
Citation: Oikonomou, E.; Rouskas, A.

Efficient Schemes for Optimizing

Load Balancing and Communication

Cost in Edge Computing Networks.

Information 2024, 15, 670. https://

doi.org/10.3390/info15110670

Academic Editor: Aneta

Poniszewska-Maranda

Received: 24 August 2024

Revised: 16 October 2024

Accepted: 23 October 2024

Published: 25 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Article

Efficient Schemes for Optimizing Load Balancing and
Communication Cost in Edge Computing Networks †

Efthymios Oikonomou ‡ and Angelos Rouskas *,‡

Department of Digital Systems, University of Piraeus, 18532 Piraeus, Greece; oikonomouef@unipi.gr
* Correspondence: arouskas@unipi.gr
† This article is a revised and expanded version of a paper entitled Selection of Service Nodes in Edge Computing

Environments, which was presented at 2020 7th International Conference on Internet of Things: Systems,
Management and Security (IOTSMS), Paris, France, 14–16 December 2020.

‡ Current address: M. Karaoli & A. Dimitriou 80, 18534 Piraeus, Greece.

Abstract: Edge computing architectures promise increased quality of service with low communication
delays by bringing cloud services closer to the end-users, at the distributed edge servers of the
network edge. Hosting server capabilities at access nodes, thereby yielding edge service nodes, offers
service proximity to users and provides QoS guarantees. However, the placement of edge servers
should match the level of demand for computing resources and the location of user load. Thus,
it is necessary to devise schemes that select the most appropriate access nodes to host computing
services and associate every remaining access node with the most proper service node to ensure
optimal service delivery. In this paper, we formulate this problem as an optimization problem
with a bi-objective function that aims at both communication cost minimization and load balance
optimization. We propose schemes that tackle this problem and compare their performance against
previously proposed heuristics that have been also adapted to target both optimization goals. We
study how these algorithms behave in lattice and random grid network topologies with uniform and
non-uniform workloads. The results validate the efficiency of our proposed schemes in addition to
the significantly lower execution times compared to the other heuristics.

Keywords: edge computing; service nodes; access nodes; communication cost; load balancing;
computational times

1. Introduction

It is widely acknowledged that resource-intensive and time-sensitive applications
cannot be adequately accommodated by the centralized cloud computing paradigm. These
types of demanding modern applications and innovative technologies, such as online
gaming, high-definition video streaming, Augmented Reality (AR) and vehicular commu-
nication technology (Internet of Vehicles—IoV) [1,2], rely heavily on high bandwidth and
low end-to-end communication delay. In response to this challenge, the concept of edge
computing has emerged, including various edge platform strategies as outlined in [3–7].

Edge computing [8,9], is a network architecture that facilitates cloud computing
capabilities and IT services at the edge of a wireless access network. This design is intended
to be implemented at the network edge servers (small-scale servers also known as edge
nodes), allowing the execution of applications and the associated processing to occur closer
to the customer which in turn leads to enhanced application performance, reduced service
response time and decreased network and internet congestion. In addition, this proximity
to users enables mobile operators to provide context-aware services and improve QoE by
reducing network delay using radio access network information [10].

The edge service node placement or deployment is a key issue in edge computing
research community. The edge service node can be deployed at any access node type in the

Information 2024, 15, 670. https://doi.org/10.3390/info15110670 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info15110670
https://doi.org/10.3390/info15110670
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0009-0007-0507-5377
https://orcid.org/0009-0009-7302-1260
https://doi.org/10.3390/info15110670
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info15110670?type=check_update&version=1

Information 2024, 15, 670 2 of 22

network, e.g., base transceiver station (BTS), WiFi hotspot, etc., supporting end-users’ mo-
bility and fulfilling the physical proximity necessary for low latency communication [11,12].
However, it is neither cost-effective nor energy-efficient to keep every edge service node
operational at all time, especially when traffic intensity is low. Obviously, the decision
about where to place or deploy these nodes must consider several factors, such as network
topology, operator policies and user computational demands. Additionally, the selection of
edge service nodes in conjunction with the end-user allocation to obtain the service from the
most proper service point is also a complicated issue considering factors such as available
resources, equal balance of load, service quality requirements, and user preferences.

The objective of our research is to tackle the challenge of identifying the most suitable
access nodes for hosting operational (acting also as) service nodes and ensuring that all
users are allocated efficiently in a balanced manner, while simultaneously improving their
Quality of Experience (QoE) in terms of response time. We first formulate two separate
optimizations problems, each one targeting the two different goals of communication cost
minimization and load balance optimization and then we combine these problems into one
bi-objective optimization problem using a normalized weighted sum objective function.
We then present (a) an Edge Service Node Selection scheme, which determines the most
appropriate operational subset of service nodes and (b) an Access Node Allocation scheme,
which allocates users of the access nodes to the previously selected service node subset so
that both objectives are fulfilled. We also adapted previously proposed heuristics for the
K-median clustering problem to also include load balance as a criterion in their decisions.

Our proposed schemes are evaluated through simulation experiments on different
network topologies considering both uniform and non-uniform workload distributions.
The results indicate that our schemes are highly efficient in optimizing load balance distri-
bution without sacrificing performance on the latency communication cost of the system,
compared to the other proposed heuristics.

The main contributions of this article are the following:

• A comprehensive survey of existing physical edge server placement solutions to
determine edge server deployments.

• The formal formulations of a communication cost minimization subproblem, a load
balancing optimization subproblem and a bi-objective optimization problem that aims
to jointly optimize load balancing and mean latency scores in the network.

• The formal description of a novel service node selection scheme that attempts to evenly
distribute service nodes across the edge network.

• The formal description of a novel access nodes allocation scheme that attempts to
allocate access nodes to the most appropriate service node by simultaneously incorpo-
rating proximity-based and load balance decision criteria.

• The ability of the algorithms to tackle both uniform and non-uniform (random) load
distribution.

• The adaptation of other previously proposed heuristics to include load balance in their
decisions and their formal descriptions.

• The time complexity analysis of all schemes presented.
• Our proposed algorithms not only produce near optimum load balance and effective

communication cost solutions, but also exhibit great scalability and significantly lower
execution times compared to the other proposed heuristics.

The paper is structured as follows: Section 2 presents related research works. In Section 3,
the system model is introduced, and the optimization problem is formally formulated.
Section 4 presents the proposed policies and previous and properly adapted heuristics.
Section 5 presents the experimental setup, along with the performance evaluation results.
Finally, Section 6 concludes our study.

2. Related Work

Extensive and detailed surveys about edge computing can be found in [13–20]. Exist-
ing research works focus on the physical placement of cloudlets within a network and how

Information 2024, 15, 670 3 of 22

to allocate users to obtain service. The authors in [21] proposed an effective approach for
placing K cloudlets in a wireless metropolitan area and assigning users to these cloudlets
in such a way that the lowest possible average system response time is achieved. In [22,23],
the authors approach the problem of placing edge servers in some strategic locations with
the objective of workload-balanced edge servers and minimum access delay between users
and edge servers, combining K-means and mixed-integer quadratic programming algo-
rithms. However, in this work, edge server locations may be different from the base station
locations and K-means clustering is applicable in contrast to ours where only K-median
clustering is possible.

A genetic algorithm and local search algorithms were used in [24] to find an optimal
edge server allocation strategy. In [25], the authors proposed a method for determining the
optimal placement of edge servers, through the partitioning of the network into areas of
smaller size to simplify the process of resources distribution and used the deep Q-network
and Markov game to improve resource load balancing and reduce global latency, while
optimizing global resource allocation. This approach is different to ours, as optimization
per zone may end up with underutilized computational resources at some zones, and the
authors propose the sharing of resources among adjacent zones to solve this problem.

The research in [26] presents a fast heuristic approach along with a distributed genetic
algorithm for a QoS-aware load balancing problem among cloudlets in a WMAN to opti-
mize mobile application performance. The authors in [27] introduced an online routing and
load balancing algorithm with the objective of minimizing the average time taken to offload
the tasks. This paper considers that the cloudlet locations are predetermined while our
problem is to spot the most appropriate base stations to host the edge servers. The work
in [28] proposes a fog computing-based method called energy-aware load balancing and
scheduling (ELBS) involving a workload-dependent, on the fog node, model for energy
consumption, an optimization function for load balancing within the manufacturing clus-
ter and an improved particle swarm optimization algorithm to achieve the best possible
solution. The research in [29] presents a strategy for placing cloudlets, on the basis of
historical data records consisting of snapshots of the users’ requests, in order to minimize
communication latency. Furthermore, the authors in [30] address a capacity-constrained
cloudlet placement problem and propose an approximation algorithm as a solution for
placing k cloudlets in a WMAN to achieve minimum communication delay between the
user and the cloudlet.

One of the main challenges for a service provider is how to determine the optimal
placement of an appropriate number of service nodes within a network, as well as how
to effectively allocate users’ resource requirements to those nodes. The authors in [31]
conducted a study on the energy-aware edge servers placement problem. They approached
it as a multi-objective optimization problem and based on the particle swarm optimization
to find a placement strategy for the edge servers that minimizes the total energy consump-
tion, while maintaining acceptable access delay levels. In [32], the authors determine the
placement of cloudlets from a pool of candidate locations, taking into account both the asso-
ciated OPEX and CAPEX expenses, as well as the access delay from task offloading. For the
cloudlet placement, the authors in [33], proposed the cost-aware cloudlet placement in mo-
bile edge computing (CAPABLE) strategy, and developed a Lagrangian heuristic algorithm
in order to achieve the sub-optimal solution for this NP-hard cloudlet placement problem.

The research in [34] focuses on investigating methods for task allocation and provi-
sioning in a minimum subset of placed cloudlets. The PACK algorithm, introduced in [35],
addresses the capacitated location–allocation problem for server placement by minimiz-
ing the distances between servers and their corresponding access points. The algorithm
considers various parameters such as workload distribution, latencies, server co-location
with access points, and prioritized locations. In [36], the authors introduced a load bal-
ancing scheme called LAB, by assigning IoT devices to the most suitable fog nodes and
base stations, to minimize the latency of IoT data flows, considering both computing and

Information 2024, 15, 670 4 of 22

communication latencies. The paper assumes that every base station hosts a fog node
which is different from the edge server placement problem that we consider in this work.

In [37], the authors proposed a mobile hybrid hierarchical P2P (MHP2P) model as a
cloudlet solution for MEC, offering high scalability and stability. To address load distri-
bution challenges with increasing MEC servers, they introduced inter- and intra-cluster
load balancing schemes within a three-layer architecture to optimize performance and
mitigate load imbalances. In [38], the authors examined cluster-based techniques, including
K-means and density-based cluster methods, for determining edge server locations. While
density-based methods prioritize reducing latency, the focus of their study emphasized the
importance of workload balancing across servers and as a result, they proposed a modified
K-means algorithm that integrates heuristic techniques, enhancing both server placement
and point allocation based on centroids.

While existing methods, such as K-means clustering, allow for flexible edge server
placement, they prove inadequate for fixed location settings. Our research addresses the
critical challenge of simultaneously optimizing communication costs and load balancing
in edge computing, particularly in environments where edge servers are constrained to
specific, predefined locations, like access nodes or base stations. By formulating the problem
as a bi-objective optimization task constituting of a K-median clustering subtask and a load-
balancing subtask, our approach provides a robust solution tailored to these constraints.
Additionally, our approach also enables edge service providers to better prioritize their
operational objectives and select the optimal deployment strategies, ensuring improved
cost efficiency and overall system performance.

More specifically, our work stands out from prior research works as we consider an
access edge network and formulate an edge server placement and users’ access nodes asso-
ciation optimization problem with a bi-objective function that targets both (a) minimizing
communication costs between end users and edge nodes, and (b) balancing the offered
workload among the selected edge service node subset. In our model, all base stations in
the network are possible candidates for hosting edge server nodes, while the number of
edge servers depends on the computational load and capacity of the servers. We develop
very fast schemes that manage to distribute edge service nodes fairly across the network
and assign users’ access nodes to service nodes so that both objectives are simultaneously
satisfied under uniform and non-uniform traffic loads.

In our previous studies [39,40], our goal was to determine the most suitable con-
figuration to efficiently balance the load while minimizing communication latency and
ensuring optimum resource utilization across the network. In addition, during dynamic
system operation, when a preferred service node lacks sufficient capacity, our approach
reallocates requests to other service nodes to increase system performance and avoid un-
derutilized resources [40]. However, these works lack both the formal formulations of the
communication cost minimization and load balancing optimization subproblems and the
bi-objective optimization problem. In this paper we provide the formal descriptions of
our enhanced schemes. along with other previously proposed heuristics for the K-median
problem, adapted to include load balancing in their decisions. Additionally, we also present
an analysis of the time complexity analysis of these methods.

3. System Model and Problem Statement

We assume a wireless network, providing edge services and computational power
to the devices of the customers of a mobile network operator. In this network, a set of M
inter-connected access nodes (ANs) is deployed. We model the network topology of ANs
as a connected graph G(V, E), with network ANs V = {v1, v2, . . . , vM} and network links
E interconnecting the ANs. Every node is accessible through one or more hops by every
other node of the graph.

The operator provides access to edge services by deploying service nodes (SNs),
with each SN being hosted (colocated) at a corresponding AN. Each AN has the capacity to
operate one colocated SN, but the actual number N of the operational SNs depends on the

Information 2024, 15, 670 5 of 22

computational demands (load/tasks) imposed on the system by its network users. Thus,
in this way, the provider activates only as many servers as necessary to serve the offered
load, achieving at the same time better energy consumption.

In general, the subset of operational SNs can be denoted as S = {s1, s2, . . . , sN}, S ⊆ V,
|S| = N and N ≤ M. For convenience, we also define the mapping function ind(si) which
returns the index j of AN vj that hosts SN si. We assume that the users of AN vind(si)

are
served by SN si. Obviously, when N = M, S = V and one SN is activated at every AN in
the network. However, N < M indicates that the users of those ANs, that do not have a
colocated SN, should be served by a SN that operates at some other AN.

Let node weight wj denote the user computational workload offered to AN vj, which
is proportional to the number of users accessing network and edge resources through vj.
With the special case wj = 1, j = 1, . . . , M, we assume that every AN serves the same
number of end-users, which corresponds to a uniform distribution of users across the
network area. Different values for wj’s correspond to non-uniform distribution of users.

For each AN vj, the cost of communicating or accessing the edge cloud services at
some SN si hosted by AN vk can be represented by the path communication cost djk,
which incorporates latency and capacity costs of the intermediate links of the minimum
communication cost path between of vj with vk. Obviously, dkk = 0. For the requirements
of this work, we assume that the necessary capacity to support this communication is
always available across the intermediate links of this path.

Finally, let C be the computational capacity of each SN, assuming that all SNs are
similarly dimensioned.

As the management of the radio access network falls out of the scope of our paper,
we make the assumption that all the wireless links between end-user devices and their
corresponding wireless AN have the same wireless capacity and latency. Without loss
of generality, we also assume that all interconnecting transmission links (edges) in the
graph are identical to each other and share the same characteristics, specifically in terms of
transmission capacity and latency; thus, the communication cost djk is fully determined by
the number of links between vj and vk.

The assumed system model in this study, is shown in Figure 1. At the lowest layer
there is a set of eight end-user devices, connected via wireless links to their closest AN,
requesting edge resources and services. The network comprises a total of nine (9) ANs,
where only five (5) of them hosting an operational service node. Consequently, the users
from the remaining four (4) ANs, the colocated SN of which is not active, request edge
resources and services at some of the five (5) operational SNs.

Given a specific set of ANs and the required number of SNs (related to the offered
workload) in the system, the edge service node management module objective is to mini-
mize the overall communication network expenses experienced by network users, while at
the same time maintaining a fair (balanced) workload distribution among the SNs. When
N < M, meaning there are fewer SNs than ANs, this formulation should select the most
appropriate subset of ANs to host the SNs and allocate the ANs that do not host some
SN to the most suitable SN, with the objective of (a) minimizing the network’s response
time for delivering edge cloud services and (b) achieving a balanced workload distribution
among the SNs. The problem is considered as an optimization challenge with two distinct
objectives. In the following, we start by formulating two separate problems, each one
defined by a single objective function, and then we combine both problems into a single
bi-objective function.

Information 2024, 15, 670 6 of 22

Figure 1. Edge computing network architecture: 9 Access Nodes with 5 operational Service Nodes
assumed in total.

The problem of minimizing total response time for all users is equivalent to minimizing
the total communication cost and can be formulated as an optimization problem as follows:

min TotCommCost =
M

∑
k=1

M

∑
j=1

wj · djk · xjk (1a)

Subject to:
M

∑
k=1

xkk = N (1b)

M

∑
k=1

xjk = 1, j = 1, . . . , M (1c)

M

∑
j=1

wjxjk ≤ C, k = 1, . . . , M (1d)

xjk ∈ {0, 1}, j, k = 1, . . . , M (1e)

where the following binary decision variables are introduced:

xjk =

{
1, if AN vj is served by a SN instantiated at AN vk

0, otherwise
, j, k = 1, . . . , M (2)

which indicates whether AN vj is served by the SN in AN vk. Constraint (1b) ensures that
exactly N SNs are activated, each SN at some AN, while constraints (1c) ensure that every
AN vj is served by exactly one SN, which is activated at some AN vk. Constraints (1d)
ensure that the computational load of all ANs served by some SN hosted at some AN
vk does not exceed the computational capacity of the SN. Finally, constraints (1e) and
definition (2) ensure only integer solutions. This problem is also known as the capacitated
K-median problem in clustering [41]. Given a set of nodes (or clients) L in a metric space,
we seek K nodes from L that will act as cluster heads, so that the total sum of distances of
clients from their cluster head is minimized, while ensuring the number of clients of each
cluster head does not exceed the cluster head capacity.

Information 2024, 15, 670 7 of 22

The load balancing optimization formulation, on the other hand, should attempt to
fairly balance the load across the SNs. A way to achieve this is by minimizing the load
assigned of the most loaded SN. Formally, this can be expressed as follows:

min max
k∈{1,...,M}

M

∑
j=1

wjxjk (3)

Subject to the following: (1b)–(1e).
This problem can be reformulated in its standard epigraph form [42], as follows:

min W (4a)

Subject to (1b)–(1e) and

M

∑
j=1

wjxjk ≤ W, k = 1, . . . , M (4b)

Constraints (4b) in conjunction with the optimization objective enforce that the com-
putational load of the most loaded SN is minimized. The minimum the load of the most
loaded SN, the more balanced SNs’ load will be.

Both problems (1) and (4), may not have feasible solutions if the requested compu-
tational resources of constraints (1d) cannot be satisfied by N SNs. In this case, one or
even more SNs would be additionally required for the problems to have feasible solutions.
An approach would be to increase N by one and formulate and solve new problems and so
on, until the feasible solutions set is nonempty. Instead, we will follow a different approach
and study equivalent problems, by relaxing capacity constraints (1d), and providing so-
lutions for all possible values of N operational SNs, N = 1, 2, . . . Thus, assuming N SNs
as operational, we solve the non-capacitated versions of the problems, e.g., without the
capacity constraints (1d), and if the capacity of the most heavily loaded SN of the solution is
not adequate to serve its allocated computational load, then N + 1 SNs are set as operational
and the non-capacitated problems are reformulated and solved next. If again the capacity
of the most heavily loaded SN is not adequate to serve its allocated computational load,
the solution with N + 2 operational nodes is examined, and so on.

In a most realistic scenario, an edge service provider, even though the expected
computational burden of ANs could be easily hosted by a small number of SNs, would
prefer to operate a larger number of SNs so that the communication cost be kept at lower
levels. Thus, it is often more useful to provide solutions with varying number of SNs
and a fair balanced load distribution among them, for each solution, so that the edge
network/service operator may decide the most proper operational set of SNs targeting
both communication cost between SNs and their assigned ANs along with efficient and
balanced utilization of SNs’ computational resources.

These two conflicting optimization problems, having solutions of different scales,
can be combined into one bi-objective optimization problem by use of the weighted sum
method after normalizing both objectives in the (0,1) space to obtain a Pareto efficient
solution [43]. For the minimum communication cost problem (1), we can first substitute
the absolute objective function (1a) with the average communication cost by dividing with
the sum of weights over all ANs and use the equivalent objective function (5) instead.
Considering diameter D of the network, defined as the length of the shortest path between
the most distanced nodes of the network, we can map the resulting average communication
cost to the (0,1) space using D and zero as its upper and lower bounds, respectively.

min AvgCommCost =
1

∑M
j=1 wj

M

∑
k=1

M

∑
j=1

wj · djk · xjk (5)

Information 2024, 15, 670 8 of 22

For the load balancing optimization problem (4), we can easily devise a lower bound
wmin of the objective function as the average load of the N SNs: wmin = 1

N ∑M
j=1 wj. An up-

per bound wmax of the objective function can be found by assuming that N − 1 SNs are
operated at the N − 1 ANs with the smaller load weights wj’s and the rest M − N + 1 ANs
are assigned to the Nth SN which gets the sum of their load weights. This last SN is loaded
with wmax, the maximum load possible.

Thus, the normalized weighted bi-objective problem is formulated as follows:

min λcc
AvgCommCost

D
+ λlb

W − wmin
wmax − wmin

(6)

Subject to (1b), (1c), (1e) and (4b), where λcc + λlb = 1 and 0 < λcc, λlb < 1.
Because the minimum communication cost problem is equivalent to the capacitated

K-median clustering problem, which is NP-hard [44], the normalized bi-objective problem
is also NP-hard. In the following, we will introduce computationally efficient heuristics to
tackle this problem.

4. Proposed Policies

Assuming N SNs are operational to serve the computational requests of all ANs, we
divide the weighted bi-objective problem into two separate submodules that are treated
sequentially: (a) select N ANs that will act also as SNs (initiate the hosted/colocated SN)
and (b) assign the rest M − N ANs to the most appropriate SN. We will refer to these
two submodules as the Service Node Selection submodule and Access Node Allocation to SNs
submodule, respectively.

4.1. Edge Service Node Selection Scheme

Each AN in the network topology can host a SN. Given the network topology of M
ANs and the number N of SNs, the proposed algorithm searches for the most suitable set S
of N ANs, whose members would host a SN. The basic idea is to evenly distribute the SNs
across ANs of the network so that communication costs from other ANs are relatively lower.

We first introduce a metric to grade each AN vk on how costly it is for all other
ANs to communicate with this node. We define dk = ∑M

j=1 wj · djk, as the weighted sum of
communication costs of every AN vk in the network (Step 1). This metric gives an indication
of the cost for the users of all ANs to communicate with AN vk.

We then sort the list of ANs in increasing order of dk’s (Step 2). The first node in this
sorted list Q has the minimum cost to communicate with all other ANs of the network. Let
vk∗ = arg min

k
dk be the first node in Q and dmin

k∗ = min
k

dk.

In case of one operational SN, we simply select as SN the AN that presents the lowest
weighted communication latency cost (Step 5). When the computational load is uniform,
this is also the most “central” node, meaning that this node is located deep into the network,
and as such, it has the minimum delay cost to communicate with all other ANs. However,
when the computational load is non-uniform, intuitively the best SN is closest to the most
highly loaded ANs in the network. If there are more than one candidate SNs with the same
minimum value, we randomly select one of them.

When the procedure should select two or more SNs, let dmax
k∗ = max

j
djk∗ be the

maximum communication cost between every other AN vj in V and vk∗ . Then, we search
for the first SN to add to S, by traversing the Q list until we find the first node that is at

least
dmax

k∗
2 costly to communicate with AN vk∗ . Let vl be that node, which is added as the

first SN in S. Again, let dmax
l = max

j
djl , be the maximum communication cost of some AN

from vl . To find the second SN, we again search the Q list from the start to locate the AN

that is at least dmax
l
2 away from the first node vl and its weighted sum of communication

costs is at least the same as that of the first SN (not higher). Let vm be that node, which is
added as the second SN in S (Steps 7–11).

Information 2024, 15, 670 9 of 22

The remaining SNs, third and so on, are determined as follows. We set dist = dmax
l
2

and search from the start of the Q list for a node whose communication cost is at least dist
away from all the already selected service nodes (Steps 12–14). If no such node exists, then
we decrease dist by one (Step 15) and repeat the search until a node is found. If such a node
is found, then we select it as the third node, and so on. Otherwise, we continue to reduce
the dist value by one, repeating the search procedure. If more than one such node exists,
then we select the one whose sum of communication costs from the already selected SNs
is minimum.

The time complexity of the Edge Service Node Selection implementation of Algorithm 1
is as follows. The time complexity of line 1 is O(M2) and dominates all lines up to line 11.
If |S| = p, line 13 of the while loop requires the examination of M − p candidates in the
Q list, and for each candidate p distances are compared against dist, yielding (M − p)p
steps in total. However, if no AN fulfills the distance constraint, the search is repeated with
dist = dist − 1 (line 15). The number of repetitions of line 15 is bounded by the diameter D
of the network, defined as the length of the shortest path between the most distanced nodes
of the network. In fact, the greater number of searches is encountered if all repetitions of line
15 are performed when p = N − 1, that is (M − (N − 1))(N − 1)D. Thus, the total number
of repetitions is ∑N−2

p=1 (M− p)p+ (M− (N − 1))(N − 1)D, which yields O(MN2 + MND),
as the time complexity of the whole procedure. For small values of N, this becomes O(MD),
but for high values of N, the worst time complexity approaches O(M3).

Algorithm 1 Edge Service Node Selection
Input: Network topology G(V, E) of M ANs, ANs’ computational load wj, j = 1, . . . , M,
and number N of SNs.
Output: Set S of N ANs to operate as edge SNs.

1. For each AN vk calculate dk = ∑M
j=1 wj · djk.

2. Set Q = V and sort list Q in increasing order of dk.
3. Set S = ∅.
4. If N == 1 {
5. Set S = S ∪ {vk∗} and exit;

}
6. If N ≥ 2 {
7. Find the most distant AN vk′ from vk∗ , i.e., the AN with the largest communication

cost dk′k∗ .
8. Traverse Q until AN vl is found, located at least dk′k∗/2 away from vk∗ .
9. Find the most distant AN vl′ from vl , i.e., the AN with the largest communication

cost dl′ l .
10. Traverse Q until AN vm is found, located at least dist = dl′ l/2 away from vl ,

dm ≤ dl .
11. Set S = S ∪ {vl , vm}.

}
12. While |S| < N {
13. Traverse Q until AN vn is found, located at least dist away from every node in S.

Ties are resolved by selecting the AN with the smallest sum of communication costs
from all nodes in S.

14. Set S = S ∪ {vn} and return.
15. If there is no such node set dist = dist − 1 and goto step 12.

}
16. Exit;

4.2. Load Balanced and Node Proximity Access Node Allocation to SNs Scheme

Once we determine S, we then need to allocate each AN to SNs to deliver services
to the end-users, attached to the corresponding AN. We propose a policy to be combined

Information 2024, 15, 670 10 of 22

with Edge Service Node Selection scheme in order to achieve both minimum network
communication cost and balanced distribution of ANs to SNs.

The basic idea is that the procedure visits SNs in a round-robin (RR) manner, attempt-
ing to distribute the ANs among SNs in a balanced way, as much as possible. The formal
description of the load balance assignment of ANs to SNs is shown in Algorithm 2. At first,
each SN serves the users located within the same AN (Step 1). In every RR cycle all SNs are
examined, however the order that SNs are visited may differ from cycle to cycle as will be
shown. In addition to that, an AN is assigned to the SN under examination, only if the AN
satisfies a certain criterion for this SN. The procedure ends when all ANs are assigned to
some SN (Step 3).

Algorithm 2 Load Balanced and Node Proximity Access Node Allocation
Input: Network topology G(V, E) of M ANs and set S of N ANs to operate as edge SNs.
Output: Set Si with the ANs, assigned to SN si, i = 1, . . . , N.

1. Initialize Si = {vind(si)
}, i = 1, . . . , N

2. Calculate dnorm
ji , j = 1, . . . , M, i = 1, . . . , N

3. While there are ANs not yet assigned to some SN {
4. For each SN si
5. Find dnorm

min,i = min
vj not assigned

{dnorm
ji }

6. Sort S in increasing order of dnorm
min,i

7. For i = 1 to N {

8. dnorm
min,i = min

vj not assigned
{dnorm

ji }, v(i)j∗ = arg min
vj not assigned

(dnorm
ji)

9. Ties are resolved by selecting that v(i)j∗ which has also minimum absolute dji

10. if dnorm
min,i ≤ dnorm

equal {

11. Si = Si ∪ {v(i)j∗ }

12. Remove v(i)j∗ from the set of unassigned ANs
}

13. else skip this SN si
}

}
14. Exit;

For every AN vj, we define the normalized relative communication cost of that AN
from SN si as follows:

dnorm
ji =

dj,ind(si)

∑N
i=1 dj,ind(si)

, j = 1, . . . , M, i = 1, . . . , N (7)

This value represents the relative communication cost of AN vj from SN si compared
to the sum of communication costs of vj from all SNs. If we assume, hypothetically, that
an AN was equally distant from all SNs, in other words it has the same communication
cost towards each SN, then the corresponding normalized distance would be dnorm

equal =
1
N .

This value can be considered as a threshold value to compare and realize whether an
AN is closer to (farther from) a SN compared to some other SN, if its normalized relative
distance value is greater (less) than dnorm

equal . Before the start of every RR cycle, every SN

is characterized by metric dnorm
min,i = min

vj not assigned

{
dnorm

ji

}
, determined among the ANs not

yet assigned to some SN (Step 4-5). SNs are then sorted in increasing order of this metric
(Step 6) and this will be the order that SNs will be visited in this RR cycle. When an SN is
visited, if its metric is less than dnorm

equal threshold (Step 10), the corresponding AN (Step 8) is

Information 2024, 15, 670 11 of 22

allocated to that SN (Step 11) and removed from further consideration (Step 12). If more
than one AN has the same relative distance to this SN, the closest AN is selected (Step 9).

The time complexity of the Load Balanced and Node Proximity Access Node Allo-
cation implementation of Algorithm 2 is as follows. Line 2 is O(MN). The while loop is
performed M − N times because at the beginning N ANs are hosted by their colocated SN
and M − N ANs are unassigned. Let p be the number of ANs not assigned yet. The loop of
line 4 requires Np searches, line 6 is O(N log N), and the loop of lines 7–13 also involves
Np checks. Thus, the total number of searches is ∑M−N

p=1 Np, and the time complexity of the

whole procedure is O(M2N), which for small values of N becomes O(M2), but for high
values approaches O(M3).

4.3. Previously Proposed Approaches with Load Balance Enhancement

In this section, a set of previously proposed heuristics for the K-median problem are
presented, namely, Forward Greedy, Reverse Greedy and a Local Search algorithm [45,46].
All of them are focusing on detecting the N most appropriate set of SNs so that the total
sum of the communication cost from every AN to its closest SN is minimized. Thus, for a
given set of N SNs S, the assignment of ANs to their closest SN always achieves minimum
communication cost. In other words, if Si is the set of ANs closest to SN si, V =

⋃N
i=1 Si,

then TCC(S) = ∑N
i=1 ∑vj∈Si

wj · dj,ind(si)
is minimum for this set S of SNs.

Nevertheless, as these heuristics are distance based, it is necessary to include load
balancing in their decisions. If we let Li = ∑vj∈Si

wj, be the sum of weights of those ANs
in Si that corresponds to the computational load on SN si, a simple metric for measuring
the balance of computational load among the SNs is the sample variance of Li’s with
µ = 1

N ∑M
j=1 wj being the corresponding sample mean. Thus, for a given set S of N SNs and

the corresponding assignment sets of ANs Si’s, a load balance metric for this set S and Si’s
is given by Equation (8).

LB(S) =
1

N − 1

N

∑
i=1

(Li − µ)2 (8)

4.3.1. Load Balanced Forward Greedy

The Forward Greedy algorithm starts with one SN in S, selecting as SN the AN that
minimizes the weighted sum of communication costs of all ANs (Steps 1, 2). Then, at each
step, the algorithm increases the number of SNs by one, always selecting as SN the vk
that will increase the communication cost by the least possible amount (Step 4). This is
performed under the assumption that the ANs not in S ∪ {vk} will be assigned to their
closest (with least communication cost) SNs in S ∪ {vk}. The SN is added to S (Step 6) and
the procedure is repeated until the number of SNs is N (Step 3). If more than one choice is
possible, the algorithm bases its decisions on the load balance criterion and selects the SN
vk such that, when added, the ANs not in S ∪ {vk} will be assigned to their closest SN and
the assignment minimizes Equation (8) (Step 5).

The time complexity of the Forward Greedy implementation in Algorithm 3 is as
follows. The complexity of line 1 is O(M2). In the while loop, let p be the number of SNs
so far, thus M − p ANs are possible candidates for selecting the next SN. Adding one SN
results in p + 1 SNs. Computing TCC(S ∪ {vk}) in line 4 requires checking p + 1 distances
and selecting the minimum one. This is performed for every AN, that is M − (p + 1) times,
thus TCC(S ∪ {vk}) requires (M − (p + 1))(p + 1) steps. To obtain the optimum value in
line 4 requires checking all M − p possible candidates; thus, the total complexity of line 4 is
O((M− p)(M− (p+ 1))(p+ 1)), which is greater than the complexity O((M− p)(p+ 1)) of
line 5. The number of while loops is N − 1, which yields ∑N−1

p=1 (M − p)(M − (p + 1))(p + 1)

checks in total, and time complexity O(M2N2) for the whole procedure. For low values of
N, the complexity is O(M2), but for higher values it approaches O(M4).

Information 2024, 15, 670 12 of 22

4.3.2. Load Balanced Reverse Greedy

Unlike Forward Greedy, Reverse Greedy starts with M SNs by operating one SN
at each AN (Step 1), and then at each step decreases the number of SNs by one, always
selecting for removal the SN at AN vk that will increase the communication cost by the
least possible amount (Step 3) towards the remaining SNs, assuming that the ANs not in
S − {vk} will be assigned to their closest (with least communication cost) SNs. The SN
is removed (Step 5) and the procedure is repeated until the number of SNs is N (Step 2).
If more than one choice is possible, then the algorithm bases its decisions on the load
balance criterion and selects as SN the vk that, when removed, the ANs not in S − {vk} will
be assigned to their closest SN while also minimizing Equation (8) (Step 4).

Algorithm 3 Forward Greedy with Load Balance
Input: Network topology G(V, E) of M ANs, ANs’ computational load wj, j = 1, . . . , M,
and number N of SNs.
Output: Set S = {si} of N ANs to operate as edge SNs and sets Si with the ANs, assigned
to SN si, i = 1, . . . , N.
1. Let vk∗ = arg min

vk∈V
dk

2. Set s1 = vk∗ ; S = {s1}
3. While |S| < N {
4. vk∗ = arg min

vk∈V−S
TCC(S ∪ vk)

5. Ties are resolved by selecting vk∗ , which minimizes also Equation (8).
6. Set S = S ∪ {vk∗}

}
7. Determine Si’s: Assign every AN vj in V − S to its closest SN si in S
8. Exit;

The time complexity of the Reverse Greedy implementation of Algorithm 4 is as
follows. In the while loop let p be the number of SNs so far, thus p ANs are possible
candidates for selecting the next SN to be removed. Removing one SN results in p − 1 SNs.
As in Forward Greedy, computing TCC(S − vk) in line 3 requires (M − (p − 1))(p − 1)
steps, and the selection of the optimum value requires checking all p possible candidates;
thus, the total complexity of line 3 is O((M − (p − 1)(p − 1)p), which is greater than the
complexity O((p− 1)p) of line 4. The while loops are executed for p = M, M− 1, . . . , N + 1,
which yields ∑M

p=N+1(M − (p − 1))(p − 1)p checks in total, and time complexity O(M4)
for the whole procedure.

Algorithm 4 Reverse Greedy with Load Balance
Input: Network topology G(V, E) of M ANs, ANs’ computational load wj, j = 1, . . . , M,
and number N of SNs.
Output: Set S = {si} of N ANs to operate as edge SNs and sets Si with the ANs, assigned
to SN si, i = 1, . . . , N.

1. Set S = V
2. While |S| > N {
3. vk∗ = arg min

vk∈S
TCC(S − vk)

4. Ties are resolved by selecting vk∗ , which minimizes also Equation (8).
5. Set S = S − {vk∗}

}
6. Determine Si’s: Assign every AN vj in V − S to its closest SN si in S
7. Exit;

Information 2024, 15, 670 13 of 22

4.3.3. Load Balanced Local Search

In general, a Local Search procedure for the selection of SNs starts with an arbitrary
initial set of N SNs and attempts to locate a new set of N SNs by swapping one or more
SNs with some other ANs if a better communication cost is achieved. The procedure is
repeated until no improvement in the communication cost is possible when swapping one
or more SNs. The initial set of SNs can be arbitrary, random, or the outcome of another
heuristic which can offer a good starting point for the Local Search.

An implementation of a Local Search procedure is given in Algorithm 5 with an addi-
tional characteristic of choosing solutions that yield better load balance than others in case
of communication cost ties. The procedure starts with an initial set of SNs (Step 1), which
can be a random choice or preferably a solution outcome of another heuristic, e.g., Forward
Greedy. Once the assignment sets Si’s are determined (Step 2), the communication costs
and load balance metrics are computed (Step 3) and are assumed as minimum. For each
AN (loop of Step 4), the algorithm iterates through all SNs (loop of Step 6), and temporarily
swaps them (Step 7). For each swap, it allocates ANs to SNs (Step 8) and calculates the
total communication cost and load balance metrics. If either the communication cost is
improved, or the communication cost remains unchanged, but the load balance metric is
improved by this swap, the swap is noted along with the new minimum metric values
(Step 9, 10). When all SNs are checked for the AN under examination and at least one swap
occurred (Step 11), the swap with the best communication cost and best load balance metric
becomes permanent (Step 12) and the procedure continues with the next AN, and so on.
Thus, the procedure prioritizes communication cost, but when the cost remains the same, it
considers load balance improvement.

Algorithm 5 Local Search with Load Balance
Input: Network topology G(V, E) of M ANs, ANs’ computational load wj, j = 1, . . . , M,
and set Sinit = {si} of N ANs as the initial starting set of SNs.
Output: Set S = {si} of N ANs to operate as edge SNs and sets Si with the ANs, assigned
to SN si, i = 1, . . . , N.

1. S = Sinit
2. Determine Si’s: Assign every AN vj in V − S to its closest SN si in S
3. Set TCCmin = TCC(S) and LBmin = LB(S), as given by Equation (8) for S and Si’s
4. For j = 1 to M {
5. swap = FALSE
6. For i = 1 to N, j ̸= ind(si) {
7. Temporary swap vj and si: Stmp = (S − {si}) ∪ {vj}
8. Determine Si,tmp’s: Assign every AN vj in V − Stmp to its closest SN si,tmp in Stmp

9. if (TCC(Stmp) < TCCmin) or (TCC(Stmp) == TCCmin and LB(Stmp) < LBmin)
10. set swap = TRUE; i∗ = i; TCCmin = TCC(Stmp); LBmin = LB(Stmp)

}
11. if swap == TRUE {
12. S = (S − {si∗}) ∪ {vj}
13. Determine Si’s: Assign every AN vj in V − S to its closest SN si in S

}
}

14. Exit;

The time complexity of the Local Search implementation of Algorithm 5 is as follows.
Devising an initial starting solution with Forward Greedy requires O(M2N2). The loop
4-14 dominates lines 2 and 3 and is performed M × N times, while the lines 8 and 14 require
N(M − N) checks. Thus, the total time complexity of the procedure is O(M(M − N)N2).
For low values of N, this is O(M2), for N around M/2, it reaches O(M4), and for high N
values, it approaches O(M3).

Information 2024, 15, 670 14 of 22

5. Evaluation Results and Discussion
5.1. Experimental Environment

We evaluate the performance of the previously described approaches in 2 edge layer
topologies: a 7 × 7 symmetrical, not wrapped, lattice (Figure 2a) of 49 ANs with higher
connectivity among neighboring nodes (6 neighbors ANs per non-edge AN) and a random
grid topology of 49 ANs with sparser connectivity (Figure 2b). In the same figure, the large
circles indicate five operational SNs colocated with the corresponding ANs. The numbers
in the circles denote the sequence number of AN. The topologies better represent the flat
architecture of contemporary 5G and future generation mobile provider networks, rather
than the past hierarchical structures.

Two experiments are conducted: (i) uniform user distribution across the network of
ANs, in other words wi = 6, i = 1, . . . , 49, and (ii) non-uniform user distribution where
different integer weights (wi) varying from 3 to 9 are randomly assigned to 49 ANs of the
networks. In the latter experiment, the results presented below are calculated by averaging
the results of ten independent random weight allocations.

(a) (b)

Figure 2. Lattice and random grid graph topologies. (a) Edge Service Node Selection Load Balanced
results (49 ANs, 5 SNs, uniform weights), (b) Local Search with Load Balance results (49 ANs, 5 SNs,
non-uniform weights).

The schemes under evaluation are based on (a) node proximity only, where the decision
which ANs are allocated to each SN is based solely on the communication cost between
ANs and SNs, and (b) node proximity and load balance, a combined approach where both
communication cost and even distribution of load across the SNs, are considered. Table 1
summarizes the schemes and their categorization.

The comparison is conducted in terms of communication cost, load balance, and their
combination. Instead of using sample variance (Equation (8)) for the load balance metric,
we present the load Wmax allocated to the most loaded SN. In addition, all experiments
were conducted on the same computer with 3.60 GHz Intel i7-4790 CPU (Dell PC, property
of University of Piraeus, Piraeus, Greece), 16 GB RAM and 64-bit Windows 10 Pro and
all algorithms were fully developed from scratch in Python 3.7 and compared in terms of
computational times under the same conditions.

Information 2024, 15, 670 15 of 22

Table 1. Schemes under evaluation.

Scheme Abbreviation
ANs to SNs Allocation Criterion

Node Proximity Load Balance

Edge Service Node Selection (Algorithm 1) with Node Proximity
AN Allocation SNNP ✓

Edge Service Node Selection (Algorithm 1) with Load Balance and Node
Proximity AN Allocation (Algorithm 2) SNLB ✓ ✓

Forward Greedy (Algorithm 3 without line 5) FG ✓

Forward Greedy with Load Balance (Algorithm 3) FGLB ✓ ✓

Reverse Greedy (Algorithm 4 without line 4) RG ✓

Reverse Greedy with Load Balance (Algorithm 4) RGLB ✓ ✓

Local Search (Algorithm 5 without second OR clause in line 9) LS ✓

Local Search with Load Balance (Algorithm 5) LSLB ✓ ✓

5.2. Communication Cost of Node Proximity Schemes vs. Node Proximity with Load
Balance Schemes

Figure 3 shows the communication cost perceived by ANs for both lattice and ran-
dom grid topologies of 49 ANs and for uniform and non-uniform weights distributions.
The measurement unit on the y-axis of these figures corresponds to the expected average
communication cost delay per user between ANs and SNs of a network provider, which,
in a real network this would translate into latency ranging from a few msecs up to a few
tens of msecs.

A general observation of the node proximity schemes is that as the number of SNs
increases, the communication cost decreases. As more and more SNs are instantiated,
service is always offered closer to the ANs and thus delay is decreased. The best behavior is
achieved by LS, which is always better than FG, since LS in our experiments use the solution
outcome of FG as a starting point, and LS repeatedly attempts to improve it. The results of
SNNP are very close to the LS and FG results. The behavior of SNNP is mainly justified by
the fact that the Service Node Selection scheme of Algorithm 1 attempts to evenly distribute
the SNs across ANs of the network, but closer to the most crowded ANs. Furthermore,
a non-uniform distribution of load makes more difficult the task of evenly distributing the
selection of the most appropriate SNs in SNNP; thus, the procedure works slightly better in
uniform distribution of workload. RG on the other hand, behaves less effectively, especially
in the lattice network for non-uniform and even worse in uniform load.

Likewise, the node proximity with load balance schemes present a similar behavior,
with some differences. Again, LSLB and FGLB yield the same communication cost as
LS and FG. This behavior is expected as the modified schemes favor more load balanced
solutions that have the same communication cost. Thus, it is very rare to yield solutions
with better load balance, but worse communication cost. RGLB, however, yields better
communication cost solutions than RG, especially in scenarios with small number of
SNs, high connectivity and uniform offered workload. This heuristic starts with a high
number of SNs and continuously removes one SN, yielding a set of SNs with minimum
communication cost and lower load balance.

It seems that the selection of a more balanced solution at some point yields a different
search path and results in lower communication cost solutions. A different behavior is
encountered when comparing SNNP and SNLB, which are differentiated only by the way
ANs are assigned to SNs. For a small number of SNs the behavior is identical. With fewer
SNs the choices are limited and it is more likely to assign the AN to its most close SN as
SNNP does. However, as the number of SNs increases, the SNLB method to visit each SN
in a round-robin manner and locate the next AN to assign for load balance, will eventually

Information 2024, 15, 670 16 of 22

result, after several cycles, in assigning remote ANs to some SNs. Thus, this leads to a
deterioration in the goal of minimum communication cost.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3. Average latency communication cost for lattice and random grid topologies. Node Proximity
schemes: (a) Lattice topology and random weight distribution, (c) Lattice topology and uniform
weight distribution, (e) Random grid topology and random weight distribution, (g) Random grid
topology and uniform weight distribution, Node Proximity with Load Balance schemes: (b) Lattice
topology and random weight distribution, (d) Lattice topology and uniform weight distribution, (f)
Random grid topology and random weight distribution, (h) Random grid topology and uniform
weight distribution.

Information 2024, 15, 670 17 of 22

5.3. Load Balancing of Node Proximity with Load Balance Schemes

Figure 4 shows the load balance behavior of the schemes for the same topologies and
weights distributions. The metric shown is the load Wmax allocated to the most loaded
SN. Only node proximity with load balance schemes are presented, as they have shown
superior performance than the simple node proximity schemes. It is necessary to note
that allocations of ANs to SNs in the SNLB scheme are designed to favor balanced ANs
allocations to close SNs, as described in Algorithm 2, in contrast to all other schemes that
are adapted to favor more balanced solutions only if there is more than one choice when
selecting a solution with minimum communication cost.

From the figures depicting the load of the most loaded SN, it can be observed that
SNLB outperforms all other schemes and achieves the least maximum load in nearly all
numbers of SNs at the lattice and random grid topologies of 49 ANs for both random and
uniform load distributions (Figure 4a–d). In these figures, the mean load (dotted line) is a
lower bound of the maximum load and SNLB results are closer to this bound. The SNLB
scheme achieves superior workload balance through its round-robin design by prioritizing
the even distribution of ANs’ workload across nearby SNs. This approach minimizes the
maximum load on any single SN, bringing it closer to the mean load value.

Another observation is that SNLB, FGLB, and LSLB behave much better in uniform
loads. This is partly justified by the fact that in the examined system model high loads
cannot be split and direct different parts of the loads to different SNs, which would produce
more even allocations. Another justification for SNLB is that its round-robin behavior
works better when each AN contributes equal loads and as a result an equal amount of
load is assigned in each cycle. The worst behavior is presented by RGLB, especially in small
and medium numbers of SNs, and this is more evident in the lattice topology rather than
the random grid topology.

(a) (b)

(c) (d)

Figure 4. Load balance metric for lattice and random grid topologies with uniform and random
load distributions. (a) Lattice topology and random weight distribution, (b) Lattice topology and
uniform weight distribution, (c) Random grid topology and random weight distribution, (d) Random
grid topology and uniform weight distribution.

Information 2024, 15, 670 18 of 22

5.4. Bi-Objective Function Results of Node Proximity with Load Balance Schemes

Figure 5 illustrates the behavior of node proximity with load balance schemes when
both terms of communication cost and load balancing are equally weighted in the normal-
ized bi-objective function (Equation (6)) (λcc = λlb = 0.5). FGLB, RGLB, and LSLB, by their
inherent operation prioritize communication cost over load balance, while, SNLB focuses
primarily on load balancing and secondarily on communication cost. A main observation
is that SNLB outperforms the other schemes in most numbers of SNs when the load is
uniform, while in non-uniform loads LSLB seems to behave slightly better than FGLB and
SNLB in most cases. This can be justified as follows.

In uniform load scenarios, all ANs contribute equal load and SNLB, with its round-
robin approach, manages to efficiently distribute ANs’ load across SNs, while the other
heuristics cannot benefit from communication cost by favoring most loaded ANs to serve
as SNs. Thus, the gain of SNLB on the load balance term outperforms the lower gain of
LSLB and FGLB on the communication cost term.

However, under conditions of non-uniform loads, where an AN’s load is fully allocated
to a specific SN, LSLB, as an enhancement of FGLB, exhibits slightly better performance by
targeting the most heavily loaded ANs to serve as SNs, allowing it to better handle varying
load distributions, where SNLB’s even allocation becomes less efficient. In this situation,
the benefits of LSLB from the communication cost term surpass the lower gains of SNLB
from the load balance term.

Finally, RGLB is obviously worse, especially in the lattice topology for a small and
medium number of SNs, following the same trend observed in the above load balance and
average communication cost independent studies.

(a) (b)

(c) (d)

Figure 5. Equally weighted communication cost and load balance in bi-objective function of Equa-
tion (6). (a) Lattice topology and random weight distribution, (b) Lattice topology and uniform weight
distribution, (c) Random grid topology and random weight distribution, (d) Random grid topology and
uniform weight distribution.

5.5. Computational Times

Finally, the computational performance of all schemes is depicted in Figure 6. To avoid
noisy results, due to other workload running at the same time in the host computer, we

Information 2024, 15, 670 19 of 22

show the averages of the outcomes of 500 different runs. We present the results for the
lattice topology with random distribution of load only, as all the other results are quite
similar and follow the same trend. Figure 6 depicts the total time to compute up to the
number of SNs shown in the figure. As we can see, when the SNs are few, the SN set is
determined quite fast with FG and FGLB, while LS and LSLB are slower because these
include the respective FG and FGLB times. Furthermore, it takes much longer for RG and
RGLB to determine the required SNs when the number of SNs is small. This is justified
by the way RG searches for SNs, according to which it starts with all SNs as operational
and then tries to remove SNs one by one. Thus, when the number of final operational SNs
is small, the scheme needs to remove more SNs. On the other hand, SNNP and SNLB are
extremely fast compared to all the other schemes and the most important observation is
that running times exhibit great stability despite the number of SNs determined.

Figure 6. Computation times for lattice topology of 49 ANs and random load distributions.

6. Conclusions

In this paper, we introduced a novel approach to tackling the dual optimization challenge
of minimizing communication costs while simultaneously balancing workloads within edge
network topologies. We formulated two distinct optimization problems and combined them
into a single bi-objective function. To solve these, we introduced heuristic schemes for Edge
Service Node Selection and Access Node Allocation to Service Nodes. Extensive simulations
were conducted across both lattice and random grid network topologies with uniform and non-
uniform workload distributions, demonstrating the effectiveness of our proposed schemes in
optimizing both objectives of communication costs and load balancing.

SNLB consistently outperforms other schemes in terms of load balancing, achieving
the lowest maximum load across various topologies and load distributions, particularly
under uniform conditions. Its round-robin design, enhanced with proximity-based deci-
sions, ensures an even distribution of workload, bringing the maximum load closer to the
mean. Additionally, SNNP, while slightly less efficient in load balancing, shows competitive
performance in minimizing communication costs, particularly in small-scale scenarios of
service nodes. Overall, our schemes are robust and efficient solutions, adaptable to specific
network requirements and objectives, with their scalability and efficiency further demon-
strated by superior execution times across all experimental scenarios. Future research can
build on these findings and enhance these schemes with intelligent decision making to
accommodate time- and spatial-varying user load conditions.

Author Contributions: Conceptualization, A.R.; methodology, E.O. and A.R.; software, E.O.; val-
idation, E.O. and A.R.; formal analysis, E.O. and A.R.; investigation, E.O.; writing—original draft

Information 2024, 15, 670 20 of 22

preparation, E.O. and A.R.; writing—review and editing, E.O. and A.R.; supervision, A.R. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The original contributions presented in the study are included in the
article material, further inquiries can be directed to the corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

5G 5th Generation
AN Access Node
ANA Access Node Allocation
AR Augmented Reality
BTS Base Transceiver Station
CAPABLE Cost Aware cloudlet PlAcement in moBiLe Edge computing
CAPEX Capital Expenditures
ELBS Energy-aware Load Balancing and Scheduling
FG Forward Greedy
FGLB Forward Greedy with Load Balance
IoT Internet of Things
IoV Internet of Vehicles
IT Information Technology
LAB LoAd Balancing
LS Local Search
LSLB Local Search with Load Balance
MEC Mobile Edge Computing
MHP2P Mobile Hybrid hierarchical Peer-to-Peer
OPEX Operating Expenditures
QoE Quality of Experience
QoS Quality of Service
RG Reverse Greedy
RGLB Reverse Greedy with Load Balance
SN Service Node
SNLB edge Service Node selection with Load Balance and node proximity AN allocation
SNNP edge Service Node selection with Node Proximity AN allocation
SNS Service Node Selection
WMAN Wireless Metropolitan Area Network

References
1. Satyanarayanan, M. The Emergence of Edge Computing. Computer 2017, 50, 30–39. [CrossRef]
2. Wu, Q.; Wang, W.; Fan, P.; Fan, Q.; Wang, J.; Letaief, K.B. URLLC-Aware Resource Allocation for Heterogeneous Vehicular Edge

Computing. IEEE Trans. Veh. Technol. 2024, 73, 11789–11805. [CrossRef]
3. Satyanarayanan, M.; Bahl, P.; Caceres, R.; Davies, N. The Case for VM-Based Cloudlets in Mobile Computing. IEEE Pervasive

Comput. 2009, 8, 14–23. [CrossRef]
4. Hu, Y.C.; Patel, M.; Sabella, D.; Sprecher, N.; Young, V. Mobile edge computing: A key technology towards 5G. ETSI White Paper

2015, 11, 1–16.
5. Reznik, A.; Arora, R.; Cannon, M.; Cominardi, L.; Featherstone, W.; Frazao, R.; Giust, F.; Kekki, S.; Li, A.; Sabella, D.; et al.

Developing Software for Multi-Access Edge Computing. ETSI White Paper 2017, 20, 1–16.
6. Bonomi, F.; Milito, R.A.; Natarajan, P.; Zhu, J. Fog computing: A platform for Internet of Things and analytics. In Big Data and

Internet of Things: A Roadmap for Smart Environments; Springer: Cham, Switzerland, 2014; pp. 169–186.
7. Bonomi, F.; Milito, R.; Zhu, J.; Addepalli, S. Fog computing and its role in the Internet of Things. In Proceedings of the ACM

SIGCOMM Workshop on Mobile Cloud Computing, Helsinki, Finland, 13–17 August 2012; pp. 13–16.
8. Yousefpour, A.; Fung, C.; Nguyen, T.; Kadiyala, K.; Jalali, F.; Niakanlahiji, A.; Kong, J.; Jue, J.P. All one needs to know about fog

computing and related edge computing paradigms: A complete survey. J. Syst. Archit. 2019, 98, 289–330. [CrossRef]
9. Cao, K.; Liu, Y.; Meng, G.; Sun, Q. An Overview on Edge Computing Research. IEEE Access 2020, 8, 85714–85728. [CrossRef]

http://doi.org/10.1109/MC.2017.9
http://dx.doi.org/10.1109/TVT.2024.3370196
http://dx.doi.org/10.1109/MPRV.2009.82
http://dx.doi.org/10.1016/j.sysarc.2019.02.009
http://dx.doi.org/10.1109/ACCESS.2020.2991734

Information 2024, 15, 670 21 of 22

10. Ahmed, A.; Ahmed, E. A survey on mobile edge computing. In Proceedings of the 2016 10th International Conference on
Intelligent Systems and Control (ISCO), Coimbatore, India, 7–8 January 2016; pp. 1–8.

11. Klas, G.I. Fog Computing and Mobile Edge Cloud Gain Momentum Open Fog Consortium, ETSI MEC and Cloudlets. 2015.
Available online: https://yucianga.info/wp-content/uploads/2015/11/15_11_22-_Fog_computing_and_mobile_edge_cloud_
gain_momentum_Open_Fog_Consortium-ETSI_MEC-Cloudlets_v1_1.pdf (accessed on 19 August 2020).

12. Haibeh, L.A.; Yagoub, M.C.E.; Jarray, A. A Survey on Mobile Edge Computing Infrastructure: Design, Resource Management,
and Optimization Approaches. IEEE Access 2022, 10, 27591–27610. [CrossRef]

13. Liu, F.; Tang, G.; Li, Y.; Cai, Z.; Zhang, X.; Zhou, T. A Survey on Edge Computing Systems and Tools. Proc. IEEE 2019, 107,
1537–1562. [CrossRef]

14. Yu, W.; Liang, F.; He, X.; Hatcher, W.G.; Lu, C.; Lin, J.; Yang, X. A Survey on the Edge Computing for the Internet of Things. IEEE
Access 2018, 6, 6900–6919. [CrossRef]

15. Abbas, N.; Zhang, Y.; Taherkordi, A.; Skeie, T. Mobile edge computing: A survey. IEEE Internet Things J. 2018, 5, 450–465.
[CrossRef]

16. Filali, A.; Abouaomar, A.; Cherkaoui, S.; Kobbane, A.; Guizani, M. Multi-Access Edge Computing: A Survey. IEEE Access 2020, 8,
197017–197046. [CrossRef]

17. Wang, S.; Xu, J.; Zhang, N.; Liu, Y. A Survey on Service Migration in Mobile Edge Computing. IEEE Access 2018, 6, 23511–23528.
[CrossRef]

18. Khan, W.Z.; Ahmed, E.; Hakak, S.; Yaqoob, I.; Ahmed, A. Edge computing: A survey. Future Gener. Comput. Syst. 2019, 97,
219–235. [CrossRef]

19. Kong, L.; Tan, J.; Huang, J.; Chen, G.; Wang, S.; Jin, X.; Zeng, P.; Khan, M.; Das, S.K. Edge-computing-driven Internet of Things: A
Survey. ACM Comput. Surv. 2022, 55, 174. [CrossRef]

20. Mao, Y.; You, C.; Zhang, J.; Huang, K.; Letaief, K.B. A survey on mobile edge computing: The communication perspective. IEEE
Commun. Surv. Tutor. 2017, 19, 2322–2358. [CrossRef]

21. Jia, M.; Cao, J.; Liang, W. Optimal cloudlet placement and user to cloudlet allocation in wireless metropolitan area networks.
IEEE Trans. Cloud Comput. 2017, 5, 725–737. [CrossRef]

22. Wang, S.; Zhao, Y.; Xu, J.; Yuan, J.; Hsu, C.-H. Edge server placement in mobile edge computing. J. Parallel Distrib. Comput. 2019,
127, 160–168. [CrossRef]

23. Guo, Y.; Wang, S.; Zhou, A.; Xu, J.; Yuan, J.; Hsu, C.-H. User allocation-aware edge cloud placement in mobile edge computing.
Softw. Pract. Exp. 2020, 50, 489–502. [CrossRef]

24. Kasi, S.K.; Kasi, M.K.; Ali, K.; Raza, M.; Afzal, H.; Lasebae, A.; Naeem, B.; Islam, S.; Rodrigues, J.J. Heuristic edge server placement
in industrial internet of things and cellular networks. IEEE Internet Things J. 2021, 8, 10308–10317. [CrossRef]

25. Asghari, A.; Sohrabi, M.K. Multiobjective Edge Server Placement in Mobile-Edge Computing Using a Combination of Multiagent
Deep Q-Network and Coral Reefs Optimization. IEEE Internet Things J. 2022 9, 17503–17512. [CrossRef]

26. Jia, M.; Liang, W.; Xu, Z.; Huang, M.; Ma, Y. QoS-Aware Cloudlet Load Balancing in Wireless Metropolitan Area Networks. IEEE
Trans. Cloud Comput. 2020, 8, 623–634. [CrossRef]

27. Jia, M.; Liang, W.; Xu, Z.; Huang, M. Cloudlet load balancing in wireless metropolitan area networks. In Proceedings of the IEEE
INFOCOM 2016, San Francisco, CA, USA, 10–14 April 2016.

28. Wan, J.; Chen, B.; Wang, S.; Xia, M.; Li, D.; Liu, C. Fog Computing for Energy-Aware Load Balancing and Scheduling in Smart
Factory. IEEE Trans. Ind. Inform. 2018, 14, 4548–4556. [CrossRef]

29. Meng, J.; Shi, W.; Tan, H.; Li, X. Cloudlet Placement and Minimum-Delay Routing in Cloudlet Computing. In Proceedings of the
2017 3rd International Conference on Big Data Computing and Communications (BIGCOM), Chengdu, China, 10–11 August
2017; pp. 297–304.

30. Xu, Z.; Liang, W.; Xu, W.; Jia, M.; Guo, S. Efficient algorithms for capacitated cloudlet placements. IEEE Trans. Parallel Distrib.
Syst. 2016, 27, 2866–2880. [CrossRef]

31. Li, Y.; Wang, S. An Energy-Aware Edge Server Placement Algorithm in Mobile Edge Computing. In Proceedings of the 2018 IEEE
International Conference on Edge Computing (EDGE), San Francisco, CA, USA, 2–7 July 2018; pp. 66–73.

32. Ceselli, A.; Premoli, M.; Secci, S. Mobile Edge Cloud Network Design Optimization. IEEE/ACM Trans. Netw. 2017, 25, 1818–1831.
[CrossRef]

33. Fan, Q.; Ansari, N. On cost aware cloudlet placement for mobile edge computing. IEEE/CAA J. Autom. Sin. 2019, 6, 926–937.
[CrossRef]

34. Sun, X.; Ansari, N. Green cloudlet network: A sustainable platform for mobile cloud computing. IEEE Trans. Cloud Comput. 2018,
8, 180–192. [CrossRef]

35. Lähderanta, T.; Leppänen, T.; Ruha, L.; Lovén, L.; Harjula, E.; Ylianttila, M.; Riekki, J.; Sillanpää, M.J. Edge computing server
placement with capacitated location allocation. J. Parallel Distrib. Comput. 2021, 153, 130–149. [CrossRef]

36. Fan, Q.; Ansari, N. Towards workload balancing in fog computing empowered IoT. IEEE Trans. Netw. Sci. Eng. 2020, 7, 253–262.
[CrossRef]

37. Duan, Z.; Tian, C.; Zhang, N.; Zhou, M.; Yu, B.; Wang, X.; Wu, Y. A novel load balancing scheme for mobile edge computing.
J. Syst. Softw. 2022, 186, 111195. [CrossRef]

https://yucianga.info/wp-content/uploads/2015/11/15_11_22-_Fog_computing_and_mobile_edge_cloud_gain_momentum_Open_Fog_Consortium-ETSI_MEC-Cloudlets_v1_1.pdf
https://yucianga.info/wp-content/uploads/2015/11/15_11_22-_Fog_computing_and_mobile_edge_cloud_gain_momentum_Open_Fog_Consortium-ETSI_MEC-Cloudlets_v1_1.pdf
http://dx.doi.org/10.1109/ACCESS.2022.3152787
http://dx.doi.org/10.1109/JPROC.2019.2920341
http://dx.doi.org/10.1109/ACCESS.2017.2778504
http://dx.doi.org/10.1109/JIOT.2017.2750180
http://dx.doi.org/10.1109/ACCESS.2020.3034136
http://dx.doi.org/10.1109/ACCESS.2018.2828102
http://dx.doi.org/10.1016/j.future.2019.02.050
http://dx.doi.org/10.1145/3555308
http://dx.doi.org/10.1109/COMST.2017.2745201
http://dx.doi.org/10.1109/TCC.2015.2449834
http://dx.doi.org/10.1016/j.jpdc.2018.06.008
http://dx.doi.org/10.1002/spe.2685
http://dx.doi.org/10.1109/JIOT.2020.3041805
http://dx.doi.org/10.1109/JIOT.2022.3161950
http://dx.doi.org/10.1109/TCC.2017.2786738
http://dx.doi.org/10.1109/TII.2018.2818932
http://dx.doi.org/10.1109/TPDS.2015.2510638
http://dx.doi.org/10.1109/TNET.2017.2652850
http://dx.doi.org/10.1109/JAS.2019.1911564
http://dx.doi.org/10.1109/TCC.2017.2764463
http://dx.doi.org/10.1016/j.jpdc.2021.03.007
http://dx.doi.org/10.1109/TNSE.2018.2852762
http://dx.doi.org/10.1016/j.jss.2021.111195

Information 2024, 15, 670 22 of 22

38. Liu, H.; Wang, S.; Huang, H.; Ye, Q. On the Placement of Edge Servers in Mobile Edge Computing. In Proceedings of the 2023
International Conference on Computing, Networking and Communications (ICNC), Honolulu, HI, USA, 20–22 February 2023;
pp. 496–500.

39. Oikonomou, E.; Rouskas, A. Selection of Service Nodes in Edge Computing Environments. In Proceedings of the 2020 7th
International Conference on Internet of Things: Systems, Management and Security (IOTSMS), Paris, France, 14–16 December
2020; pp. 1–6.

40. Oikonomou, E.; Rouskas, A. Optimizing load balancing and minimizing communication latency in edge networks. In Proceedings
of the 2024 IEEE 22nd Mediterranean Electrotechnical Conference (MELECON), Porto, Portugal, 25–27 June 2024; pp. 820–825.

41. Li, S. On Uniform Capacitated k-Median Beyond the Natural LP Relaxation. ACM Trans. Algorithms 2017, 13, 1–18. [CrossRef]
42. Boyd, S.; Vandenberghe, L. Convex Optimization; Cambridge University Press: Cambridge, UK, 2004.
43. Han, J.; Kamber, M.; Pei, J. Data Mining: Concepts and Techniques. In The Morgan Kaufmann Series in Data Management Systems;

Morgan Kaufmann: Burlington, MA, USA, 2012.
44. Charikar, M.; Guha, S.; Tardos, É.; Shmoys, D.B. A constant-factor approximation algorithm for the k-median problem. J. Comput.

Syst. Sci. 2002, 65, 129–149. [CrossRef]
45. Chrobak, M.; Kenyon, C.; Young, N. The reverse greedy algorithm for the metric k-median problem. Inf. Process. Lett. 2006,

97, 68–72. [CrossRef]
46. Arya, V.; Garg, N.; Khandekar, R.; Munagala, K.; Pandit, V. Local search heuristic for k-median and facility location problems. In

Proceedings of the 33rd ACM Symposium on Theory of Computing, Hersonissos, Greece, 6–8 July 2001; pp. 21–29.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1145/2983633
http://dx.doi.org/10.1006/jcss.2002.1882
http://dx.doi.org/10.1016/j.ipl.2005.09.009

	Introduction
	Related Work
	System Model and Problem Statement
	Proposed Policies
	Edge Service Node Selection Scheme
	Load Balanced and Node Proximity Access Node Allocation to SNs Scheme
	Previously Proposed Approaches with Load Balance Enhancement
	Load Balanced Forward Greedy
	Load Balanced Reverse Greedy
	Load Balanced Local Search

	Evaluation Results and Discussion
	Experimental Environment
	Communication Cost of Node Proximity Schemes vs. Node Proximity with Load Balance Schemes
	Load Balancing of Node Proximity with Load Balance Schemes
	Bi-Objective Function Results of Node Proximity with Load Balance Schemes
	Computational Times

	Conclusions
	References

