae” is the antecedent. As it is a common noun, it is not singular, and
so we must use rule DA (assuming there are determinate particular entities referred to by
the term M Pneumoniae in the context, which is easy to see).

Using rule DA, we obtain the following: Compared with other pathogens, M pneu-
moniae is atypical in many ways: M pneumoniae is one of the smallest self-replicating
organisms, has a reduced and highly stable genome (0.8 Mbp), lacks a cell wall, grows
slowly (generation time 6 h), requires close contact for transmission, and has a distinct
disease presentation (atypical pneumonia), the pathogenesis of which might involve host
cell-mediated immunity.

The rule PC will be used as part of our general strategy for getting subjects to carry
over to following sentences that start with pronouns in Wikipedia articles on diseases.
We will cover this in the final section combining all of the rules to obtain propositions
from articles.

3.1.2. Generalized Quantifiers, Monotonicity and Restriction

In many sentences about biological entities there are many clauses and deeply nested
prepositional phrases and adjectival phrases. In order to derive propositions about biologi-
cal entities from these very dense sentences, we need a tool from logic that can handle very
sophisticated predicates and break them down into components.

For example, we can take the sentence “Every dog is a small canidae”. The predicate
here contains an adjective phrase due to the adjective small. The medieval theory of
supposition allows us to say that if we have an adjectival phrase which reduces the number
of individuals that the predicate applies to, this is called a restriction of supposition [14].
We introduce a rule based on restriction:

Rule RA (Restriction by Adjective):
From a proposition which has a predicate including an adjective phrase, one can

derive a proposition without the adjectives in that adjective phrase.
For example, using rule RA, we can derive “Every dog is a canidae” from “Every dog

is a small canidae”.
Another example: From “Every bad day comes to a good end” we can derive “Every

bad day comes to an end” using rule DA.
We can further generalize this rule using the theory of generalized quantifiers [20]

as follows:
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Rule RP (Restriction by Restrictive Predicate):
Let P be the predicate of a universal proposition T, with S(P) being the set of indi-

viduals that satisfy T. Then we can derive from T any proposition which shares the same
subject as T, but has a predicate P′ such that S(P) ⊆ S(P′). Note that for this rule to be
valid, only predicates which restrict the supposition of the term in the following ways are
possible: (1) compound sentences with coordinating conjunctions, (2) prepositional phrases
like “. . . which”, (3) modifiers or modifying clauses.

Note that the above rule is called monotonicity of the “Every” quantifier. Note that
even though the theory of generalized quantifiers that justifies this rule does not depend on
grammar and the theory of supposition, we can also derive the same rule from the theory
of supposition. To see this, we note that one can speak of restriction of supposition as with
the case of the adjective phrase, but more generally discuss all of the possible individuals
for which a term supposits (stands in for) as being reduced. If one could carry this out
using grammatical forms, then this would take away some of the artificiality of the pure
set theory version of the generalized quantifier. For example, this kind of restriction of
supposition can be obtained by every condition added on after by a prepositional phrase
like “. . . which does Y” or various kinds of modifiers or modifying clauses.

Now we will use rule RP to obtain some results on the following sentence from [21]:
“Jena virus, a bovine norovirus, is a member of the Caliciviridae family of positive

sense RNA viruses and was first isolated from the diarrhoeic stools of newborn calves.”
Now to use rule RP, note that we can take the predicate to be more restricted by having

the additional condition “was first isolated from the diarrhoeic stools of newborn calves”.
We also assume that it is implicitly a universal affirmative proposition. Therefore, we can
use rule RP to derive the following proposition (confirming that it is a compound sentence
with a coordinating conjunction for its validity):

Jena virus, a bovine norovirus, is a member of the Caliciviridae family of positive
sense RNA viruses.

We can apply rule RP again on this sentence:
Chronic obstructive pulmonary disease (COPD) is a respiratory disease characterized

by an airflow limitation and inflammation of the lower airways.
Again we assume this is implicitly a universal affirmative proposition, and note that

“characterized by an airflow limitation and inflammation of the lower airways” restricts the
set of things satisfying the predicate. That is also a kind of prepositional phrase. So, we
may use rule RP validly to obtain the following:

Chronic obstructive pulmonary disease (COPD) is a respiratory disease.
And now using rule RA, (as respiratory is an adjective) we obtain the following:
Chronic obstructive pulmonary disease (COPD) is a disease.
Another example: Chronic stress is a cause of many cardiac diseases which involve a

heightened heart rate. Using Rule RP, one can derive from this proposition the one that
follows: Chronic stress is a cause of many diseases.

3.1.3. Oblique Propositions and Syllogisms

On occasion, in the description of different biological conditions or entities, we see
a mode of speech in which we do not simply ascribe some kind of concept or term to the
subject. In fact, sometimes, it becomes sufficiently complex that we have propositions of
the form S is R of P, where R is the word indicating a kind of relation that S has to P. We
could also have S is R to P, S is R by P, or other common prepositional phrases involving P;
or, most generally, we can use any set of words indicating that S is related to P via relation
R. All of these are propositions that are involved in oblique syllogisms [14]. We will call
such propositions oblique propositions of the form S is OblR,PP P, where OblR,PP gives the
translation of R with the preposition PP into the appropriate form. For example, James
is OblFather,o f Vanessa is translated into James is Father of Vanessa. Now, we are ready to
state the classic rule for oblique syllogisms, as elucidated by [14]:

Rule OS (Oblique Syllogism):
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The following syllogism:

S is OblR,PP P
P is Q
Therefore, S is OblR,PP Q

Is equivalent to the syllogism:

S is OblR,PP P
OblR,PP P is OblR,PP Q
Therefore, S is OblR,PP Q

We can see immediately the usefulness of this rule when we are trying to characterize
biological conditions which have relations to biological entities. Here is a result that exactly
raises this kind of scenario (sentences in the syllogism from the Mycoplasma Pneumonia
and Mycoplasma Pneumoniae Wikipedia pages [32,33]). In the following, we want to show
that this syllogism holds, so that we may derive the conclusion:

M. Pneumonia is a form of bacterial infection caused by M. Pneumoniae
M. Pneumoniae is a very small bacteria in the class Mollicutes
Therefore, M. Pneumonia is a form of bacterial infection caused by a very small bacteria in
the class Mollicutes.

To carry this out, we use rule OS which gives us that the above syllogism is equivalent
to the syllogism

M. Pneumonia is a form of bacterial infection caused by M. Pneumoniae
A form of bacterial infection caused by M. Pneumoniae is a form of bacterial infection
caused by a very small bacteria in the class Mollicutes
Therefore, M. Pneumonia is a form of bacterial infection caused by a very small bacteria in
the class Mollicutes.

Which is a valid syllogism by Barbara (assuming these are all universal affirma-
tive propositions).

Another example:

Sue is the mother of Bob
Bob is the department chair
Sue is the mother of the department chair

by rule OS is equivalent to:

Sue is the mother of Bob
The mother of Bob is the mother of the department chair
Sue is the mother of the department chair

3.1.4. Coordinating Conjunctions

In real English sentences, especially in scientific literature, one finds long sentences
with many adjectives separated by commas using a coordinating conjunction. For example,
we can have the sentence “A dog is a warm-blooded, furry, and terrestrial animal”. The
coordinating conjunction is “and” [30]. One can also have a comma followed by a coor-
dinating conjunction when combining two independent clauses. Now, if we focus only
on the coordinating conjunctions “and” and “or”, there is evidence that such sentences
correspond to their logical meaning [34]. What does “and” mean logically? If we have
the propositions P and Q, then from the sentence “P and Q”, one can derive that both
P and Q are true [14,15]. What does “or” mean logically? If we have the propositions P
and Q, then from the sentence “P or Q”, it is true that either P is true, that Q is true, or
both [15]. Inspired by these ideas, we have a rule to derive sentences from sentences with
coordinating conjunctions and commas:

Rule CC (Commas and Conjunctions):
The sentence “S is P1,. . . , and P2” is equivalent to the true propositions “S is P1”, . . . ,

“S is P1”
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An example: The dog is small, loud, and adorable. Using rule CC this is equivalent to
the following propositions: The dog is small. The dog is loud. The dog is adorable.

Rule CD (Commas and Disjunctions):
The sentence “S is P1,. . . , or P2” is equivalent to some subset of the propositions “S is

P1”, . . . , “S is P1” being true (though all of them could be true, as well).
Note that even though rule CD gives us only some of them as true, we will in practice

allow for all of them to be true as a possibility, and so when it is unknown which subset of
them is true we will assume all of them to be true (for example, in our process to resolve
text into propositions). So this uncertainty means we will insert a “(possibly)” before the
predicate. This we call the “Uncertain variant” of rule CD.

An example: My students will be stopping by my office today or tomorrow. Using
rule CD, we can conclude: My students will be stopping by my office (possibly) today. My
students will be stopping by my office (possibly) tomorrow.

Let us apply the uncertain variant of the rule to an actual sentence from the CORD-19
dataset to obtain a proof-of-principle result:

Clinical manifestations of influenza infections range from illness with asymptomatic,
atypical (i.e., gastro-intestinal), or oligosymptomatic disease to severe toxic progression
resulting in death.

Now, from this, we can derive, using the uncertain variant of rule CD, the following:

• Clinical manifestations of influenza infections range from illness with (possibly)
asymptomatic disease to severe toxic progression resulting in death.

• Clinical manifestations of influenza infections range from illness with (possibly) atypi-
cal (i.e., gastro-intestinal) disease to severe toxic progression resulting in death.

• Clinical manifestations of influenza infections range from illness with (possibly)
oligosymptomatic disease to severe toxic progression resulting in death.

3.1.5. Gathering Propositions from Text Data

We developed a tool to automatically generate propositions from text. The details of
how it works are given in the Methods section. The approach used principally is justified
by the rules CD with its uncertain variant (omitting the possibly), CC, PC, DA, and SA.
In particular, the proposition tool breaks sentences with commas and the coordinating
conjunctions “or”/“and” into several propositions with the same subject as the first clause
with commas. We further post-processed the propositions by filtering them for keywords
and relations relevant to logic and building ontologies. Finally, as described in the Materials
and Methods (Section 2.5), the proposition tool produces more erroneous results for longer
outputs and short outputs were sub-sampled and were not large in number (especially
compared to the original set of all propositions).

Propositions promising for inclusion in the ontology were then identified for the
ontology based on accuracy, interest, and size considerations. No probability considerations
were involved at this stage (besides the size). Instead, propositions were chosen to be more
accurate based on general background knowledge and general knowledge resources like
Wikipedia or results of google searches. Propositions were chosen for interest when they
were relevant to the concerns of infectious disease researchers, including entities that
are of interest (such as COVID-19). The size considerations include both the length of
the proposition (as discussed before) and the number of results included in the ontology.
Finally, a revised version of the propositions was prepared in machine-readable format by
hand, providing missing context and using methods that can in part be justified using the
above rules. More details are provided in the Methods section. The workflow for preparing
the final propositions is given in Figure 3.

3.1.6. Building an Infectious Diseases Ontology

Using the first 10 percent of the papers from the CORD-19 dataset, built from the
COVID-19 papers in PubMed, we gathered final propositions (using our process above)
about infectious diseases. The code for this is given in biomedical_text_processing/
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getCordData.py. Some examples of the infectious disease proposition outputs in machine-
readable format are given in Figure 4. The full set of propositions is given in biomedical_text_
processing/triplets/finalPropsOntoIn.txt, and the original output of the computer
code before manual adjustment is in biomedical_text_processing/triplets/finalProps.
txt.

Figure 3. The final proposition generation workflow pipeline from the CORD-19 dataset to final
proposition.

Figure 4. Examples of final propositions derived from the CORD-19 dataset.

Using the propositions, we made a list of organisms (either species, genus, or fam-
ily). The resulting organism list is [’SARS-CoV-2’, ’Equine coronavirus’, ’picornavirus’,
’MERS-CoV’, ’Sialodacryoadenitis virus’, ’SARS-CoV’, ’Zika virus’, ’Dengue virus’, ’EHV-
1’, ’Sendai virus’, ’Cytomegalovirus’, ’Respiratory syncytial virus’, ’Mimivirus’, ’murine
coronavirus’, ’Sialodacryoadenitis virus’, ’West Nile virus’, ’Chikungunya virus’, ’Influenza
A virus’, ’Japanese encephalitis virus’, ’Equine herpesvirus sp.’, ’Feline calicivirus’, ’Parain-
fluenza virus’].

The list of organisms was put through the BioPython package [35] combined with
Entrez to obtain the NCBI Taxonomy [22] database ID for each element. This is accom-
plished by biomedical_text_processing/taxIDFinder.py. The Taxonomy database ID
is cross-linked with the NCBI databases Nucleotide [28] (a source of DNA sequences), GEO
(a source of gene-expression data), and more, so that users of the ontology can gather data
from those sources for the organisms. Using the Taxonomy ID and BioPython/Entrez, a
user of the database can directly gather relevant sequence data for a given organism.

The final ontology is given by the output of an ontology-builder program, which takes
the propositions and runs a simple regular-expression-based tool to gather the subject,
predicate, and relation. The relation is taken from a list of known relations, some derived
based on Aristotelian logic, others based on useful terms from the natural language pro-
cessing community and some based on the data (see Methods). The entries in the ontology
are automatically gathered from the propositions by taking the subject and some subset of
the predicate (see Methods for details).

All entries in the ontology are made nodes in a NetworkX [36]-directed multi-graph,
with each multi-edge being a possible relation between entries. A directed multi-graph was
used so as to indicate both the direction of the relation (especially important in relations
like “family of”) and also to allow there to be multiple relations between the same two
entries. For example, the machine-formatted proposition “SARS-CoV-2 is Coronavirus
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novel” gives entries SARS-CoV-2 and Coronavirus, made into nodes, and the multi-edge
SARS-CoV-2 -“is novel”-> Coronavirus contains an annotation saying “is novel” to indicate
the relation between the two (read left to right). One could also add another relation
between SARS-CoV-2 and Coronavirus by using another multi-edge.

Each node also contains a NCBI Taxonomy ID (under dictionary key “xlabel”) if it
was previously gathered using BioPython. The final result is converted into a dot file and
visualized using force-directed placement (fdp) in GraphViz [37] in Figures 5–11. Note
that in these figures, the Taxonomy ID of an entry is drawn near the node (if it is in the
ontology). The ontology is built in biomedical_text_processing/buildOntology.py and
can be modified or accessed in that file as well.
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Figure 5. Visualization of the complete multi-graph for the infectious disease ontology. Note that
detail panels from this figure are given in Figures 6–11. The entities in this Figure are SARS-CoV-2;
Coronavirus; Coronavirus disease; pandemic; Equine Coronavirus; betacoronavirus; infection; virus;
pathogen; disease; rhinovirus; picornavirus; MERS; SARS-Cov-2; death; Sialodacryoadenitis virus;
SARS-associated Coronavirus; respiratory-disease; SARS-CoV; COVID-19; viral-infection; respiratory-
pathogen; Zika virus; flavivirus; Dengue virus; asymptomatic; Dengue fever; EHV-1; Pneumonia;
influenza; CMV infection; leukopenia; Sendai virus; leprosy; MERS-CoV; Cytomegalovirus; Respiratory
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syncytial virus; bacteria; fungal-infection; Mimivirus; SARS; viruses; Newcastle disease; virus-
induced encephalitis; HIV infection; Coronaviridae; murine Coronavirus; disease Coronavirus 2019;
West Nile virus; adenovirus; myocarditis; pandemics; Chikungunya virus; arbovirus; arthritis;
respiratory-infection; Influenza virus; diseases; Influenza A virus; human-disease; Hepatitis A virus;
Mycoplasma Pneumonia; rubella virus; cough-symptoms; conjunctivitis; Foot-and-mouth disease;
pigs-infection; secondary-bacterial-infection; Coronavirus SARS-CoV-2; ssRNA-enveloped-virus;
human-virus; Aedes albopictus; Japanese encephalitis virus; The dengue virus; Equine herpesvirus;
vasculitis; flu-like-symptoms; Avian influenza viruses; highly pathogenic; orthomyxovirus; paramyx-
ovirus; rat-infection; Parainfluenza virus; horse-pathogen; Feline calicivirus; animal-pathogen;
secondary-bacterial-agents; Negative-stranded viruses; Marburg-virus; HCoV-HKU1.
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Figure 6. Visualization of multi-graph for the infectious disease ontology panel one. Edge la-
bels obscured in the arrow from SARS-CoV to virus say “is largest RNA”, “is single-stranded”,
“is enveloped”.

As outlined in the Materials and Methods, we estimated the accuracy of the resulting
bio-ontology based on manually scoring the discovered entities and relationships. The ac-
curacy of the bio-ontology is 117/125 (93.6 percent) with an error rate of 8/125 (6.4 percent).
We found the accuracy of our ontology, achieving an accuracy of 93.6 percent (error rate
6.4 percent).
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Figure 11. Visualization of multi-graph for the infectious disease ontology panel six.

4. Discussion

In this paper, we have shown how natural logic and Aristotelian logic can be combined
to obtain propositions from biomedical sources which could be used in-principle to build a
bio-ontology. In particular, we have gleaned and derived new rules from both traditions,
which, among other things, allow us to carry out the following:

1. Fill in the true subject of sentences which have pronouns as their subject;
2. Derive a set of propositions from sentences with many clauses separated by commas

when combined with “and” or “or”;
3. Derive new propositions by substituting one term for another in complex preposi-

tional phrases;
4. Derive a new proposition from an old one by removing adjectives or other restrictive

conditions from the predicate of the sentence.
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Using this apparatus, we have built a proof-of-principle bio-ontology for infectious
diseases using the CORD-19 dataset. The novelty of our approach also includes the very
way we implement inference for these rules. Inference based on all of these rules in the
Aristotelian logic literature has historically not been carried out in any computational
way. In this paper, we give the first computational implementation of these rules using
state-of-the-art NLP techniques including dependency parsing. Furthermore, we apply
them in a novel way to the finding of relations in text for the building up of a bio-ontology.

The ontology from this manuscript can be used in some ways similar to the COVID
ontology CIDO [16]. The ontology can be used first of all to integrate information across
multiple resources, as the Taxonomy IDs are cross-linked with genetics and gene expression
data in NCBI. Using the integrated information, we can infer novel connections between
genetics and disease states, to support COVID-19 and infectious disease data analysis. A
second use case is to provide terms and help NLP researchers who are trying to carry out
entity analysis (to give them a list of entities) or other kinds of text standardization on
medical records, as often there are many variants of terms and the ontology can be an
anchoring point. A third use-case is to help NLP researchers mine large volumes of text
data related to COVID-19 efficiently, as ontology can be used to enhance NLP [38]. A fourth
use case is to help doctors understand and disambiguate between different pathogens that
cause the same disease (such as Pneumonia) or understand the different kinds of viruses
(for instance large RNA viruses, ssRNA-enveloped viruses).

4.1. Prior Research and Future Directions

Previous work has tried to gather logical propositions from text using dependency
analysis in a more grammatical form of logic [4,39], and also to simplify sentences using
a form of natural logic [7] (called RelationIE when it is incorporated into the CoreNLP
package by Manning). These cover some of the ground of the techniques we use to obtain
our rules and proposition tool. The work of Reddy et al. is very relevant to ours, but it
uses a different form of grammar-based logic which is rooted in the semantics of Donald
Davidson, first-order logic, and lambda calculus. These are all great tools, but ultimately
the complex formal propositions produced in their work are given by a long list of priority
rules when there are conflicts between different kinds of rule applications. In our work, we
do not have to consider the priority of various possibilities since the propositions are in
natural language and are all that is required is to transform the sentence. As our rules are
rooted in natural language, there is less translation required into formalism, and we need
not exert as much control of priority of one rule over another. Though the RelationIE work,
like ours, drops adjectives and other restrictive terms, the formal approach used there can
sometimes produce unnatural and ungrammatical simplifications. Our approach still has a
foundation in the theory of supposition and grammar, so this foundation can help us to
avoid ungrammatical simplifications when we automate the applications of the rule (as
those are invalid in our rule RP).

Prior work in bio-ontologies has primarily focused on various languages and ap-
plication domains for bio-ontology. For example, Gene Ontology (GO), by far the most
prominent and large bio-ontology, works with genetics data but is built based on user
input [40,41]. It is based on a Directed Acyclic Graph (DAG) representation [42], which is
flexible for many domains. GO is used primarily to provide a way for users to reconcile
and standardize the use of terms for describing the same biological object [43]. GO users
can also find biological processes or molecular functions associated with particular genes,
and even find over-represented GO categories that assist in establishing the statistical
significance of experimental effects [43]. Furthermore, GO has been used as a basic resource
to find biological meaning associated with high-throughput genetics studies [44].

Many bio-ontologies are available on the Open Biomedical Ontologies [45,46] (OBO)
foundry [47] in a standardized language format. The language of choice for OBO ontologies
is the standardized Web Ontology Language (OWL [48]) based on Descriptive Logic [49]
(OWL-DL). OWL is very expressive, logically rigorous, and is considered a gold standard
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for ontologies in computer science. Note that as all of the following bio-ontologies are
on the OBO foundry, no citation will be given for some of them. Bio-ontologies abound
in many different areas, including the infectious disease ontology [50], Gene Ontology
Molecular Function, Biological Process, and Cellular Component, PRO: Protein Ontology,
CHEBI: Chemical Entities of Biological Interest and others. . . a list of sources highlighted
by [51]. It is, however, the case that despite the presence of large knowledge bases and
their logical rigor, there are some notable drawbacks that have been identified. First of all,
the logic model seems to have some unintended consequences in inferring non-biological
facts [51], and some issues have been identified in the use of certain models with regards to
semantics [42]. Clearly, a great deal of progress has been made in making large databases
cross-linking genetics data, gene-expression data, and even infectious diseases. The aim
of making useful bio-ontologies has been well realized. Even for COVID-19, there was an
ontology made based on existing ontologies [16]. There is also an area of bio-ontologies
that seeks to grow the bio-ontology based on natural language processing techniques [52].

4.2. Limitations, Place in the Field, and Future Work

The primary limitation of this work is the number of entities included in the bio-
ontology, and the number of relations, in addition to the lack of mechanistic information
for the entities in the graph. Future work will expand on this to make it more practically
useful for applications.

The limitations of our current approach on a practical front include primarily that
the application of the rule RP and oblique syllogisms is not fully automated. The latter
could be, reasonably easily. But the former seems less straightforward. However, there is a
possibility that we could use the kind of logic that the RelationIE work uses and add more
grammatical constraints to realize rule RP. In addition, the proposition tool still produces
ungrammatical outputs, which could be rectified by using rule RP. Finally, we did not
apply this to a large dataset and derive an ontology. Our present work was to show the
usefulness of the rules in obtaining propositions about biomedical subjects, rather than to
show the bio-ontology built from them. This would be a future goal for our research, once
the inference rules are fully automated. The biggest theoretical limitation of our work as it
stands is that though we have stated the new rules of logic, the model theory and logical
foundations are not yet realized. Different components of natural logic and Aristotelian
logic are combined with grammar. It is feasible that something like this could still be
feasibly grounded in terms of model theory and truth conditions, as Terence Parsons’ recent
work does something like this [15]. A consequence of this, too, would be a mechanism for
formal inference in the model, which would be an essential future work for us, especially
when applying this to obtaining a more robust bio-ontology.

Existing work in natural logic is very exciting, and it is a great joy to contribute these
formulations of inference rules to the literature. The work of Parsons [15] is akin to ours, but
does not have some of our logic rules. It has a great deal more in terms of logical foundations
though. The existing work in natural logic tries to develop more out of the fragment of
first order logic which is monadic, or logic which has generalized quantifiers [9,20]. The
tractability of the logical fragments in natural logic [9] is especially important, as the work
of Parsons is sufficiently general as to be intractable (as it is equivalent to first-order logic,
which is undecidable) [15]. Perhaps we could develop our use of the anaphora rules to
exclude first-order-logic-style constructions on grammatical or suppositional grounds, as
that is how Parsons obtains equivalence to that logic. More generally, if there is some way
to combine the Parsons-style logic with natural logic fragments to realize the Aristotelian
logic rules we outline here, we could achieve a natural logic that would be practically
useful, computationally tractable, and fully formal.

In the sphere of bio-ontologies, our work is novel in that, in principle, it encodes
propositions in a format that can support natural/Aristotelian logic reasoning. Certainly, it
is not a large database that was produced by such methods compared to the impressive
work carried out by others in this field. However, some of the benefits of this approach
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include the lack of unintended consequences of our logical inference approach due to the
natural fit between Aristotelian logic and biological reasoning, as opposed to the problems
identified with the existential operator in mathematical logic [51]. The user entry of massive
amounts of data into an ontology, while very important for validation of results, would
have difficulty keeping abreast of current science. One of the ten factors, in fact, which
recommend the use of an ontology for biomedical purposes is the fact that it is up to date
with the current science [53], which would be easier if it were based on our methodology
using NLP techniques and natural logic/Aristotelian logic approaches. The existing work
in the field of using NLP for building ontologies is to use biological entity recognition and
relation-extraction to build ontologies based on text, as outlined in [52]. Our approach to
building ontologies is thus one of a burgeoning field of using NLP for bio-ontology. The
key difference is that we are using an approach based on new techniques that are native
to the natural language, which would make it easier to support inference in the resulting
knowledge base. It is certainly possible to infer expressions in formal logic from text or vice
versa [4], but they are more difficult to directly infer in natural language [13].

Specifically in the field of bio-ontologies for COVID, our method for building ontolo-
gies is advantageous over prior approaches in two respects: first, its greater scalability
than comparable manually built COVID ontologies, and also its accuracy as compared to
fully automatic NLP-built COVID ontologies. The scalability of the method presented in
this paper is reasonably high as there was little manual post-processing and much of the
processing of text data was carried out automatically using NLP techniques. The robustness
of the proposed methods is demonstrated by the performance of the method with little to
no prior background knowledge built in. The accuracy was 93.6 percent (6.4 percent error).
In comparison with manual entry of bio-ontologies, which is by far the dominant approach
(as used in [16–18]), our approach is vastly more scalable (though obviously less accurate).
Compared to entity-based NLP analysis methods [19], our accuracy is higher, as it takes
into account common grammatical structures to generate relations. In particular, there were
three different works describing a COVID-related bio-ontology that were based on manual
entry of the ontology [16–18]. When compared to CIDO [16,17], we have a similar subject
matter with regards to phenotype, genetics information, various attributes, symptoms,
etc., but do not cover specific mechanistic information for drug discovery. In comparison
to Domingo-Fernandez et al. [18], we cover different things: the diseases and the related
viruses cross-linked with genetics information, as opposed to specific protein/mechanistic
cause information related to COVID. However, we have a solution based on text mining,
which is not manually entered. The COVID ontology given there is vast but is based on
manual encoding rather than the automatic (with human correction/supplementation)
NLP-based methodology given here. The evaluation of the resulting ontologies would be
based on the scientific accuracy of the underlying relationships in the ontology. As the
scientific accuracy level for the manually entered ontology is very high (since the ontology
was given based on scientific literature alone), our ontology’s high accuracy despite automa-
tion is important. We found the accuracy of our ontology based on manually scoring the
discovered entities and relationships was 93.6 percent (error rate: 6.4 percent). Another ap-
proach to a COVID bio-ontology for drug discovery was based on using ontology-informed
named entity recognition NLP analysis [19], and is thus very scalable (even more than
our approach since we used minimal manual post-processing). However, the entity-based
NLP-built ontology has a relatively high rate (6–22 percent) of misses or false alarms for
the entities identified in the knowledge graph.
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