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Abstract: Landslides cause significant human and financial losses in different regions of the world.
A high-accuracy landslide susceptibility map (LSM) is required to reduce the adverse effects of
landslides. Machine learning (ML) is a robust tool for LSM creation. ML models require large amounts
of data to predict landslides accurately. This study has developed a stacking ensemble technique
based on ML and optimization to enhance the accuracy of an LSM while considering small datasets.
The Boruta–XGBoost feature selection was used to determine the optimal combination of features.
Then, an intelligent and accurate analysis was performed to prepare the LSM using a dynamic
and hybrid approach based on the Adaptive Fuzzy Inference System (ANFIS), Extreme Learning
Machine (ELM), Support Vector Regression (SVR), and new optimization algorithms (Ladybug Beetle
Optimization [LBO] and Electric Eel Foraging Optimization [EEFO]). After model optimization, a
stacking ensemble learning technique was used to weight the models and combine the model outputs
to increase the accuracy and reliability of the LSM. The weight combinations of the models were
optimized using LBO and EEFO. The Root Mean Square Error (RMSE) and Area Under the Receiver
Operating Characteristic Curve (AUC-ROC) parameters were used to assess the performance of these
models. A landslide dataset from Kermanshah province, Iran, and 17 influencing factors were used to
evaluate the proposed approach. Landslide inventory was 116 points, and the combined Voronoi and
entropy method was applied for non-landslide point sampling. The results showed higher accuracy
from the stacking ensemble technique with EEFO and LBO algorithms with AUC-ROC values of
94.81% and 94.84% and RMSE values of 0.3146 and 0.3142, respectively. The proposed approach can
help managers and planners prepare accurate and reliable LSMs and, as a result, reduce the human
and financial losses associated with landslide events.

Keywords: landslide susceptibility mapping; stacking ensemble technique; machine learning;
Boruta–XGBoost; feature selection; meta-heuristic algorithms

1. Introduction

Natural hazards and disasters pose serious threats to human society. Over the last
decade, these disasters have caused approximately 45,000 deaths annually [1,2]. Landslide
phenomena in mountainous areas involve the downhill movement of debris, soil, and rocks
under the force of gravity [3,4]. The types of landslides include debris flow, rockfall, rock
slide, mudslide, and rock avalanche [5]. Natural factors (including rainfall, rapid melting
of snow, and earthquakes) and human activities (including construction of roads and
infrastructure, destruction of vegetation, and change in land use) contribute to landslides [6].
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Therefore, these factors make this area prone to landslides. Landslides are widespread,
and 4.9% of all natural disasters were related, causing 1.3% of natural disaster casualties
between 1990 and 2015 [7]. Global statistics show that more than 3876 landslides were
reported worldwide from 1995 to 2014, resulting in 11,689 injuries and 163,658 deaths [8].

Although natural hazards cannot be prevented, their negative impacts can be reduced
by developing effective planning approaches. Identifying landslide-prone areas in different
regions to prepare a landslide susceptibility map (LSM) is an effective solution for minimiz-
ing its consequences [9]. The LSM shows the probability of a future landslide in areas with
similar geological, topographic, and hydrological characteristics based on past landslide
events. The points with landslides have the highest susceptibility (equal to 1), and those
without have the lowest susceptibility (equal to 0). Finally, for the entire region, we have
the range from 0 to 1 to estimate the susceptibility. An LSM has been recognized as an
important criterion in many research studies and practical actions at global and regional
levels in land use management and spatial planning, directly affecting policies, especially in
mountainous areas [10]. Hence, it is necessary to develop efficient and reliable approaches
and tools for LSM preparation [11].

Researchers have used various approaches to prepare an LSM. In previous studies,
machine learning (ML) models combined with geographic information systems (GIS) were
used to prepare an LSM [12,13]. The advantage of ML models is the discovery of complex and
nonlinear relationships between types of natural hazards and their factors [14]. In the literature,
models such as Random Forest (RF) [15], Support Vector Regression (SVR) [16], Adaptive
Neuro-Fuzzy Inference System (ANFIS) [1,6], Artificial Neural Networks (ANNs) [17], and
K-Nearest Neighbors (KNNs) [18] have been continuously observed.

The performance of ML models, owing to the difference in (i) the complexity of
each area, (ii) the required data, and (iii) the amount of available information on factors
influencing landslides, shows very diverse results and efficiency in different areas [7,10].
Therefore, ensemble learning techniques have been introduced to overcome the limitations
of individual models and obtain more accurate landslide susceptibility maps than those
of individual models [19,20]. Ensemble learning techniques optimize landslide hazard
susceptibility modeling; thus, the resulting model performs better [21,22]. Ensemble
learning techniques can be divided into two types: homogeneous and heterogeneous. The
homogeneous group uses a model as the base [23]. In the heterogeneous group, several
models are trained with the same dataset [24].

Hong combined the best first decision tree (BFT) with Bagging, Cascade Generalization,
Decorate, MultiboostAB, and Random SubSpace techniques to prepare an LSM. The results
showed that in this homogeneous model, the five combined models performed better than
the single BFT model [25]. Arab Ameri et al. implemented the credit decision tree (CDT)
base model along with three ensemble techniques, CDT–Bagging, CDT–Multiboost, and
CDT–SubSpace, to prepare the LSM of the Taleghan Basin of Iran. The AUC results of the
homogeneous ensemble techniques were 0.9890, 0.9950, and 0.9950, respectively, which
were better than those of the independent model with an AUC of 0.9190 [19].

Li et al. applied three ensemble techniques of Bagging, Dagging, and Decorate on
the Radial Basis Function (RBF) model in the CaoBang province of Vietnam. According
to the evaluation parameters, Bagging and Dagging had the highest AUC, with values of
0.9800 and 0.9690, respectively, and the other two models, with a value of 0.8990, showed
equal performance [23]. Tin Bi et al. implemented a decision tree (DT) in combination with
Bagging, Adaboost, and MultiBoost along the national road northwest of Vietnam. The
combined models using Bagging and Multiboost, with AUC values of 0.9170 and 0.9100,
respectively, performed better than the other two models [26]. Zhao et al. implemented
four models in China: ANN, C5.0, Bagging–ANN, and Boosting–C5.0. The Bagging–ANN
and Boosting–C5.0 with Root Mean Square Error (RMSE) values of 0.2300 and 0.2350,
respectively, produced the best results [27]. In another study in the Karakoram National
Park region of Pakistan, Ali et al. combined logistic regression (LR), KNN, and SVR with
ensemble techniques, including XGBoost, Dagging, AdaBoost, Cascade Generalization,
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Random Forest, and Light Gradient-Boosting Machine. XGBoost had the best output among
the combined models, with an AUC of 0.9100. Yu et al. selected LR, SVR, RF, and Deep
Learning in the Three Valleys region of China and applied the ensemble heterogeneous
stacking approach to these models. The AUC values for the models were 0.7960, 0.8050,
0.6650, and 0.8540, respectively, which were weaker than those for stacking with an AUC of
0.8800 [16]. Lu et al. used three classical neural network models, including the Multilayer
Perceptron (MLP), Convolutional Neural Network (CNN), and Gated Recurrent Unit
(GRU), as the base models for the stacking technique. The results of the AUC for individual
MLP, CNN, and GRU models were 0.84, 0.86, and 0.86, respectively, while the stacking
achieved a value of 0.88 [28].

According to the reviewed literature, ensemble learning techniques have resulted in
higher accuracy in LSM preparation. In heterogeneous ensemble learning, owing to the use
of different base models, it is possible to overcome the limitations of different ML models
and improve their accuracy and performance. However, the success of ensemble learning
techniques depends on the base models and the weight of the base models to combine their
results at the decision level. SVR, Extreme Learning Machine (ELM), and ANFIS were used
in this study. These base models have hyper-parameters whose optimal values strongly
affect the performance of the model. Therefore, the new Ladybug Beetle Optimization
(LBO) and Electric Eel Foraging Optimization (EEFO) meta-heuristic algorithms have been
used to obtain the optimal values of the hyper-parameters and the weight of the base
models. Additionally, machine learning models highly depend on suitable training data
(landslide and non-landslide) and the optimal selection of features. Non-landslide data
are usually estimated for locations where landslides have not occurred. For example, it
is possible to sample data in non-landslide areas as non-landslide, although these data
have many environmental similarities to landslide areas. This issue conflicts with the
purpose of the study, which is to identify landslide-prone areas based on the similarity
of environmental factors with landslide occurrence areas. Therefore, the first initiative in
this study is to determine non-landslide points with a combination of the Voronoi diagram
and Shannon entropy. After determining the most important influential features through
Borota-XGBoost, we make sure that there is no dependence between them using VIF. With
LBO and EEFO new meta-heuristic algorithms, we determine the hyper-parameters of
three machine learning models, and in the last step, using both algorithms, we apply a
stacking ensemble approach to three optimized basic models.

2. Study Area and Spatial Dataset

The study area is Kermanshah Province, located in the western region of Iran (Figure 1).
This province has an area of 25,045 km2 and is located in the middle of the western side of
the country at 45◦24′ and 48◦07′ E and 33◦40′ and 35◦18′ N. The lowest and highest eleva-
tions are 116 m and 3359 m, respectively. Kermanshah is exposed to humid Mediterranean
fronts, which, when colliding with the Zagros highlands, cause snow and rain. Generally,
this province has two climates: tropical and cold. The average rainfall in different regions
of the province fluctuates between 300 and 800 mm/yr. The province has diverse vegeta-
tion, including forests and tropical, cold, and temperate pastures. Kermanshah is located
on the high Zagros fault, which is one of the region’s most active faults; therefore, this
region is prone to landslides [29]. These faults are in the northeast–southwest direction [30].
Landslides are exacerbated by triggering factors such as rainfall and earthquakes.

2.1. Landslide Inventory Map

Data on 116 historical landslides scattered throughout the province were collected
from the Forestry and Watershed Organization [31]. The landslide index map documents
the landslide types. A landslide inventory is required to formulate models related to
landslide risk or susceptibility.
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Figure 1. Study area: Kermanshah Province, Iran, and historical landslide events.

2.2. Influential Factors on Landslide

A landslide is a complex phenomenon, and discovering its controlling factors and
mechanisms of development in a region is not easy. Therefore, there are no single guidelines
for selecting these factors [32]. These factors can be classified from various perspectives.
In terms of structure, they can be classified as geological, hydrological, topographic, and
environmental. As shown in Table 1, a wide range of factors were used in this study to
prepare the LSM.

Table 1. Description of conditioning factors.

Class Factor Source Resolution/Scale

Topographical

Elevation Iran National Cartographic
Center

85 m

Slope

DEM Derived

Aspect

Valley Depth

Profile Curvature

Plan Curvature

Geological

Lithology

Geological Survey and
Mineral Exploration of Iran 1:100,000

Soil Type

Soil Texture

Distance to Faults

Environmental
Land Use

Distance to Roads

Hydrological

Stream Power Index

DEM Derived 85 mTopographic Wetness
Indices

Distance to Drainage Geological Survey and
Mineral Exploration of Iran

1:100,000
Drainage Density

Rainfall Iran Meteorological
Organization
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Elevation is an influential factor in landslides that is used in most models because
it affects humidity and temperature. Subsequently, both temperature and precipitation
influence soil moisture, making the region prone to landslides [15]. Slope is another
important factor, one that indicates the amount of elevation change on the surface [33].
If all the conditions are the same, landslides occur more frequently on steep slopes. A
larger slope leads to an increase in shear stress and a reduction in shear strength [34]. The
aspect obtained from the elevation map is an important variable that is related to weather
conditions (solar radiation, soil moisture, and temperature) [35]. It affects landslides
because wind direction, the amounts of sunlight, evaporation and transpiration of snow,
humidity and thickness of the soil, and vegetation growth rate vary across the different
directions of the slope [7,24].

Among hydrological factors, rainfall is a strong driver of landslides [36]. The Stream
Power Index (SPI) determines the erosion capacity of rivers that exacerbate landslides in a
region [33]. The Topographic Wetness Index (TWI) indicates the amount of soil moisture
and surface saturation [26]. Lower values are associated with steep areas, whereas higher
values are associated with flat or valley areas [4]. Distance to streams or rivers is another
influencing factor in modeling [19]. River flow reduces the soil’s shear strength, making
the land prone to landslides [37]. Geological parameters, including the lithology of the
area, soil texture, and soil type, also affect landslide occurrence [35]. Rock types vary
in their physical and mechanical properties, such as soil resistance, weathering intensity,
porosity, and permeability [7]. Soil texture affects the soil’s strength and permeability [29].
Landslides typically occur along faults [4]. Because faults are the sites of tectonic activity
that can cause landslides, they are considered a factor [29].

Excavation during road construction causes slope instability. Therefore, the distance
from the road is considered [8]. Land use factors directly or indirectly contribute to slope
stability because different types of land cover vary in infiltration rates, surface streams,
evaporation and transpiration rates, and vegetation types [34]. For example, paddy fields
lead to increased water infiltration into the soil and reduced shear strength, consequently
increasing landslide susceptibility [19]. The study region’s dense vegetation and forests
stretch from the northwest to the southeast. Most of these forests are composed of oak.
Of course, due to the indiscriminate cutting of trees, we see sparse vegetation around
dense areas. Sparse vegetation is clearly visible in areas of the northwest. This type of
vegetation is also present in the low-height areas of the west and southwest. The pastures
and agricultural lands are located in the center of the province (within the height range
of 1650–1500 m), which is the main activity of the people in this sector. There are dry
agricultural lands in the northeastern highlands (height 2000 m and above).

To create criteria maps, raster maps of the slope, aspect, plan curvature, profile curva-
ture, valley depth, SPI, and TWI were obtained from the DEM layer using ArcMap version
10.8.2 software tools. Using the Euclidean distance tool, a distance raster map was obtained
from the spatial layers of the river, faults, and roads. Four polygon layers, including land
use, lithology, soil type, and soil texture, were classified into specific classes and converted
into raster maps. Figure 2 shows the criteria maps.
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3. Materials and Methods
3.1. Variance Inflation Factor (VIF)

Eliminating factors with a high correlation helps reduce the data dimensions and
model complexity. Multicollinearity is a statistical analysis in which the number of in-
dependent factors in a multiple regression model is specified. Tolerance (TOL) and VIF
represent the correlation effects in the regression between conditional factors, as shown in
Equations (1) and (2).

Tolerance= 1 − R2
j , (1)

VIF =

[
1

Tolerance

]
, (2)

where Rj is the multiple correlation coefficient between factor j and other conditional
factors. Factors with a VIF > 10 are correlated with other factors and thus removed from
the modeling process.

3.2. Boruta–XGBoost Feature Selection Method

This hybrid feature selection method is based on the Boruta method, first proposed
by Kursa and Rudnicki in 2010 [38]. To improve the performance of Boruta, the XGBoost
algorithm can be considered as its core [39]. The algorithm operates as follows: building
shadow features (iteratively), training XGBoost models, and iteratively obtaining feature
importance [40]. Using the z-score, the most important variables for each input predictor
are determined for the repeated features. Original features with z-scores that are smaller
than the maximum z-score of the shadow features are removed. The z-score is obtained
from Equation (3).

z-score =
MDA

SD
, (3)

where MDA represents the average accuracy loss of the input and shadow variables, and
SD indicates the standard deviation of the accuracy loss.

3.3. Base Models
3.3.1. Adaptive Fuzzy Inference System (ANFIS)

Fuzzy theory is inspired by uncertainty in human life. Although a fuzzy inference
system can model complex processes using if–then rules, it cannot be trained like ML
models. To address this issue, an ANFIS, which is a combination of an artificial neural
network and a fuzzy system, was proposed by Zhang [41]. This method uses a neural
network to determine the appropriate parameters for the membership functions of the
fuzzy model. The values of these membership functions, as the ANFIS hyper-parameters,
affect the accuracy and efficiency of the model [42]. Therefore, in this study, the values of
the membership functions are optimized using meta-heuristic algorithms.

3.3.2. Support Vector Regression (SVR)

SVR is a supervised ML model that is used for regression and classification. SVR
creates a hyperplane with the largest marginal distance from the samples of two classes [43].
The larger this margin, the less influence from the outlier data. This model uses a linear
combination of the kernel function to model high dimensions and detect the complexity of
data in high dimensions [44]. The advantages of SVR include high accuracy, the ability to
manage high-dimensional data, and acceptable performance on small datasets [45]. SVR
has three parameters: the kernel, cost function, and gamma. The RBF kernel function,
defined in Equation (4), is used in this study.

K(x, xi) = exp
(
−γ∥x −xi∥2

)
, (4)

where γ is the kernel function. The three parameters, which include kernel scale parameters
(KS), the maximum deviation from targets (ε), and the positive compensation parameter



Information 2024, 15, 689 8 of 20

(which regulates the balance between complexity and estimation error [C]), are the hyper-
parameters of the SVR that should be optimized.

3.3.3. Extreme Learning Machine (ELM)

An ELM is a single hidden layer feedforward neural network (SLFN), an advanced
and more efficient version of the perceptron neural network. The neurons in the hidden
layer are randomly generated and are independent of the training data. The weights
and biases of the input layer are randomly selected. The output weight can be obtained
using the generalized Moore–Penrose inverse analytical relation [46]. Owing to the type of
training process of this network, an ELM can solve regression problems with less runtime
and higher speed than conventional ANNs [47].

For N distinct samples (Xi,Ti), Xi = [xi1,xi2,· · · xin]T ∈Rn and Ti = [ti1,ti2,· · · tim]T ∈Rm.

Standard SLFNs with
∼
N hidden neurons and an activation function g(x) are mathematically

modeled using Equation (5).

∑
~
N
i=1 βig(wi·Xi + bi) = oj j = 1, 2, . . . N (5)

where wi = [wi1,wi2,· · ·win]T is the weight vector connecting inputs to the hidden layer,
βi = [βi1,βi2,· · · βim]T is the weight vector of the i-th hidden neuron with output neurons,
oj = [oj1,oj2,· · · ojm]T is the j-th output vector, and bi is the threshold of the i-th neuron. In
this study, a hyperbolic function is used as the activation function. The weights and biases
are our hyper-parameters, which are adjusted using meta-heuristic algorithms.

3.4. Meta-Heuristic Algorithms
3.4.1. Ladybug Beetle Optimizer (LBO)

This algorithm, proposed by Safiri and Nikofard in 2023, was inspired by the natural
behavior of ladybugs [48]. Ladybugs look for a warm place to settle in winter. The search
process is simulated using this algorithm. The proposed algorithm comprises three main
parts: (1) determining the amount of heat at the position of each ladybug, (2) updating
the position of the ladybugs, and (3) ignoring the destroyed ladybug(s). Ladybugs move
in winter to search for a suitable place. They follow each other by emitting signals. They
tend to move towards the ladybugs in front of them (the ladybugs that managed to find
a warmer place compared to the others). Several ladybugs deviate from the proper path
as they wander in the environment and freeze to death. As a result, their number always
decreases when searching for a warm place, which the algorithm considers to increase its
speed. To balance exploitation and exploration, a mutation step is considered for some
individuals in the population.

3.4.2. Electric Eel Foraging Optimizer (EEFO)

An electric eel is an aquatic animal with an amazing biological structure. This animal
can generate electricity in the range of 300–800 volts. The hunting method for electric eels
inspired the idea of the Electric Eel Foraging Optimizer algorithm presented by Zhao et al.
in 2023 [49]. The amount of electricity emitted by eels varies, so they generate low electric
charges for communication and searching and high electric charges during hunting and
defending against predators. Their hunting method is collective; therefore, this is a particle
swarm algorithm. Mathematical modeling of eel behavior is implemented in four phases:
interaction, rest, hunting, and migration [50]. When eels encounter a group of fish, they
interact by swimming and moving. The eels then swim in an electrified circular path to
trap numerous small fish in the center of the circle. The interaction phase is considered the
global exploration phase in the algorithm. When eels do not hunt, they remain in a resting
area. The resting phase increases the efficiency of the algorithm. When eels find prey, they
collectively swim in a large circle to surround the prey. With the electricity generated by
the eels, the electrified circle becomes the hunting area. When eels find prey, they tend to
move from the resting area and migrate to the hunting area, which is the migration phase
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in the algorithm. If the eels sense that the prey is approaching, they will move toward the
candidate position. Otherwise, the eels remain in their current position. For more details,
refer to Zhao’s paper [49].

3.5. Non-Landslide Sampling

To train the ML models against landslide points, points with zero susceptibility,
known as non-landslide points, are required. A combined method, similar to that used by
Razavi [51], was employed to create the non-landslide points. A Voronoi diagram map was
prepared using the landslide point file in ArcMap version 10.8.2, which was divided into
six classes based on area. Subsequently, according to Equation (6), several random points
were generated in each class.

N = (2 × n + 4) ×(2 × m + 1) (6)

where n is the number of classes, m is the influence of each class from the previous step
(starting from value five), and N is the number of points in each class. In this manner,
non-landslide data, twice the number of landslide points, were extracted. Creating random
points based on the area of the Voronoi diagram results in more points being sampled in
areas where landslides have not occurred. In the next step, the entropy of the random
non-landslide points was obtained using Equations (7)–(9). Finally, the desired number of
points with the lowest entropy was selected.

Calculation of entropy measurement according to the following Equation (7):

Ej= −k∑m
i=1 Pij × Ln Pij, (7)

where Pij is the normalized input matrix, and k is the equilibrium constant (between zero
and one).

The determination of weight based on the goal according to Equations (8) and (9) is
as follows:

dj = 1 − Ej, (8)

Wj =
dj

∑ dj
, (9)

where Ej is the entropy density, dj is the deviation degree, and Wj is the final entropy weight.

3.6. Proposed Methodology

A dynamic, novel, and efficient hybrid approach is used in this study to predict
landslides accurately. The hybrid approach performs intelligent and accurate analysis
based on non-landslide sampling and selects the best combination of influencing features,
optimal and dynamic models, and ensemble learning techniques to predict landslides. This
hybrid approach uses the ANFIS, SVR, and ELM predicting models as well as the new
meta-heuristic algorithms LBO and EEFO. Figure 3 shows the outline of the study.

3.6.1. Feature Encoding and Normalization

After generating the landslide and non-landslide data, the datasets were randomly
divided into training (80%) and testing (20%) datasets. Then, the categorical variables
were converted into transformation numbers using the frequency ratio (FR) so that the ML
models could handle these values. Subsequently, the z-score method was used to normalize
the data.

3.6.2. Feature Selection

The Boruta–XGBoost method [52] was used to select the best features affecting the
landslides. Because the Boruta–XGBoost method does not consider multicollinearity be-
tween the data, VIF analysis was initially used to identify independent factors. Finally,
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the best combination of features influencing the landslides was determined using the
Boruta–XGBoost algorithm.
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3.6.3. Model Framework

After the feature selection step, the ANFIS, SVR, and ELM models were used to predict
the landslides. Using the new meta-heuristic algorithms LBO and EEFO, the optimal values
of the hyper-parameters were determined to increase accuracy and efficiency. LBO and
EEFO are meta-heuristic algorithms that do not require initial parameters. Algorithm 1
shows the procedure used to obtain the optimal hyper-parameters.

Algorithm 1. Steps to perform the proposed method.

1. Initial population % real encoding for hyper-parameter optimization
2. for 1 to 1000 do

3. execution of meta-heuristic (LBO, EEFO) operators
4. for 1 to 10 (10-fold cv) do

5. model training using (k − 1) fold
6. model validation using 1-fold (compute RMSE)
7. save RMSE

8. end
9. mean of RMSE on each fold as fitness function
10. update best solution

11. end (end of meta-heuristic algorithms)
12. return the best solution (with optimum hyper-parameters)
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3.6.4. Ensemble Learning Techniques

As a final step, the optimal model results were combined to increase the accuracy and
reliability of the LS prediction. The best of these models was used to predict landslides by
evaluating the optimal ANFIS, SVR, and ELM models. The stacking technique was applied
to combine the optimized base models, where the landslide is a weighted combination
of the outputs of the models. In this study, the optimal weight was determined using
EEFO and LBO. Thus, the final LS prediction was obtained using the following steps (see
Algorithm 2). First, optimal models were used to predict the training data output. In
stacking learning, the predicted outputs are the inputs, and their observed values are the
outputs. Then, using meta-heuristic algorithms (EEFO and LBO), the optimal combination
weights of the models and the final model, which is the optimal combination of the ANFIS,
SVR, and ELM, were obtained.

Algorithm 2. Steps to perform the stacking ensemble technique.

1.Input
(i).D =
{(x1, y1), (x2, y2), . . . , (xn, yn)}

% training dataset

(ii).BaseModels : B1, B2, B3 % optimal ANFIS, optimal SVR, optimal ELM,
(iii).LearningAlgorithm : L1, L2 % LBO, EEFO

2. D′ = Φ % generate empty dataset
3. for i = 1:n do

4. for b = 1:B do
5. zib = ŷb(xi)

6. end (end of optimal models’ outputs)
7.D′ = D′U((z1b, . . . , zib), yi)

8. end
9.h′ = L

(
D′) % learning algorithm for obtaining the optimal combination weight

10. Output
i.Ŷ(x) = ŷ′(ŷ1(x), . . . , ŷb(x)) % ŷ′ is the weight combination of three base models

3.6.5. Validation

The evaluation of ML models is critical. The output accuracy of the model should be
calculated to measure its performance and robustness. The models were evaluated using
a set of quantitative criteria and common indicators for susceptibility maps, including
RMSE, Pearson correlation coefficient, r-squared, and AUC-ROC [16]. Landslide occurrence
and non-occurrence are inherently binary classification problems. However, susceptibility
mapping is used to determine the possibility of occurrence. The model output, such as the
regression problem, is a soft output instead of a hard output in the classification. Therefore,
the regression criteria can be used to evaluate the model in addition to the classification
criteria. This type of problem-solving attitude is common in the preparation of susceptibility
maps and is also common in other areas, such as flood susceptibility mapping [53,54] and
land subsidence susceptibility mapping [42,55].

4. Results and Implementation
4.1. Create Non-Landslide Points

A Voronoi diagram of landslide points for non-landslide data sampling was first
created and divided into six classes based on the area. Subsequently, 230 candidate points
were randomly generated (Figure 4a). In the first class with the largest area of polygons,
85 points were created; in the second class, 63 points; in the third class, 42 points; in the
fourth class, 25 points; in the fifth class, 12 points; and in the sixth class, 3 points were
created. Next, an entropy level of 230 points was calculated. Finally, 117 points with the
lowest entropy weights were selected as non-landslide points (Figure 4b).
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4.2. Results of Feature Selection

Determining the factors that influence landslides is important for the modeling results.
The Boruta–XGBoost method was used to select the influencing features and eliminate
redundancies. After implementing this algorithm in R version 2021.09.2 software, the results
showed that out of the 17 considered features, 4 features, including profile curvature, valley
depth, TWI, and aspect, with scores lower than the maximum shadow, should be eliminated
from the model. Figure 5 shows the results of the proposed algorithm. In this algorithm,
rainfall was selected as the most important feature. The distance from the drainage and
the soil type were the other factors with scores over 10. The SPI factor scores, including
the distance from the road, distance from the fault, slope, land use, and drainage density,
were calculated within the range of 5 to 10. The factors with scores in the maximum shade
range and lower than five were lithology, soil texture, plan curvature, and elevation. Since
the Boruta–XGBoost method does not consider the relationship between factors such as
correlation and collinearity, the VIF was calculated. The values of this coefficient for the
13 features selected in the previous step were all less than 10, as shown in Table 2. The
elevation had the highest score with a VIF of 1.6425, and the slope had the lowest score
with a VIF of 1.0667. All 13 desired factors had inflation coefficients of 1 to 2. These factors
exhibited no significant correlations with one another and were subsequently incorporated
into the modeling process.
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Table 2. Variance inflation factor (VIF) of the finally selected landslide factors.

Factor VIF Factor VIF

Plan curvature 1.3324 Soil type 1.1754
Land use 1.3372 Drainage density 1.3431
Distance to roads 1.5710 Slope 1.0667
SPI 1.2547 Elevation 1.6425
Distance to faults 1.1807 Lithology 1.1932
Soil texture 1.3293 Rainfall 1.4603
Distance to drainage 1.0845

4.3. Optimizing Base Models

In this study, two new optimizers, LBO and EEFO, which have shown high perfor-
mance and efficiency in various experiments [48,49], were used to optimize the hyper-
parameters of three models: ANFIS, ELM, and SVR (with RMSE as the cost function). In
addition, these two meta-heuristic algorithms do not require initial values to adjust, which
is advantageous. The fitness function, that is, the mean RMSE with 10-fold, was used to
output the fine-tuned models as the final model. The optimization process was performed
after 1000 iterations or when the RMSE was 0, with a population of 200.

The hyper-parameters of the ANFIS model are membership function values. Therefore,
a basic fuzzy system was generated using the training data. The values of the membership
functions were then optimized during the optimization process. The optimal values for the
SVR hyper-parameters (C, KS, and Epsilon) and ELM (weight between network layers wi
and βi) were obtained. According to Figure 6, the optimal values for the SVR parameters
converged at the 100th iteration. However, the optimization process for the ANFIS and
ELM models continued until the 1000th iteration.
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Table 3 presents the evaluation criteria values of the optimized base models. As can
be seen, optimizing the hyper-parameter values improves the accuracy. Based on the
results of each optimized model, they had an acceptable accuracy for the LSM preparation.
According to this table, ANFIS–EEFO, with AUC = 0.9437 and RMSE = 0.3520, has a better
accuracy than ANFIS–LBO. However, the SVR and ELM models, in combination with LBO,
showed better results than the EEFO algorithm. Therefore, the combined ANFIS–EEFO,
SVR–LBO, and ELM–LBO models were used as the basic models for stacking.
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Table 3. Model performance in the training and validation datasets.

Hybrid
Models

AUC RMSE R R-Squared

Train Test Train Test Train Test Train Test

ANFIS–EEFO 0.9721 0.9437 * 0.3174 0.3520 * 0.8351 0.7674 * 0.5970 0.5042 *
ANFIS–LBO 0.9799 0.9394 0.2986 0.3694 0.8624 0.7415 0.6432 0.4537
ANFIS 0.9117 0.9156 0.3586 0.3608 0.6970 0.6940 0.4857 0.4790

SVR–EEFO 0.9754 0.9221 0.2556 0.3421 0.8791 0.7429 0.7387 0.5316
SVR–LBO 0.9795 0.9416 * 0.2522 0.3173 * 0.8882 0.7846 * 0.7456 0.5970 *
SVR 1.0000 0.8983 0.0736 0.4089 0.9999 0.6086 0.9783 0.3310

ELM–EEFO 0.9733 0.8593 0.3275 0.4036 0.8233 0.6371 0.5711 0.3482
ELM–LBO 0.9684 0.8853 * 0.3484 0.3889 * 0.7973 0.6552 * 0.5145 0.3947 *
ELM 0.8935 0.8896 0.3980 0.4019 0.6600 0.6416 0.3664 0.3536

Stacking–EEFO 0.9820 0.9479 0.2443 0.3149 0.8952 0.7991 0.7613 0.6038
Stacking–LBO 0.9820 0.9481 * 0.2442 0.3146 * 0.8950 0.7994 * 0.7614 0.6039 *

* Denotes best performance.

Therefore, the ensemble stacking technique was applied to these three models to
obtain a combined model. The ensemble technique combines the outputs of the base
models by considering the obtained weights for each to enhance the accuracy of the output.
Two algorithms, EEFO and LBO, were used to obtain the best combination of weights
for the models in such a way as to minimize the RMSE (as the cost function). According
to the weights of the base models presented in Table 4, a higher weight was assigned to
the SVR–LBO hybrid model because it has better results than the other base models. The
stacking ensemble technique improves the results based on the evaluation values.

Table 4. Weights from meta-heuristic algorithms for base models.

Ensemble Technique ANFIS–EEFO SVR–LBO ELM–LBO

Stacking–EEFO 0.3275 0.5011 0.4689
Stacking–LBO 0.4932 0.8246 0.6363

Furthermore, the simple form of the ANFIS, SVR, and ELM models demonstrated
higher accuracy and better performance compared to a similar study conducted by Ghayur
Sadigh et al. [29]. This improvement could be due to the targeted selection of non-landslide
points and the feature selection process.

4.4. LSM Preparation

Susceptibility maps were prepared after training and evaluating the models. For this
purpose, the factors influencing the landslides were extracted for the entire study area.
Next, the models were run for the entire area, which produced an output showing each
point’s susceptibility to landslides. The final maps show the susceptibility of landslide
occurrence, which varies between 0 and 1. The resulting maps were classified into five
susceptibility classes using the natural break method: very low, low, moderate, high,
and very high (Figure 7). The natural break method has been consistently observed in
susceptibility mapping and effectively arranges data clusters most efficiently [19,53,55].

According to the maps obtained, the northwest, central, and parts of the northeast
regions, where the density of landslide points is high, are classified as having very high
susceptibility in all five models. The southern, western, and parts of the northeast, which
lack landslide points, are estimated as having two classes of very low and low susceptibility.
The percentages of the area of the classes in the five models are shown in Figure 8. The
largest areas of the very high and high susceptibility classes belong to the ANFIS model,
covering 21.19% and 26.82% of the entire area, respectively. For this reason, it also had the
lowest percentage of the very low susceptibility class, with a value of 9.8% among all models.
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The two ensemble models produced almost identical estimates for all the susceptibility
classes. These two models predicted that the low and very low susceptibility classes
comprise 45%, which is the highest compared to the base models. The SVR model obtained
the highest value in the moderate susceptibility class, with a value of 27%, whereas the
other four models had similar estimates in the range of 20% to 22% for this class. The SVR
model predicted 54.87% of the entire region in the low and moderate susceptibility classes.
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Table 5 lists the number of landslide points in different classes. According to this table,
all the models detected most landslide points in the high and very high susceptibility classes.
Additionally, the stacking ensemble technique detected more points in the high and very
high susceptibility classes, indicating better accuracy of the stacking ensemble technique.

Table 5. Number of landslide points in different classes.

Very Low Low Moderate High Very High

ANFIS–EEFO 1 1 13 38 63
SVR–LBO 1 2 4 27 82
ELM–LBO 1 2 8 21 84
Stacking–EEFO 1 2 3 22 88
Stacking–LBO 1 1 4 19 91
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5. Discussion

Landslides are natural hazards that have harmful and inevitable impacts. Therefore,
finding a solution to mitigate the damage caused is crucial. A susceptibility map, which
estimates the probability of landslide occurrence, is considered an effective method. Owing
to topographical and environmental conditions, the Kermanshah province in Iran is prone
to landslides. Thus, preparing an LSM helps managers, government officials, and other
people manage this natural and physical phenomenon. ML models, which are efficient
for preparing LSMs, face various challenges. One of the first challenges is the selection of
non-landslide points. The random selection of points is a common method for selecting
non-landslide points [33], but it is unreliable due to its random nature. In some studies, a
landslide point density map was used to ensure that non-landslide points were not selected
near the landslide points. This study used a combined method based on the Voronoi
diagram and Shannon entropy to select the non-landslide points.

The Boruta–XGBoost algorithm was used to select the factors influencing landslides.
Four features, including aspect, valley depth, profile curvature, and TWI, were removed
from the modeling as shadows or duplicate features. According to this algorithm, rainfall,
distance to the drainage, soil type, SPI, distance to roads, and distance to faults were
identified as the most important factors influencing landslides. Despite efforts to calculate
the importance of landslide conditioning factors, discrepancies have persisted. Therefore,
in Hwan’s study [56], profile curvature was introduced as the most important factor
affecting landslides and was excluded from our modeling. Li identified elevation, distance
to the drainage, lithology, and TWI as the most important factors [57], while TWI was
removed from our conditioning factors. In Nhu’s study [15], slope and TWI were the most
important factors, whereas aspect and rainfall factors were the least important factors.
Ghayur Sadigh [29], who worked in the same study area, used the relief feature selection
method and introduced rainfall, distances from roads, and drainage, followed by elevation,
slope, TWI, valley depth, and distance from faults as the most important features of
landslide conditioning. The first three factors are consistent with our results, but valley
depth and TWI were excluded from our feature selection process. Different study areas or
algorithms lead to significant differences in the identification of the conditioning factors.
The importance of the factors is specific to a region and cannot be generalized to other
regions. In addition, different feature selection algorithms may yield different results for
the same region.

After selecting the influencing factors, three models were chosen: ANFIS, SVR, and
ELM. Setting the hyper-parameters of ML models is crucial for the final accuracy of the
model. Determining the hyper-parameters in the model is computationally expensive
and time-consuming. The trial-and-error method also requires user experience to set the
initial configurations. In this study, we used two new meta-heuristic algorithms, EEFO
and LBO, to improve the accuracy of the base models. The results showed that all the
optimized models achieved high learning and prediction performance. Our optimization
results were consistent with those of studies in the field of model optimization for preparing
susceptibility maps [1,16,42,58]. Hybrid models reduce noise and variance and prevent
problems such as overfitting and underfitting.

In the final implementation stage, we applied the ensemble stacking technique, which
is a heterogeneous method, to the optimized base models. The ensemble technique in-
creases accuracy and robustness while reducing uncertainty and overfitting problems. In
the stacking technique, the algorithm determines the weight of each model based on its
accuracy and combines the models to reach a suitable output. To obtain the weights, two
meta-heuristic algorithms were used instead of a single machine learning model. The
results of the ensemble approach were consistent with those of other studies on ensemble
methods [56,57].

Finally, LSMs for five models were prepared, which were divided into five classes: very
low, low, moderate, high, and very high susceptibility, using the natural breaks method. The
optimal ANFIS, SVR, and ELM models estimated the total areas of the moderate, high, and
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very high classes as 70.96, 60.27, and 64.5, respectively, a significant portion of the province’s
area. However, the ensemble techniques, Stacking–EEFO and Stacking–LBO, predicted
more than 50% of the region with moderate to high susceptibility. The environmental and
topographical conditions of Kermanshah Province, such as rainfall levels and fault location,
make this area prone to landslides, which is consistent with the LSM obtained in this study
area [29]. Managers and government officials should pay close attention to managing land
use and infrastructure to prevent the aggravating factors affecting landslides. The obtained
LSMs can help with better planning and saving lives.

The main limitation of our study was the data used. We employed a small dataset
of landslide points (116) and conditioning factors with low spatial accuracy. Although
we tried to improve the process of our ML models using cross-validation, increasing the
dataset using techniques such as remote sensing data is recommended. Environmental
factors were selected based on exploratory and quantitative procedures and a literature
review; however, the mechanism between conditioning factors and land was not considered.
Further refinement of the input data, such as continuous updates and implementation
of new factors, is desirable to obtain a susceptibility model that considers all the factors
influencing landslides. In preparing landslide data to non-landslide data, the ratio was 1:1;
therefore, we did not consider the imbalance between them. If the actual ground conditions
are assessed and there is an imbalance between the two groups of points, their influence in
our models is unknown.

6. Conclusions

Kermanshah is a mountainous province in Iran with high average rainfall. It is located
on the highly active fault of Zagros. These factors make this area prone to landslides.
In this study, we developed a stacking ensemble technique based on machine learning
and optimization algorithms to increase the accuracy of LSMs and manage small datasets.
The feature selection approach helped eliminate duplicate features from modeling so that
the dimension of the feature space did not increase unnecessarily and overfitting did
not occur. The optimization of the hyper-parameters for base models was performed
using two new algorithms, leading to promising results. The ensemble stacking technique,
aimed at increasing the accuracy and robustness, used the EEFO and LBO algorithms,
consequently improving the results. Our results are remarkable, considering the small
dataset. The landslide susceptibility maps obtained effectively indicate the susceptibility of
the study area to landslides. This methodology can be applied to other areas with various
environmental parameters that affect the modeling performance. Furthermore, the results
can assist planners and decision-makers in land use planning.
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