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Abstract: The purpose of this paper is to describe a feature selection algorithm and its application
to enhance the accuracy of the reconstruction of phylogenetic trees by improving the efficiency of
tree construction. Applying machine learning models for Arabic and Aramaic scripts, such as deep
neural networks (DNNs), support vector machines (SVMs), and random forests (RFs), each model
was used to compare the phylogenies. The methodology was applied to a dataset containing Arabic
and Aramaic scripts, demonstrating its relevance in a range of phylogenetic analyses. The results
emphasize that feature selection by DNNs, their essential role, outperforms other models in terms
of area under the curve (AUC) and equal error rate (EER) across various datasets and fold sizes.
Furthermore, both SVM and RF models are valuable for understanding the strengths and limitations
of these approaches in the context of phylogenetic analysis This method not only simplifies the
tree structures but also enhances their Consistency Index values. Therefore, they offer a robust
framework for evolutionary studies. The findings highlight the application of machine learning in
phylogenetics, suggesting a path toward accurate and efficient evolutionary analyses and enabling a
deeper understanding of evolutionary relationships.

Keywords: feature selection; hyperparameters; machine learning; phylogenetics; scriptinformatics;
consistency index (CI); false rejection rate (FRR); false acceptance rate (FAR); classification

1. Introduction

Phylogenetics, the study of evolutionary relationships among species, has traditionally
relied on models like maximum likelihood (ML) and Bayesian inference. While effective,
these methods require substantial computational power, especially with the increasing
amount of data involved in phylogenetic studies. Recently, integrating machine learning
with phylogenetic analysis has shown promise in addressing these challenges, enhancing
both the efficiency and accuracy of phylogenetic tree construction and inference.

In phylogenetic analysis, features are categorized as either homologies or homoplasies.
A homology refers to traits inherited from a common ancestor, while a homoplasy de-
scribes traits that develop independently, often due to convergent or parallel evolution.
Distinguishing between these features is crucial for accurate phylogenetic reconstruc-
tion, as homologous features indicate shared lineage, whereas homoplasies can obscure
these connections if not properly identified. Accurately differentiating between these
features improves the precision of phylogenetic analyses, leading to deeper insights into
evolutionary history.

The principal objective of our research is to improve the accuracy and efficiency
of phylogenetic tree reconstruction by optimizing feature selection with the help of ma-
chine learning models, including deep neural networks (DNNs), support vector machines
(SVMs) and random forests (RFs). By identifying the most informative features prior to the
phylogenetic analysis, we aim to simplify the tree structure and enhance its consistency.

To achieve our research objectives, we propose the following steps:
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1. Perform maximum parsimony to extract a phylogenetic tree [1];
2. Identify all branches and their ancestral values;
3. Determine the number of mutations (or changes) for each feature as represented on

the phylogenetic tree;
4. Develop a model to predict feature quality before performing phylogenetic analysis.

Feature selection is inherently challenging, particularly when identifying subgroups
of features with a high Consistency Index (CI), which significantly impacts the efficacy
of phylogenetic analysis. To address these challenges, we employed a feature selection
algorithm, performing experiments to explore the complexities involved in this process.

1.1. Identify Subgroups and Their Quality

Our research focuses on creating and utilizing a feature selection algorithm to enhance
phylogenetic tree reconstruction. Feature selection is inherently challenging, particularly
when identifying subgroups of features with a high Consistency Index (CI) value, which
significantly impacts the efficacy of phylogenetic analysis. Our goal is to address these
challenges and demonstrate the robustness of our methodology.

In recent experiments, we highlighted the complexities involved in feature selection.
While identifying the most parsimonious tree is crucial, understanding the variability in
and computational complexity of feature selection is equally important. To explore these
challenges, we randomly selected subgroups of features and used the PAUP* program to
perform a branch and bound search. We recorded search times, feature counts, and CI
values, as shown in Figure 1.
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Figure 1. (A) Exponential increase in combinations as subset size decreases. (B) Processing time
vs. number of features, with CI values showing variability. (C) 3D plot of CI values, features, and
processing time, illustrating the trade-off between computation and CI.

In Figure 1A shows the relationship between the number of elements in a subset
and the subset size. As the subset size decreases, the number of possible combinations
increases exponentially.
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On the other hand, Figure 1B presents a scatter plot of the time taken for the branch
and bound search relative to the number of features in each subset. The color-coded
Consistency Index (CI) values illustrate the variability in the data.

Finally, Figure 1C shows a 3D plot depicting the relationship between the Consis-
tency Index (CI) values, the number of features, and the processing time, highlighting the
challenge of finding subgroups that balance computational feasibility with high CI values.

These figures collectively underscore the delicate balance required in feature selection
for phylogenetic analysis, emphasizing the combinatorial explosion and the variability in
search times and CI values as key challenges. This analysis demonstrates the importance
of developing robust feature selection methods to improve the accuracy and efficiency of
phylogenetic studies.

1.2. Leveraging Machine Learning for Phylogenetic Analysis of Historical Scripts

Systematics, traditionally focused on biological evolution, has expanded into scriptin-
formatics, a field that applies evolutionary modeling and computer science to understand
the historical evolution of scripts [2–9]. Advances in computational methods, particularly
in feature selection and machine learning, have significantly enhanced the accuracy of
phylogenetic inference, especially when dealing with high-dimensional data [3–5,7–9].

Despite these advancements, constructing phylogenetic trees, and calculating max-
imum parsimony scores in particular, remains time-consuming and costly. Traditional
methods often struggle with large, complex datasets, creating bottlenecks in evolutionary
biology research [10]. Additionally, identifying informative features from large datasets is
challenging, as it frequently requires the reconstruction of trees to evaluate different feature
subsets, making the process increasingly impractical as dataset sizes grow. Neural network
approaches, however, offer a groundbreaking solution by predicting tree lengths directly
from datasets, thereby reducing the need for exhaustive phylogenetic analysis [2,4].

Although neural network methods simplify feature selection and allow for the quick
assessment of feature impacts on predicted tree lengths, their full potential for handling
complex evolutionary scenarios—such as feature duplication, loss, and introgression in
large-scale phylogenetic analyses—remains to be fully explored. These scenarios introduce
significant heterogeneity into datasets, which our application aims to address [11].

In this study, we focus on the evolutionary analysis of historical scripts, including Ara-
bic, Aramaic, and Middle Iranian scripts, using optimized feature selection techniques to
reconstruct phylogenetic trees. The datasets used in this study are publicly accessible, pro-
moting transparency and encouraging further research in this growing field [3–5,7–9,12,13].
Beyond contributing to the broader field of scriptinformatics, this research offers practical
applications in archeology, with the potential to gradually unravel script evolution and
bring us closer to deciphering previously undeciphered inscriptions found by archeologists.

This article is structured as follows: the “Background” section introduces the use of
artificial neural networks in phylogenetic reconstruction; the “Methods” section describes
our approach; the “Results” section presents our findings; the “Discussion” section inter-
prets the results and their implications; and the “Conclusions” section summarizes the
outcomes and suggests future research directions.

2. Background

Phylogenetics, essential to molecular biology and evolutionary studies, uses phyloge-
netic trees to represent evolutionary relationships, emphasizing the need for accurate the
visualization of ancestries and diversification. Traditional methods, such as multiple sequence
alignment (MSA) and tree construction algorithms, often struggle with large datasets and biases
arising from evolutionary differences. These challenges underscore the need for innovative
approaches to effectively manage the complexity and scale of genomic data [14,15].

The reconstruction of phylogenetic trees and the analysis of evolutionary relationships
have long been fundamental tasks in evolutionary biology. Traditionally, methods like
maximum parsimony and maximum likelihood (ML) have been widely used [1]. However,
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recent advancements in machine learning (ML) have opened new avenues for enhancing
the accuracy and efficiency of phylogenetic analyses [11,15]. This literature review examines
the evolution of these methodologies, focusing on the integration of ML techniques and
their potential benefits.

2.1. Established Phylogenetic Methods

The application of machine learning in phylogenetics has gained significant traction
in recent years, with several innovative approaches being explored.

Maximum parsimony [1] aims to find the tree topology that requires the fewest evolu-
tionary changes. While this method is straightforward and often effective, it can suffer from
issues such as long-branch attraction, which may lead to incorrect tree topologies under
certain conditions [16]. In contrast, maximum likelihood (ML) methods are statistically
robust, as they evaluate the likelihood of a tree based on a specific model of sequence
evolution. However, ML methods are computationally intensive and their use may not be
feasible for large datasets [17].

Heuristic tree searches, traditional methods for phylogenetic tree reconstruction, use
heuristic searches to manage the computational complexity of evaluating many possi-
ble trees. Machine learning has been employed to enhance these heuristic strategies.
For instance, Azouri et al. (2020) developed a machine learning algorithm that predicts
neighboring trees that increase the likelihood without computing their likelihood, thereby
reducing the search space and computational burden [18].

Cherry picking and network construction: A machine learning model introduced
by Bernardini et al. [19] that assists in constructing phylogenetic networks using cherry-
picking heuristics, ensuring that all input trees are included in the resulting network. This
method is particularly useful for large datasets, demonstrating the practical application of
machine learning in managing complex evolutionary scenarios.

Neural networks for phylogenetic inference: Zou et al. [20] proposed using deep
residual neural networks to infer phylogenetic trees. This method avoids the need for
explicit evolutionary models, enabling the neural networks to effectively handle complex
substitution heterogeneities. Their results demonstrated improved performances over
traditional methods, especially in scenarios involving extensive evolutionary variation.

DendroNet approach: Layne et al. [21] employed supervised learning to create models
that incorporate phylogenetic relationships among training data, thereby enhancing the
robustness and generalizability of the models in evolutionary studies.

PhyloGAN: Smith and Hahn [22] applied generative adversarial networks (GANs) to
phylogenetics by developing PhyloGAN, which infers phylogenetic trees by generating
and distinguishing between real and synthetic data. This method shows promise in terms
of handling the large model spaces inherent in phylogenetic inference.

ModelTeller: This machine learning-based approach, introduced by Abadi et al. [23],
selects the most accurate nucleotide substitution model for phylogenetic reconstruction. It
optimizes branch-length estimation, providing more precise tree constructions compared
to traditional statistical methods.

Reinforcement learning: Lipták and Kiss [24] investigated the use of reinforcement
learning to construct unrooted phylogenetic trees, demonstrating the potential of this
approach to improve the efficiency and accuracy with which tree construction tasks
are conducted.

2.2. Machine Learning in Phylogenetics

The advent of neural network applications has offered promising solutions to the
challenges in phylogenetics, with machine learning (ML), particularly deep learning, trans-
forming tree topology inference, branch length estimation, and model selection [11,15].
Despite their potential, applying supervised ML in phylogenetics presents challenges in
certain areas, such as in generating realistic training data and adapting to high-dimensional,
heterogeneous biological data [11].
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Kalyaanamoorthy et al. introduced ModelFinder, a tool that enhances the accuracy
of phylogenetic estimates by incorporating a model of rate heterogeneity across sites.
This model selection approach significantly improves the precision of phylogenetic trees,
demonstrating the potential of machine learning in model-based phylogenetics [25].

Recent studies have explored the use of deep learning (DL) for phylogenetic inference.
For example, one study [15] demonstrated the application of DNNs to predict branch length
in phylogenetic trees, showing a superior performance in terms of challenging parameter
spaces. Another study introduced Fusang, a DL-based framework for phylogenetic tree
inference, which demonstrated a performance comparable to that of ML-based tools and
offered potential for optimization through customized training datasets [26].

SVMs have been used to infer phylogenetic relationships by optimizing the hyperplane
that separates different evolutionary states. These models are robust in terms of handling
high-dimensional data and show promise in various classification tasks [18].

RF algorithms, which build an ensemble of decision trees, have also been applied to
phylogenetic inference. Their ability to handle large datasets and provide feature impor-
tance metrics makes them valuable for identifying key evolutionary traits [19]. Additionally,
combining machine learning with heuristic methods to construct phylogenetic networks
efficiently integrates multiple phylogenetic trees into a single network, showcasing the
practical application of machine learning in managing complex evolutionary datasets.

2.3. Challenges and Future Directions

While machine learning offers significant benefits for phylogenetic analyses, several
challenges persist. Common issues include overfitting, model interpretability, and the
substantial need for large training datasets. A recent study [11] discussed these barriers
and suggested that careful network design and data encoding could help machine learning
to achieve its full potential in phylogenetics.

Tang et al. [27] introduced a neural network model that outperforms traditional meth-
ods under long-branch attraction (LBA) conditions. By accounting for tree isomorphisms,
this model reduces memory usage and is able to seamlessly extend to larger trees, address-
ing a critical issue in phylogenetic inference.

The addition of machine learning techniques in phylogenetics represents a significant
progression in the field. These approaches enhance model selection (Tree), improve in-
ference accuracy (Tree construction), and offer scalable solutions for large datasets, thus
offering powerful tools for evolutionary biologists.

Tadist et al. [28] conducted an extensive review of feature selection methods, particu-
larly in the context of high-dimensional genomic data. These methods share similarities
with the challenges faced in phylogenetic analysis. Their work highlights the importance
of feature selection in reducing the complexity of data, thereby improving the efficiency
and accuracy of machine learning models. This is particularly relevant to our study, where
we aim to enhance phylogenetic tree reconstruction by selecting the most informative
features of complex datasets. Tadist et al. emphasize that ensemble methods, which com-
bine multiple feature selection techniques, can lead to more robust and accurate models,
a principle that underpins our approach to integrating DNN, SVM, and RF models for
feature impact assessment.

Traditional machine learning methods for phylogenetic analysis often focus on a single
representation of the dataset, limiting the flexibility to adapt to different input sizes and
complexities. Our approach introduces three distinct forms of the dataset: DS1 (binary
form), DS2 (statistical feature extraction), and DS3 (normalized features). This allows for
more flexible and comprehensive analysis. This strategy enables the training of models
on one dataset form and testing on another, ensuring that the models are robust across
different data representations. Unlike Tadist et al. [28], who primarily focus on feature
selection methods for high-dimensional data, our method addresses the challenge of
varying dataset sizes and transformations through systematic preprocessing steps, offering
a more adaptable solution for phylogenetic tree reconstruction. Furthermore, Kaur et al. [29]
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provide a comparison of machine learning models, but their approach lacks the multi-form
dataset flexibility that is central to our method. By incorporating feature extraction and
normalization, our approach enhances the ability of machine learning models to generalize
and perform consistently across diverse datasets.

In this study, we use multiple evaluation metrics, including accuracy (Acc), the false
acceptance rate (FAR), the false rejection rate (FRR), receiver operating characteristics
(ROCs), the area under the curve (AUC), and the equal error rate (EER), to validate and
compare the performance of three machine learning models: deep neural networks (DNNs),
support vector machines (SVMs), and random forests (RFs). These metrics are commonly
used for performance evaluation, enabling us to confirm which model performs best across
different datasets and criteria [30–34].

3. Methods

This study aims to improve the precision and efficiency of phylogenetic tree reconstruc-
tion by comparing various machine learning models. Specifically, we assess how well these
models predict the impact of each feature on the phylogenetic tree before analysis, which
can streamline tree construction, reduce computational demands, and improve reliability.
We employ three machine learning algorithms—DNN, SVM, and RF—along with three
data preprocessing methods to identify the most effective model–technique combination.
Phylogenetic tree construction is dependent on the number of taxa involved. The number
of rooted, bifurcating trees is calculated using the formula [35] shown in (1).

(2n − 3)!
2n−2(n − n)!

(1)

3.1. Data Representation

As shown in Figure 2, we used various approaches to assess the impact of data
preprocessing on model performance. In the first approach (DS1), the binary data were
directly fed into the classifiers without modification. Each feature (Fb) is represented as
either 0 (absence) or 1 (presence) for each taxon. The labels (Ω) represent the contribution
of each feature to the phylogenetic tree.
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3.1.1. DS1 Direct Use of Binary Dataset

The original binary dataset, which consists of historical scripts, was fed directly into
the classifiers. These scripts include Arabic, Aramaic, and Middle Iranian, which are
treated as unique pattern systems and classified as taxa. Each script is represented as
a binary feature vector, where each position corresponds to the presence (1) or absence
(0) of a particular phylogenetic feature or trait. This representation allows us to analyze
the evolution and historical development of these scripts as symbolic communication
systems. The dataset is publicly available on a GitHub repository [13], and it provides a
comprehensive collection of binary sequences derived from these historical script variants,
capturing key features such as symbols, syntax, and layout rules.

While the use of this binary dataset offers simplicity in terms of processing, its limita-
tion is that the input size varies with the number of taxa, presenting challenges for machine
learning classifiers when applied to datasets of different sizes. To address this limitation,
the dataset underwent transformations, as described in the subsequent sections, to allow
for more flexible analysis across datasets of varying sizes.

3.1.2. DS2: Feature Extraction from DS1

Features were extracted from the binary datasets (DS1) for further analysis. DS1
consists of binary sequences, where each sequence corresponds to a taxon and each position
represents a specific phylogenetic feature. The notations used in the feature extraction
process and the formulas for each FS are detailed in Table 1.

Table 1. Mathematical notations for feature extraction DS2.

Notation Description

m The total number of taxa in DS1.
n The total number of features in DS1.
sij The value at the jth feature position for the ith taxa in Fb or DS1.

Ej
The Shannon entropy for the jth features in DS1, a measure of
randomness in the features.

FS
ij The jth feature value for the ith taxa in DS2 before normalization.

FNS
ij The normalization of FS

ij and its being saved it in DS3.

ϵ
A small constant added to probabilities to avoid undefined log
calculations during entropy computation.

K A value could be either 0 or 1 to determine if the equation will
run for 0’s or 1’s.

Statistical features are essential for understanding the overall distribution and tenden-
cies within a dataset. These features include total counts, densities, and measures of central
tendency and dispersion for both ‘1’s and ‘0’s within each feature in Fb. As shown in the
equations in Table 2, these statistical calculations are fundamental in preparing the dataset
for subsequent machine learning tasks.

Table 2. Statistical features of DS1 (Fb).

Equation Description

CKj = ∑m
i=1

(
sij = K

)
Total count of 0′s/1′s in jth feature of DS1.

DKj =
CKj
m

The density of 0′s/1′s for the jth feature in Fb, where CKi the
total count of K’s

xKj = mean
({

j
∣∣∣sij = K

})
The mean position of K′s in Fb for jth feature

∼
xKj = median

({
j
∣∣∣sij = K

})
Median position of K′s in Fb

σ2
Kj = var

({
j
∣∣∣sij = K

})
Variance of positions of K′s in Fb
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Positional features capture the specific locations of certain values within a Fb, which
can be critical for identifying patterns and anomalies. These features include the positions
of the first occurrences of ‘1’s and ‘0’s, as shown in Equation (2), and for the last occurrences
of ‘1’s and ‘0’s, as shown in Equation (3).

PKFj = min
({

j
∣∣sij = K

})
(2)

PKLj = max
({

j
∣∣sij = K

})
(3)

These positional metrics help to understand the spatial distribution of features across
the Fb, which can be especially useful in sequence analysis. As illustrated, these features
provide valuable context that complements the statistical measures.

Entropy-based features quantify the randomness or unpredictability within a dataset,
providing a measure of its complexity. Shannon entropy (Ei) is calculated for each jth

feature in Fb, where higher entropy values indicate greater unpredictability. This measure
considers the probabilities of observing ‘1’s and ‘0’s [34].

Ej = −
(

p1j log2

(
p1j + ϵ

)
+ p0j log2

(
p0j + ϵ

))
, pKj = CKj (4)

Entropy is particularly useful for identifying homogeneity or variability within data,
making it a key feature for classification tasks. As illustrated in Equation (4), entropy
captures the inherent uncertainty in the dataset, thus informing model development
and evaluation.

3.1.3. DS3: Normalization DS2

The extracted features (DS2) were normalized using min–max normalization, scaling
the values between −1 and 1. Each feature (FNS

ij ) was normalized according to formula

(5), where min (FS
j ) and max (FS

j ) represent the minimum and maximum values of the jth

feature across all taxa [36].

FNS
ij =

2

(
FS

ij−min
(

FS
j

)
max

(
FS

j

)
−min

(
FS

j

)
)
− 1 , min(FS

j ) ̸= max(FS
j )

0 , min(FS
j ) = max(FS

j )

(5)

If the minimum and maximum values are equal, the normalized feature value is set to
zero. An advantage of DS3 is that is ensures all features contribute equally to the analysis,
preventing any feature from dominating due to scale differences.

3.2. Cross-Validation and Data Transformation

Cross-validation was employed to validate model robustness. The dataset was split
into training and testing sets for each test (DS1, DS2, and DS3). The training dataset was
used to train the machine learning models, while the testing dataset evaluated model
performance. We applied k-fold cross-validation, where k was set to 2, 3, and 4, to assess
the effect of different training and testing sizes on each model.

We focus on the features that cause the least amount of change in the phylogenetic
tree. Specifically, we select only the features in bin 1—shown in Figure 3—which cause
only one change, where δ is the threshold, as shown in Equation (6).

Ωj =


1 i f 0 < ∆Fb

j ≤ δ

0 Otherwise
(6)
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3.3. Classification Phase

Three classifiers—DNN, SVM, and RF—were used to analyze the impact of features
on the phylogenetic tree. The hyperparameter setups for each model are listed in Table 3.

Table 3. Hyperparameters for each model.

DNN

Three hidden layer there sizes: [15 | 8 | 4]
Mean squared error: 0.001
Learning rate: 0.001
Actvation function to hidden layers (tansig)
Actvation function for output node is (logsig)

SVM
Kernel function: radial basis function (RBF)
Box constraint: 30
Kernel scale: 10

RF

Number of trees: 300
Max number of splits: 50
Number of variables to sample: all
Minimum leaf size: 5

The DNN model was trained on the training dataset, with weights optimized to mini-
mize the loss function. We explored various network topologies and parameter settings to
optimize performance and prevent overfitting. This process involved iterative adjustments
to the network architecture, learning rate, and performance parameters (MSE), as detailed
in Table 3. After generating raw output probabilities from the DNN, a thresholding mech-
anism was applied to convert these probabilities into binary classifications, as shown in
Equation (7).

YpredR =


1 i f YpredR > 0.5

0 i f YpredR ≤ 0.5
(7)

This adjustment ensures that the classifier output is given in a binary form, making it
easier to evaluate the classification accuracy.

The SVM algorithm identifies the optimal hyperplane that separates features based on
their labels (Ω), as illustrated in Figure 2. The trained SVM model was then used to predict
the labels of the testing dataset, and performance metrics were computed. The SVM model
setup is detailed in Table 3.
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An ensemble of decision trees was trained on various subsets of the training dataset.
The performance of the random forest model was then evaluated on the testing dataset.

3.4. Experimental Setup

Experimental analyses were conducted using PAUP* version 4.0a (build 168) for
Unix/Linux. The server utilized an Intel® Xeon® CPU E5-2640 v2 @ 2.00 GHz with 24 CPU
cores. This setup, optimized for Intel® 64 architecture and compiled with GNU C compiler
(gcc) version 4.4.7, supported SSE vectorization, SSSE3 instructions, and multithreading
via Pthreads. In parallel, our method ‘FIPPA’ was deployed, using MATLAB R2023b on the
same machine to perform neural network estimations.

4. Results
4.1. Model Performance on Original Dataset

This study evaluates the performance of three machine learning models, namely, DNN,
SVM, and RF, on three datasets: DS1 (Fb), DS2 (FS), and DS3 (FNS). The evaluation metrics
include accuracy (Acc), the false acceptance rate (FAR), the false rejection rate (FRR), the
area under the curve (AUC), and the equal error rate (EER).

Figure 3 illustrates the distribution of features based on the number of changes they
induce, showing that most features cause only one change. This distribution emphasizes
the importance of focusing on the most impactful features to reduce the complexity of the
phylogenetic tree.

Table 4 summarizes the trade-offs between the number of features selected and the
resulting phylogenetic tree’s consistency and length. Selecting features that cause fewer
changes simplifies the tree and enhances its consistency, as indicated by higher Consistency
Index (CI) values.

Table 4. The number of bins selected according to Equation (6).

δ No. Features Tree Length Optimal Tree CI Time Sec

6 97 229 2 0.424 369.3
5 95 217 3 0.438 184.7
4 88 181 2 0.486 28.8
3 78 140 3 0.557 1.33
2 60 86 2 0.698 0.03
1 32 32 1 1 0.005

Main finding: Focusing on features that cause minimal changes results in a shorter
and more consistent phylogenetic tree. For example, only selecting features that induce
one change produced a cladogram with a tree length of 32 and a perfect CI score of 1.0.

Figure 4 compares two phylogenetic trees obtained using a maximum parsimony
search. Figure 4A includes all 97 features, resulting in a tree length of 229 and a CI score
of 0.424. In contrast, Figure 4B features a subset of features that cause only one change,
significantly simplifying the tree structure to a length of 32 with a perfect CI score of 1.0.

Moreover, the analysis shows the number of features selected at different δ (threshold)
values, along with their corresponding tree lengths and CI values. As δ decreases in (6),
fewer features are selected, resulting in shorter tree lengths and higher CI values. This
suggests better consistency in the phylogenetic trees.

The table also includes the optimal tree and Time Sec columns. The optimal tree
column indicates the number of optimal trees found after performing a branch and bound
search, all having similar maximum parsimony scores. Generally, fewer optimal trees are
found as δ decreases, reflecting more stable feature selection. The Time Sec column shows
that computation time drops significantly with lower δ values, from 369.3 s at δ = 6 to
nearly 0 s at δ = 1, highlighting the efficiency gained through feature reduction.
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Figure 4. Phylogenetic trees after performing a maximum parsimony search including all features, as
in (A), and a subset of features, as in (B).

Given the nondeterministic nature of DNNs, SVMs, and RFs, we performed each
test 50 times to ensure stability and reliability. By averaging the outcomes, we mitigated
random variations, ensuring the results reflected the true performance of each model across
different datasets and folds

Figures 5–7 present ROC curves for DNNs, SVMs, and RFs models across different
k-fold sizes (k = 4, k = 3, and k = 2). Each figure shows the ROC curves, AUC values, and
EER locations for use in comparative performance analysis.
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Figure 7. ROC curves of DNN, SVM, and RF models across 2 folds for DS1 ≡ Fb, DS2 ≡ FS and
DS3 ≡ FNS.

In case of k-4 folds = 4, Figure 5 illustrates the ROC curves for the three different
machine learning models—DNN, SVM, and RF—across four folds (k = 4) for each of the
three datasets (DS1, DS2, and DS3). Each row in the figure corresponds to a different fold
(Fold 1 to Fold 4), and each column corresponds to a different dataset. The ROC curves
for each model are plotted, with the area under the curve (AUC) values annotated for
comparative performance analysis. Additionally, the equal error rate (EER) locations are
marked on each curve.

In Figure 5, the SVM model demonstrated a superior performance for Fb in Fold 1,
with an AUC value of 0.98, while all models showed similar performances for FS, with
DNNs slightly outperforming others for FNS. In Fold 2, SVMs again outperformed the
others for Fb and FS, with DNNs leading for FNS. In Fold 3, DNNs achieved the highest
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AUC values for Fb and performed similarly well for FS, and both DNNs and SVMs showed
equal AUC values for FNS. Finally, in Fold 4 SVM maintained the highest AUC value for
Fb while DNNs outperformed for FS and FNS. These results highlight the robustness and
variable effectiveness of each model across different datasets and folds, underscoring the
importance of selecting a model suited to the specific dataset.

Additionally, Figure 6 presents the ROC curves for the DNN, SVM, and RF models
across three folds (k = 3) for each of the three datasets (Fb, FS, and FNS). All rows relate to
a different fold and each column relates to a different dataset. The ROC curves are plotted,
with AUC values marked for comparison, and EER locations are marked on each curve
for reference.

As shown in Fold 1 of Figure 6, DNNs outperformed other models for Fb with
AUC = 0.90; on other hand, SVMs had the highest AUC value for FS, equal to 0.95, and RF
use on FNS yielded AUC = 0.91. In Fold 2, SVM and RF performed similarly well for Fb,
with both achieving an AUC value of 0.85. DNNs were best for FS, with AUC = 0.89, while
RF models maintained the lead for FNS, with AUC = 0.89. In Fold 3, DNNs showed the
best performance using Fb, with AUC = 0.96. SVMs intended for FS yielded AUC = 0.88
and RFs continued to perform effectively for FNS with AUC = 0.89.

Moreover, Figure 7 describes the ROC for DNN, SVM, and RF models across k = 2.
Applying two folds to each of the three datasets, we obtain Fb, FS, and FNS. Each row
relates to a different fold and each column to a different dataset. The ROC curves are
plotted alongside AUC values and EER locations are marked on each curve.

In Figure 7, particularly Fold 1, the DNN showed the highest performance for Fb with
AUC = 0.97, whereas SVMs displayed better performance in FS with AUC = 0.91. For
FNS, RFs had the greatest AUC value of 0.95. In Fold 2, the application of DNNs to Fb

yielded AUC = 0.89 and SVM showed a good performance for FS with AUC = 0.86. RF
continued to perform best for FNS, with AUC = 0.89. These results indicate the varying
strengths of each model across different datasets and folds, highlighting the importance of
selecting the most suitable model based on dataset characteristics in order to achieve an
ideal performance.

Table 5 presents the average accuracy (Acc), FRR and FAR for the DNN, SVM and
RF models across different folds when applied to datasets Fb, FS, and FNS. This thorough
comparison shows the values of each metric, demonstrating the efficiency of each model.

Table 5. Average accuracy, false rejection rate, and false acceptance rate of different models across
various folds for Fb ≡ DS1, FS ≡ DS2, and FNS ≡ DS3.

Fold
Fb FS FNS

Acc FRR FAR Acc FRR FAR Acc FRR FAR

DNN
2 81.12 0.09 0.32 79.74 0.08 0.35 84.26 0.1 0.24
3 80.45 0.09 0.3 85.07 0.1 0.21 83.9 0.13 0.25
4 83.66 0.06 0.31 90.3 0.05 0.18 86.37 0.09 0.22

SVM
2 88.71 0.13 0 88.56 0.1 0.14 83.19 0.17 0.13
3 87.65 0.15 0 83.23 0.13 0.22 79.56 0.2 0.11
4 92.75 0.09 0 86.43 0.11 0.17 84.61 0.13 0.17

RF
2 82.65 0.11 0.27 82.26 0.08 0.31 85.66 0.08 0.24
3 78.64 0.13 0.25 82.4 0.1 0.29 77.01 0.18 0.33
4 81.8 0.14 0.28 82.79 0.09 0.29 84.16 0.12 0.19

Tables 5 and 6 present a detailed comparison of accuracy (Acc), FRR, FAR, AUC, and
EER values across different folds and datasets.
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Table 6. Average AUC and EER values of different models across various folds for Fb ≡ DS1,
FS ≡ DS2, and FNS ≡ DS3.

Fold
Fb FS FNS

AUC EER AUC EER AUC EER

DNN
2 0.92 0.19 0.87 0.16 0.94 0.13
3 0.94 0.13 0.91 0.2 0.88 0.17
4 0.95 0.13 0.95 0.12 0.9 0.15

SVM
2 0.81 0.25 0.9 0.16 0.92 0.16
3 0.85 0.18 0.88 0.24 0.88 0.17
4 0.96 0.11 0.95 0.09 0.91 0.17

RF
2 0.91 0.21 0.82 0.15 0.93 0.15
3 0.91 0.16 0.86 0.18 0.87 0.21
4 0.91 0.19 0.91 0.13 0.91 0.17

Main findings:

• DNNs consistently delivered strong performances across all datasets and fold sizes,
with AUC values ranging from 0.87 to 0.95 and EER values between 0.12 and 0.19.

• SVMs also demonstrated robust performances, particularly for Fb and FS, with AUC
values as high as 0.96 and 0.95, respectively, at k = 4. However, its performance when
applied to FNS was slightly lower, with AUC values between 0.88 and 0.92.

• RFs displayed more variable performances, with AUC values ranging from 0.82 to
0.91 across datasets. Despite this variability, RF maintained relatively low EER values,
particularly for FNS.

Lastly, Figure 8 illustrates the number of epochs required for the DNN training across
different folds and datasets (Fb, FS, FNS) for k = 2, k = 3, and k = 4. Each bar represents the
number of epochs needed to achieve the final model performance for each fold within the
respective k-fold cross-validation setups.
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for k = 2, k = 3, and k = 4.

Figure 8 illustrates the number of epochs required for DNN training across different
folds and datasets (Fb, FS, FNS) for k = 2, k = 3, and k = 4. The number of epochs
varied significantly across different datasets and folds. FS consistently required more
epochs, reflecting its higher complexity and the need for more iterations to achieve an
optimal performance.
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When k = 3, the variability in the number of epochs increased, particularly for FS,
which again required the most training epochs across all folds, highlighting its complexity.
FNS also showed a substantial increase in epochs needed for Fold 2, suggesting variability
in the training process.

For k = 4, FS continued to demand a high number of epochs, with Fold 1 showing
the maximum epochs among all the datasets and folds. FNS, however, showed more
consistency across folds, indicating a more stable training process for this dataset under the
k = 4 setup.

The analysis shows that FS consistently required more training epochs across all k
values, reflecting its higher complexity and the model’s need for more iterations if it is
to learn effectively. Fb generally required fewer epochs, suggesting it was less complex
and easier for the DNN to train. This variability in training epochs across datasets and
folds underscores the importance of considering dataset complexity and ensuring adequate
training to achieve optimal model performance.

4.2. Validation Using External Dataset

To validate the generalizability of our feature impact classifiers, we applied them to
an external dataset from Hoffmann et al. (2021) [37], which comprised 20 languages and
1359 features. In order to reduce the number of features, we deleted all unknown features,
leaving us with 1119 features. The extent of alteration to these features is illustrated in
Figure 9. This dataset enabled us to evaluate the models trained on our dataset (19 taxa
and 97 features) to ascertain whether the machine learning classifiers, designed to predict
feature impact, could accurately generalize to novel linguistic data.
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the same constraints applied to a dataset from [37].

As illustrated in Figure 9, there are notable differences between this dataset and our
previous one, especially when compared to Figure 3. In this dataset, there are some features
that exhibit no change, which is why Equation (6) constrains ∆Fb

j between the open and
close interlevel (0, δ].

The objective of this subsection is to evaluate the efficacy of training classification algo-
rithms, specifically DNN, SVM and RF algorithms, on a single dataset, and to subsequently
test their performances on distinct datasets, namely, FS and FNS. This ensures that the size
of the inputs for any classifier is equal, as illustrated by the ROC curves in Figure 10.
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Figure 10 illustrates the capacity of our classifiers to predict the influence of individual
features on phylogenetic analysis. By identifying homology-promoting features at an early
stage, these classifiers facilitate the streamlining of phylogenetic tree construction, enabling
researchers to concentrate on features that are more likely to yield more reliable trees.
Conversely, by identifying features that are susceptible to homoplasy, the models assist
in the identification of regions where borrowing or parallel evolution may be occurring,
thereby providing insights that would otherwise require extensive post-analysis work.

The successful cross-validation across different datasets demonstrates that our models,
particularly those utilizing the FS and FNS representations, are capable of generalizing
beyond the original training data, thereby making them a valuable tool for broader phylo-
genetic studies across diverse datasets.

5. Discussion

This study explored the impact of feature selection on phylogenetic tree reconstruction
using machine learning algorithms. The results underscore the critical role of effective
feature selection in enhancing the accuracy and reliability of phylogenetic analyses. We
applied DNN, SVM, and RF models to the binary dataset (Fb) and preprocessed datasets
(FS and FNS), comparing their performance across different fold sizes.

The use of the binary dataset Fb offers simplicity, facilitating easier implementation and
faster processing times. However, its limitation lies in the varying input sizes required for
machine learning algorithms, which restricts its applicability to datasets of different sizes.

In contrast, preprocessed features FS and normalized features FNS introduce additional
complexity due to preprocessing steps. However, they maintain a fixed input size, allowing
machine learning models to be applied across datasets of varying sizes. This flexibility
is crucial for generalizing models to a broader range of phylogenetic analyses, ensuring
robust performance across different scenarios.

Our findings show that DNNs consistently performed well across all datasets and
folds, achieving the highest AUC values and maintaining low EER values, particularly for
Fb and FS. This indicates that DNNs effectively capture complex patterns within the data,
making it a reliable choice.

SVM also demonstrated strong performance, particularly for Fb and FS, with high
AUC values. However, its performance was slightly lower on FNS, aligning with the known
strengths of SVMs, which excel with well-defined boundaries but may struggle with more
complex or noisy data.

RF models showed more variable performances, with AUC values ranging from
0.82 to 0.91 across datasets. Despite this variability, RF models maintained relatively low
EER values, particularly for FNS. The ability of RF models ability to handle large datasets
makes them valuable for identifying key evolutionary traits, even though their overall
performance is somewhat less consistent compared to that of DNN and SVM models.
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This study also highlights the importance of considering dataset complexity. FS

consistently required more training epochs for DNNs across all k values, reflecting its
higher complexity and the need for more iterations to achieve effective learning. This
underscores the necessity of adequate training to optimize model performance.

The successful validation across different datasets demonstrates that our models,
especially those employing the FS and FNS representations, are capable of generalization
beyond the initial training data. This underscores their potential as valuable tools for
comprehensive phylogenetic analyses across diverse datasets. It is noteworthy that the
FS representation yielded more consistent and stable results, shown in Figure 10, thereby
further reinforcing its reliability for evaluating the impact of features.

Finally, cross-validation provided a comprehensive assessment of each model’s predic-
tive capability. Given that DNNs, SVMs, and RFs are nondeterministic algorithms, running
each with the same data and settings can yield slightly different results. To account for this
variability, we conducted each test 50 times and averaged the outcomes. This approach
reduced the effects of random variation and ensured the stability and reliability of our
results, offering a more accurate evaluation of each model’s performance.

6. Conclusions

This research presents a feature selection method designed to enhance phylogenetic
reconstruction using machine learning techniques such as DNNs, SVMs, and RFs. Our
results demonstrate that DNNs consistently outperformed other models in terms of AUC
and EER values, showcasing a strong performance across various preprocessed datasets
and folds. SVMs and RFs also performed well, although with some variability.

These machine learning techniques significantly enhance the accuracy and efficiency
of phylogenetic analyses, providing powerful tools for evolutionary studies. This approach
not only simplifies tree structure but also improves the Consistency Index (CI) values,
providing deeper insights into evolutionary relationships.

However, there are some limitations to this study. The binary dataset (DS1) has
limitations due to its requirement for datasets of the same size, which can restrict its
applicability to more diverse datasets. While the transformations applied to create DS2
and DS3 mitigate these issues by standardizing input sizes, the preprocessing steps add
complexity and may introduce challenges when dealing with extremely large datasets or
those with high levels of noise. Additionally, the models were tested on specific datasets,
and their performance on significantly different types of data (e.g., with more varied or
complex evolutionary histories) needs to be fully explored.

Future research should aim to integrate these models to further improve the robust-
ness of phylogenetic inference. Additionally, applying these techniques to more complex
evolutionary scenarios, such as feature duplication, loss, and introgression, could offer
even greater insights into evolutionary processes.
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