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Abstract

:

The sparse matrix–vector product (SpMV) is a fundamental computational kernel utilized in a diverse range of scientific and engineering applications. It is commonly used to solve linear and partial differential equations. The parallel computation of the SpMV product is a challenging task. Existing solutions often employ a fixed number of threads assignment to rows based on empirical formulas, leading to sub-optimal configurations and significant performance losses. Elegante, our proposed machine learning-powered tool, utilizes a data-driven approach to identify the optimal thread configuration for SpMV computations within a shared memory architecture. It accomplishes this by predicting the best thread configuration based on the unique sparsity pattern of each sparse matrix. Our approach involves training and testing using various base and ensemble machine learning algorithms such as decision tree, random forest, gradient boosting, logistic regression, and support vector machine. We rigorously experimented with a dataset of nearly 1000+ real-world matrices. These matrices originated from 46 distinct application domains, spanning fields like robotics, power networks, 2D/3D meshing, and computational fluid dynamics. Our proposed methodology achieved 62% of the highest achievable performance and is 7.33 times faster, demonstrating a significant disparity from the default OpenMP configuration policy and traditional practice methods of manually or randomly selecting the number of threads. This work is the first attempt where the structure of the matrix is used to predict the optimal thread configuration for the optimization of parallel SpMV computation in a shared memory environment.
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1. Introduction


The sparse matrix–vector multiplication (SpMV) stands as a foundational computational process widely applied in diverse scientific and engineering applications. In contrast to matrices with a majority of nonzero entries, sparse matrices are primarily constituted of zero elements. The essence of SpMV lies in the multiplication of a sparse matrix by a dense vector, yielding a new vector. This operation is essential for solving linear equation systems and supporting iterative methods, simulations, and data analysis. The equation y = Ax posits that the matrix A is sparse, while the vector x can be either dense or sparse. Conversely, the output vector y is consistently dense. As illustrated in Figure 1, both the dense and sparse matrix–vector products always produce a dense output. Several factors play a significant role in affecting the efficiency of SpMV computations [1,2], i.e., specifications relating to storage formats, sparsity patterns of the sparse matrix, and the implementation nuances of both software and hardware platforms [3,4]. Over time, efforts to optimize the performance of the SpMV kernel have focused on the introduction of new storage schemes, including compressed sparse column (CSC), extended block compressed sparse row (BCSR) [5,6], compressed sparse row (CSR) [7,8,9], and diagonal coordinate format and hybrid coordinate format [5,7,8,10]. Additionally, efforts have been directed toward the development of software libraries, including Intel MKL [11], Trillions Project [12,13], CUSPARSE [14], and Cusp [2]. Efficiently utilizing DRAM bandwidth and cache hierarchies has also been a primary focus in improving SpMV performance [1,5].



Although prior research has significantly improved the performance of SpMV computations through optimized storage formats and hardware-specific libraries, the application of machine learning to dynamically predict the optimal number of threads remains underexplored. Additionally, existing studies have not fully utilized the structure of diverse real-world matrices to optimize thread configurations. This study addresses these gaps by introducing a machine learning-driven approach to predict optimal thread counts and enhance SpMV performance across multiple domains. To this end, we propose Elegante, a novel tool designed to improve the efficiency of SpMV within shared-memory architectures. Elegante predicts the optimal number of threads by leveraging the compressed sparse row (CSR) format and identifying the most effective configuration for SpMV computations.



Our dataset comprised matrices obtained from the University of Florida’s (UOF) Suite of Sparse Matrix Market Collection [3,6]. We collected a dataset comprising nearly 1000+ real-world matrices from diverse application domains. These sparse matrices underwent conversion from the matrix market format to the compressed sparse row (CSR) format, and computations of SpMV were performed using multiple threads and then pertinent features of the sparse matrices were extracted. Subsequently, the minimum, default OpenMP, and maximum execution times corresponding to the number of threads for each matrix were collected. Following dataset preparation, we employed a variety of base and ensemble machine learning models to predict the near-optimal threads for achieving the best solution for SpMV computation. During the training phase, 90% of the dataset was used, while the remaining 10% was reserved for testing, as depicted in Figure 2.



This study makes the following contributions:




	
Propose, develop, and assess a machine learning tool designed to determine optimal number of thread configurations for SpMV, thereby enhancing overall performance of the SpMV kernel;



	
Train and test the tool utilizing an extensive dataset comprising nearly 1000+ real-world matrices sourced from 46 application domains such as computational fluid dynamics, 2D/3D problems, computer vision, and robotics;



	
Conduct an extensive performance modeling and evaluation, employing a range of machine learning techniques to optimize SpMV computations under varying conditions, ensuring robustness and adaptability in real-world scenarios.








The sparse matrix was converted from a matrix market format to a CSR format, and then the sparse matrix–vector product was executed with different numbers of threads. Subsequently, the selected features, along with the optimal number of threads, were used for the training phase.



During the training phase, we used the number of threads as the target variable. The training datasets were utilized to train various base and ensemble predictive models, including random forest (RF), decision tree (DT), logistic regression (LR), gradient boosting (XGB), ridge regression (RR), and k-nearest neighbor (K-NN). These models were evaluated using relative mean error (RME), and the geometric mean was employed to assess performance gain. To the best of our knowledge, this research represents a pioneering effort in leveraging the inherent structure of matrices to predict the near-optimal number of threads. Elegante, the tool introduced in the research, derived its name from the Spanish language, where it means “intelligent” or “smart”.



The rest of the sections of this paper are organized as follows: Section 2 provides an in-depth review of the literature and background information related to sparse matrix–vector (SpMV) computations. Section 3 outlines the proposed methodology and design. Detailed results and evaluations are presented in Section 4. Section 5 present the limitations of the proposed solution. Finally, Section 6 discusses the conclusions of our research and potential avenues for future exploration. Fundamental symbols used in this study are shown in Table 1.




2. Literature Survey


SpMV is the most important algorithm being used to solve the commonly used sparse linear equations on both the CPU and GPU architectures. GPU computing overhead is minimized by focusing on the optimization of parallel SpMV on CPU–GPU heterogeneous platforms to attain a high performance. Pinar, A. et al. [3] proposed an adoptive SpMV optimizer to achieve the improved performance of SpMV and minimize overhead for all sparse matrices by analyzing the performance bottleneck of the input matrix on specific platforms. The detection process of the bottleneck is taken as a classification problem in which two classifiers are used, i.e., profile-guided classifier, which emphasizes the online profiling to classify the matrix, and feature-guided classifier that is pre-trained by machine learning models to check the properties of matrices. After the detection of the bottleneck, appropriate optimization is adopted to handle these bottlenecks on CSR and inspect executive CSR storage formats. The proposed optimizer is assessed on one multi-core and two many-core processors (Intel’s Xeon Phi and Intel Broadwell processors) that optimize the maximum number of matrices and provide outstanding speedups.



Ahmed et al. [15] introduced AAQAL, a machine learning-based tool designed to forecast the optimal block size setting for BCSR. The researcher employed five machine learning models to predict the near-optimal block size for the best solution of SpMV computation and attained a performance level of 93.47% compared to manual or random block size selection, indicating a significant improvement in practical outcomes.



Dufrechou, E. et al. [16] assessed over 3000 matrices from diverse domains. They utilized machine learning to create classifiers to predict the best SpMV method for each matrix on a specific parallel platform with over 80% accuracy. Their approach resulted in significant reductions in both execution time and energy consumption.



Usman, Sardar, et al. [17] introduced ZAKI, a machine learning tool designed to predict the optimal number of processes for SpMV computations on distributed memory machines, irrespective of the specific sparse matrix. They trained and tested ZAKI on a dataset of nearly 2000 matrices from 45 application domains. The tool utilizes three machine learning algorithms: decision tree, random forest, and gradient boosting. They achieved an 85.1% performance gain by selecting the optimal SpMV kernel.



Nie, Jing, et al. [18] designed a diverse parallel computing method for SpMV, built on a hybrid CPU–GPU computing model by utilizing the capability of “CPU” and “GPU” to obtain the improved performance. Multiple cores in CPU enhance its parallel computing abilities, because of its unbalancing of nonzero elements. The sparse matrix assigned to the CPU and GPU for instantaneous computation is divided into two parts by the hybrid storage format using the sparse matrix “partitioning strategy” to give the improved computing performance of SpMV.



Williams, S. et al. [19] illustrated the structure and execution processes of adaptive SpMV by introducing a dynamic task scheduling the framework to increase the utilization of CPU and GPU on heterogeneous platforms. To cover the data allocation overhead between two processing units, i.e., “CPU” and “GPU”, a double-buffering scheme along with the CPU- and GPU-based SpMV kernels are established to achieve the adaptability of multiple sparse matrices and consequential improvements.



Yesil, Serif, et al. [20] proposed a WISE tool, a machine learning framework to predict the speedup of SpMV methods for specific sparse matrices. Using a unique feature set, WISE identifies the best SpMV method for each matrix. Testing on nearly 1500 matrices showed a 2.4× average speedup over Intel’s MKL on a 24-core server.



Bylina, Beata, et al. [21] described a merge-based parallel technique using the CSR format for calculating SpMV computation. CsrMV mounts an impartial multi-partitioning of the input dataset, and the workload offered to each processing element is tightly bound through a 2D-merged base decomposition. CsrMV evaluated both CPU and GPU micro-architectures and concluded that the merged-base method gives the predictable performance on CsrMV.



Zhao, Haoran, et al. [22] explained the parallelization of SpMV operations on a sparse matrix and dense vector multiplication using a multicore processing unit. A distributed multi-nodal algorithm is used by choosing the high-performance cluster to speed up the SpMV computations. Other SPARSKIT library-based parallel types of algorithms are utilized in a multicore architecture. Multiple architectures, tools, and different-sized matrices are compared using different algorithms, and the conclusion is that the use of hardware architectures, MIC architectures, and GPU cards to enhance the calculation speed improves the overall performance.



Usman S. et al. [23] introduced a ZAKI+ data-driven machine learning approach for optimizing parallel sparse matrix (SpMV) computations in cyber–physical systems (CPSs). They trained and tested the tool by leveraging three ML methods: decision tree, random forest, and extreme gradient boosting and over 2000 real-world sparse matrices from diverse domains. ZAKI+ achieved a 4.24× performance improvement over MPI default mapping policies, marking a significant advancement in automating and enhancing SpMV computations.



Gao, Jianhua, et al. [24] introduced a machine learning-driven approach to optimize SpMV on GPUs by predicting optimal thread configurations through matrix partitioning and kernel specialization. In contrast, our work focuses on optimization of SpMV on the CPU architecture.



Israt et al. [25] investigate the optimization of sparse matrix–vector (SpMV) multiplication on GPUs by utilizing machine learning techniques. They explored two key questions: predicting the best sparse matrix format for SpMV based on an unseen matrix and forecasting the execution time for that matrix across different formats. By identifying a small set of relevant features from the sparse matrices, they achieved approximately 88% accuracy in predicting the best format among six well-known formats and a relative mean error of about 10% in execution time predictions. This approach demonstrates the potential of machine learning to enhance SpMV performance in computational applications.



Furuhata et al. [26] applied a machine learning approach to predict the best sparse matrix–vector multiplication (SpMV) implementation, focusing on minimizing performance loss by considering performance differences between implementations. Unlike previous methods, their model prioritizes avoiding the mis-prediction of matrices where performance losses are high. This approach helps ensure that low-performance implementations are not selected, leading to overall improved expected performance. The evaluation results demonstrate clear advantages over earlier methods that did not account for these performance gaps.




3. Methodology and Design


The proposed methodology consists of four main phases: collection of sparse matrices, conversion of sparse matrices to CSR format, feature extraction, and application of machine learning algorithms for predicting the optimal thread configuration. In the initial data preparation phase, we collected approximately 1000+ matrices from 46 diverse application domains. Subsequently, 14 sparse matrix features are extracted by leveraging the sparse matrix structure. Our training dataset contains multiple features, specifically targeting the optimal number of threads, which are determined with minimal execution time. The predictive models we developed aim to forecast the optimal number of threads, and its performance is validated against arbitrary matrices. A critical aspect of our approach lies in selecting the appropriate set of features. To mitigate the risk of over-fitting, which may occur when the number of features is excessively large for the training set, we emphasized the importance of dimensionality reduction and feature selection. These measures are crucial for maintaining the model’s generalization and preventing it from closely fitting to the training data. Let us denote the number of threads as T and Ti as the execution time of the ith matrix, where 0 < i < N and N is the total number of matrices in our dataset. For each matrix, the execution time is observed for different numbers of threads, and the corresponding minimum and maximum times are recorded as can be seen in Formulas (1) and (2):


    T   i m i n   =   T   i m i n       T   1 … . ,     T   2 …     T   3 ,   … …   T   n      



(1)






                  T   i m a x   =   T   i m a x       T   1 … ,     T   2 …     T   3 ,   … …   T   n      



(2)







In the context of optimizing SpMV computations in a shared memory architecture through machine learning models, we followed the following key steps:




	
Data Collection: Real-world matrices were gathered from the Suit Sparse Matrix Market Collection (UOF) [27];



	
Data Transformation: The sparse matrices were transformed from the matrix market format to the Compressed Sparse Row Format. Subsequently, SpMV computations were performed, utilizing different numbers of threads;



	
Feature Extraction: In this step, fourteen sparse matrix features were extracted, leveraging the matrix structure. Feature extraction included characteristics derived from the matrix structure;



	
Application of Machine Learning Models: Five different machine learning models were employed in this step to predict the number of threads, aiming to identify the near-optimal number of threads;



	
Model Evaluation: In this phase, predictive models were evaluated using relative mean error. This metric provides insight into the effectiveness of the models in predicting the optimal number of threads. To assess the performance of our proposed model, we employed the geometric mean of normalized performance (GMNP). This metric is computed as the product of the ratios of predicted execution times to the best execution times across all matrices in a test set.








3.1. Construction of Dataset


Data used for training are produced by using sparse matrices taken from “Suite Sparse market collection”. More than 1000 matrices were selected from a wide range of applications from multiple domains (see Table 2). While creating dataset, each matrix is executed with different thread configurations and target variables or label is selected for which a matrix gives minimum execution time. Table 2 presents the application domains and one sample sparse matrix from each domain encompassing 46 distinct domains. Column 1 displays the names of the matrices, and column 2 indicates the specific application domains. The number of rows and columns of matrices is given against their application domains in column 3 (row count) and column 4 (column count). The largest matrix used in the study contained 13, 75,396 non-zeros and belonged to a specific domain of Structural Problem.




3.2. Identification of Features


Table 3 lists the “sparse matrix features” as well as their complexity. Based on the computational complexity and significance of the features, they are categorized into two sets: basic features and high-complexity features. The names of the selected features are described in the second column, and the description is given in column 3. The formulas for the calculation of these features are listed in column 4 of the table. The last column shows the complexity measures related to the presented features. Features with   ∅ ( 1 )   complexity are considered basic features, while those with   ∅ ( M )   and   ∅ ( 2 M )   complexities are classified as high-complexity features.




3.3. Data Labeling and Training and Testing Phases


The dataset is generated by executing the provided matrix on multiple processes and observing the minimal execution time. The number of threads with minimal execution time is taken as label for every sparse matrix, and that time was considered the best execution layout for the matrices. The matrix is executed 2k times on a single thread to make the matrix anomalies free and to estimate the execution time through average recorded execution time on each process. The presented model trained on 90% data and is tested on remaining 10% as shown in Figure 3.




3.4. Feature Scaling


Feature scaling is a widely used technique in machine learning and statistics that involves standardizing the range of independent variables or data features to ensure that all features are equally important in the model. This is crucial because many algorithms can be affected by the magnitude of their features, leading to poor performance. In our study, we used min–max scaling, which transforms the features to a range of 0 to 1, as shown in Equation (3):


  X n o r m =    X − X m i n   X m a x − X m i n     



(3)








3.5. Model Evaluation Phase


After constructing the models, the relative mean error was used to assess their performance. Predictive regression techniques are employed that utilize the sparsity pattern of the matrix to predict the best number of threads for a specific sparse matrix. The objective is to determine the best-performing algorithm by evaluating the RME metrics, as specified in Equation (4):


  R M E =    1   P      ∑  i = 1   P       y − y ^   y       



(4)




where y is the actual value, y^ is the predicted value, and P is the number of observations.





4. Result and Analysis


4.1. Software and Hardware


Experiments were conducted on an AMD EPYC 7401P, which is considered a server-grade CPU with 24 physical cores (two threads per core) and supports the Intel hyper-threading technology. This processor is commonly used in high-performance computing and data center environments for parallel and multitasking computing. The software/libraries employed in this study for SpMV computations are outlined in Table 4.




4.2. Execution Time Analysis of SpMV Computations


The SpMV computations using a CSR storage format are executed across various numbers of threads. For each matrix, the maximum, default OpenMP, and minimum execution times (in seconds) were determined. Figure 4 and Figure 5 show a comparison of the execution times for SpMV computations on the dataset that is sorted in ascending order based on the minimum to maximum number of rows and non-zero elements (nnzs), respectively. In both figures, the X-axis organizes different matrices from diverse application domains based on the minimum to maximum sorting of rows and nnzs. Meanwhile, the Y-axis displays the execution times (s) for SpMV computations on a logarithmic scale in seconds.




4.3. Speedup


Figure 6 and Figure 7 illustrate the speedup achieved for the complete dataset when organized by row- and nnz-sorted datasets. The default and maximum speedups are calculated by using Formulas (5) and (6). The X-axis shows the number of matrices in our entire dataset, while the Y-axis portrays the speedup relative to both the default OpenMP configuration and worst-case scenarios. The speedup metrics against the worst-case scenario are indicated in red, whereas those against the default OpenMP speedup are in blue. Similarly, Figure 8 and Figure 9 present a comparative analysis of execution times across different application domains, in the same order as presented in Table 2. Conversely, Figure 10 and Figure 11 show the attained speedup leveraging the complete dataset. This comparative visualization illustrates the performance variations and optimizations across diverse application domains, emphasizing the effectiveness of the proposed approach in enhancing computational efficiency.


  S p e e d   u p   M a x =      T   i m a x       T   i m i n         



(5)






  S p e e d   u p   D e f a u l t =      T   i d e f       T   i m i n         



(6)








4.4. Predictive Analysis


Our proposed methodology concentrates on predicting the near-optimal number of threads through the analysis of the sparse matrix structure. To achieve this goal, we employed six predictive machine learning models: decision tree (DT), random forest (RF), logistic regression (LR), ridge regression (RR), gradient boosting (GB), and k-nearest neighbor (K-NN). The performance of these models is evaluated using relative mean error (RME). We outlined the details of the basic and important features in Table 3, where we categorized the features based on their complexity into three distinct categories: full feature set, basic feature set, and important feature set. The basic feature set contains those features which do not require a full scan of the matrix, while the identification of important features is accomplished through the utilization of Sci-kit-Learn’s integrated feature importance metric. This metric facilitates the calculation of scores corresponding to each machine learning algorithm employed in the study. The prominent features, identified by their highest feature importance scores, are selected as significant contributors within the dataset as illustrated in Figure 12.



Figure 13 presents the relative mean error (RME) scores with all features for various machine learning models, providing insights into their predictive performance. Lower RME values indicate better model accuracy, meaning that the model predictions are closer to the actual values. In this case, RF is the top-performing model with the lowest RME score of 0.449, indicating it made the fewest prediction errors and is thus the most accurate. K-NN follows with an RME score of 0.482, also showing strong performance. GB, with an RME score of 0.52, and the DT model, with a score of 0.533, perform moderately but are less accurate than RF and K-NN. Finally, LR and RR have the highest RME scores of 0.563, meaning they are the least accurate models in this comparison. Overall, the evaluation shows that RF and K-NN perform the best, while LR and RR lag behind in accuracy.



Figure 14 shows the RME scores of various machine learning models when evaluated using only the most important features. In this case, RF performs the best, achieving the lowest RME score of 0.454, indicating it has the most accurate predictions. K-NN follows closely with an RME score of 0.473, also demonstrating a solid performance. GB has a moderate RME score of 0.498, while both LR and RR have higher RME scores of 0.562, indicating more significant prediction errors. The DT model has the highest RME score at 0.591, meaning it performed the least accurately in this case. Overall, RF and K-NN perform the best with important features, while DT shows the weakest performance.



Figure 15 shows a comparison of the RME scores using the basic features. This chart compares the relative mean error (RME) scores of different models when evaluated using basic features. DT actually performs the best with the lowest RME score of 0.457, indicating the fewest prediction errors with basic features. RF follows with an RME score of 0.479, showing a solid performance. K-NN has an RME score of 0.467, performing slightly better than RF. GB comes in next with a score of 0.492, showing moderate accuracy. Both LR and RR have the highest RME scores at 0.551, indicating they make the most significant errors in this context. Overall, DT shows the best performance with basic features, while LR and RR demonstrate the weakest accuracy.




4.5. Performance Gain


In this section, we present an evaluation of our proposed model, focusing on the analysis of execution time as depicted in Figure 16, Figure 17 and Figure 18. We conducted evaluations using all features, as detailed in the corresponding Table 3. The “minimum time” denotes the idle case scenario associated with our target variable selection, and default is considered when using the OpenMP default configurations. To assess the performance of our proposed model, we employed the geometric mean of normalized performance (GMNP). This metric is computed as the product of the ratios of predicted execution times to the minimum execution times across all matrices as shown in Equation (7). The formula for GMNP is can be expressed as follows:


  G M N P =       ∏  i = 1   n         m i n i m u m   i       P r e d i c t e d   i            1 / n    



(7)




where n is the total number of matrices in the test set. Here, minimumi is the execution time achieved for the ith matrix among all threads, while predictedi represents the execution time predicted by our machine learning model for that matrix.



Figure 16, shows a comparison of Elegante and the other execution times for all 1000+ matrices. It is evident from the figure that Elegante performed well with a significant margin. Figure 17 illustrates the comparison of execution times among the minimum (best), predicted, maximum, average, and default OpenMP configurations for the test set. The average is a scenario where the number of threads is selected randomly.



In Figure 18, we employed Equation (7) to evaluate the performance gain. Our proposed methodology achieved 61.95% of the highest achievable performance, and is 7.33 times faster, demonstrating a significant disparity from the default OpenMP configuration policy and traditional practice methods of manually or randomly selecting the number of threads.





5. Limitation of the Proposed Solution


Our proposed methodology predicts the near-optimal number of threads based on the sparse matrix structure and shows considerable performance gain. The limitations associated with the proposed solution are highlighted in this section. Firstly, the selection of 14 sparse matrix features might not capture all the relevant factors that influence SpMV computation, potentially omitting important characteristics. Secondly, while the machine learning model aims to predict the optimal number of threads for SpMV computation, the actual optimal number may be affected by various factors not considered in the study, such as hardware architecture, memory bandwidth, and specific SpMV algorithm implementations. Thirdly, the machine learning model trained on the specific dataset may not generalize well to different types of matrices or various hardware configurations. Lastly, feature extraction and performing SpMV computations with different numbers of threads could introduce additional computational overhead that is not reflective of real-world scenarios.




6. Conclusions


Currently, a significant number of applications in computer graphics, research operations, robotics, computer networking, social media analytics, and other fields rely on solving sparse linear equation systems. These applications play crucial roles in the design, construction, and management of smart societies and cities. The performance of SpMV, which is used to solve these linear equations, can be influenced by various factors that affect computation time. The performance of SpMV is mostly affected by the sparsity pattern of the matrices involved. A predictive regression model is proposed, implemented, and assessed to optimize the performance of SpMV across various matrix types. The model is trained and tested for more than 1000+ matrices taken from 46 application domains. To predict the optimal number of threads for each matrix, the sparse matrix is first converted into the CSR format and executed on different numbers of threads.



The future development of the proposed model can be significantly enhanced by expanding the dataset size, incorporating additional application domains, and increasing the number of relevant features. Additionally, enhancing the size of sparse matrices, implementing advanced machine learning and deep learning algorithms, and transitioning to a platform with a greater number of cores will optimize parallel processing capabilities and improve the model’s performance. Integrating the model into a hybrid system with scheduling policies can further maximize parallelism and efficiency.
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Figure 1. Sparse vs. dense matrix. 
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Figure 2. Proposed methodology. Data preparation and training and testing phases. 
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Figure 3. Training and testing phases. 






Figure 3. Training and testing phases.



[image: Information 15 00685 g003]







[image: Information 15 00685 g004] 





Figure 4. Execution time comparison as row-sorted data. 
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Figure 5. Execution time comparison as nnz-sorted data. 
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Figure 6. Speedup row-sorted data. 
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Figure 7. Speedup NNZs-sorted data. 
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Figure 8. Domain-wise execution time (Application Domains 1 to 24). 
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Figure 9. Domain-wise execution time (Application Domains 25 to 46). 
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Figure 10. Domain-wise speedup (Application Domains 1 to 24). 
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Figure 11. Domain-wise speedup (Application Domains 25 to 46). 






Figure 11. Domain-wise speedup (Application Domains 25 to 46).



[image: Information 15 00685 g011]







[image: Information 15 00685 g012] 





Figure 12. Comparison of important features. 






Figure 12. Comparison of important features.



[image: Information 15 00685 g012]







[image: Information 15 00685 g013] 





Figure 13. Model evaluation with all features. 
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Figure 14. Model evaluation with important features. 
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Figure 15. Model evaluation with basic features. 
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Figure 16. Execution time comparison of Elegante with default, minimum, maximum, and average. 






Figure 16. Execution time comparison of Elegante with default, minimum, maximum, and average.



[image: Information 15 00685 g016]







[image: Information 15 00685 g017] 





Figure 17. Performance difference among minimum, Elegante, and default. 
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Figure 18. GMNP of proposed methodology. 
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Table 1. Fundamental symbols used in the study.
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	Symbol
	Name
	Symbol
	Name





	NNZs
	Number of non-zeros
	CSR
	Compressed sparse row



	A
	M × N matrices
	BCSR
	Block compressed sparse row



	M
	Number of rows
	
	



	N
	Number of columns
	
	



	X
	N × 1 dense vector
	
	



	Y
	M × 1 output vector
	
	



	U
	Number of matrices
	
	



	F
	Sparse matrix feature
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	Matrix Name
	Application Domain
	Rows
	Columns
	NNZs





	mcfe
	2D/3D Problem
	765
	765
	24,382



	fs_760_1
	2D/3D Problem Sequence
	760
	760
	5976



	mplate
	Acoustics Problem
	5962
	5962
	74,076



	Sandi_sandi
	Bipartite Graph
	314
	360
	613



	bayer05
	Chemical Process Simulation Problem
	3268
	3268
	27,836



	circuit_3
	Circuit Simulation Problem
	12,127
	12,127
	48,137



	fpga_dcop_01
	Circuit Simulation Problem Sequence
	1220
	1220
	5892



	f855_mat9
	Combinatorial Problem
	2456
	2511
	171,214



	ex31
	Computational Fluid Dynamics Problem
	3909
	3909
	115,357



	cavity16
	Computational Fluid Dynamics Problem Sequence
	4562
	4562
	138,187



	QRpivot
	Counter Example Problem
	660
	749
	3808



	ibm32
	Directed Graph
	32
	32
	126



	SmaGri
	Directed Multigraph
	1059
	1059
	4919



	CollegeMsg
	Directed Temporal Multigraph
	1899
	1899
	20,296



	gre_1107
	Directed Weighted Graph
	1107
	1107
	5664



	soc-sign-bitcoin-alpha
	Directed Weighted Temporal Graph
	3783
	3783
	24,186



	young2c
	Duplicate Acoustics Problem
	841
	841
	4089



	pcrystk02
	Duplicate Materials Problem
	13,965
	13,965
	491,274



	bcsstk12
	Duplicate Structural Problem
	1473
	1473
	17,857



	lshp1009
	Duplicate Thermal Problem
	1009
	1009
	3937



	orani678
	Economic Problem
	2529
	2529
	90,158



	qc2534
	Electromagnetics Problem
	2534
	2534
	232,947



	onetone2
	Frequency Domain Circuit Simulation Problem
	36,057
	36,057
	227,628



	cari
	Linear Programming Problem
	400
	1200
	152,800



	sctap1-2c
	Linear Programming Problem Sequence
	3390
	7458
	21,854



	crystm01
	Materials Problem
	4875
	4875
	55,107



	reorientation_4
	Optimal Control Problem
	2717
	2717
	17,613



	reorientation_3
	Optimal Control Problem
	2513
	2513
	32,166



	zenios
	Optimization Problem
	2873
	2873
	15,032



	bp_0
	Optimization Problem Sequence
	822
	822
	3276



	gemat1
	Power Network Problem
	4929
	10,595
	47,369



	rbsa480
	Robotics Problem
	480
	480
	17,088



	jpwh_991
	Semiconductor Device Problem
	991
	991
	6027



	rw496
	Statistical/Mathematical Problem
	496
	496
	1859



	pct20stif
	Structural Problem
	52,329
	52,329
	1,375,396



	fs_760_2
	Subsequent 2D/3D Problem
	760
	760
	5976



	adder_dcop_02
	Subsequent Circuit Simulation Problem
	1813
	1813
	11,246



	cavity17
	Subsequent Computational Fluid Dynamics Problem
	4562
	4562
	138,187



	bp_1600
	Subsequent Optimization Problem
	822
	822
	4841



	nemeth21
	Subsequent Theoretical/Quantum Chemistry Problem
	9506
	9506
	591,626



	conf5_0-4x4-10
	Theoretical/Quantum Chemistry Problem
	3072
	3072
	119,808



	epb1
	Thermal Problem
	14,734
	14,734
	95,053



	fe_body
	Undirected Graph
	45,087
	45,087
	163,734



	cage
	Undirected Graph Sequence
	366
	366
	2562



	G27
	Undirected Random Graph
	2000
	2000
	19,990



	nopoly
	Undirected Weighted Graph
	10,774
	10,774
	40,808



	G7
	Undirected Weighted Random Graph
	800
	800
	19,176
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	Set
	Features
	Description
	Formula
	Complexity





	Basics Features
	   M   
	Number of rows
	M
	   ∅   1     



	
	   N   
	Number of columns
	N
	   ∅   1     



	
	   M + N   
	row + column
	M+N
	   ∅   1     



	
	   n n z   
	