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Abstract: We perform a sentence-level sentiment analysis study of different literary texts in English
language. Each text is converted into a series in which the data points are the sentiment value of each
sentence obtained using the sentiment analysis tool (VADER). By applying the Detrended Fluctuation
Analysis (DFA) and the Higuchi Fractal Dimension (HFD) methods to these sentiment series, we
find that they are monofractal with long-term correlations, which can be explained by the fact that
the writing process has memory by construction, with a sentiment evolution that is self-similar.
Furthermore, we discretize these series by applying a classification approach which transforms the
series into a one on which each data point has only three possible values, corresponding to positive,
neutral or negative sentiments. We map these three-states series to a Markov chain and investigate
the transitions of sentiment from one sentence to the next, obtaining a state transition matrix for
each book that provides information on the probability of transitioning between sentiments from one
sentence to the next. This approach shows that there are biases towards increasing the probability
of switching to neutral or positive sentences. The two approaches supplement each other, since the
long-term correlation approach allows a global assessment of the sentiment of the book, while the
state transition matrix approach provides local information about the sentiment evolution along
the text.

Keywords: sentiment analysis; opinion mining; social systems

1. Introduction

Sentiment analysis, or opinion mining, is an active research area in the field of natural
language processing that analyzes people’s opinions that are loaded with sentiments and
emotions via the computational treatment of subjectivity in text that is produced in different
platforms [1–5]. Sentiment analysis mainly considers two aspects: categorical sentiment
analysis and dimensional sentiment analysis. Categorical sentiment analysis basically
classifies emotions under categories or labels based on the fact that these emotions can
be classified using a low number of basic emotions. In contrast, in dimensional analysis,
sentiment can be represented by emotions along continuous dimensions rather than discrete
categories [6,7]. In general, two basic dimensions are included: valence and intensity.
Sentiment analysis makes use of various lexicons to quantify emotional intensity [8–13].
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There are several lexicons built from very diverse sources, such as the Social Contextualized
Affect Lexicon (SO-CAL), SentiWordNet, AFINN, and ANEW, to name a few [14–17].
SO-CAL aims to analyze sentiment in social network contexts, captures how emotions
are expressed in informal language, and evaluates emotions in terms of valence, arousal,
and dominance [18–20]. AFINN focuses on evaluating conversations in social network
posts and assigns words a score ranging from negative to positive, providing a direct
numerical sentiment score [21]. SentiWordNet is an extension of WordNet that provides
three scores for each word: positive, negative, and objective, allowing for a nuanced
understanding of word sentiment [22,23]. ANEW provides emotional ratings of words,
including valence, arousal, and dominance values, and is used in the context of emotional
profiling analysis [24–27].

A recent study conducted an extensive literature survey on sentiment analysis to
identify existing sentence-level methods covering several different techniques in order to
perform a comparison with each other to identify their advantages, disadvantages, and lim-
itations [28]. The authors of that study suggested that there is no single method that always
achieves the best prediction performance for all different datasets. However, they found
that the method called VADER (for Valence Aware Dictionary for sEntiment Reasoning)
was the most consistent method in different experiments that were performed. VADER uses
a combination of qualitative and quantitative methods to produce and then empirically
validate a sentiment lexicon that is especially attuned to microblog-like contexts. Moreover,
after incorporating some lexical rules that embody grammatical and syntactical conven-
tions that humans use when expressing or emphasizing sentiment intensity, the accuracy
of the sentiment analysis engine improves across several domain contexts (social media
text, NY Times editorials, movie reviews, and product reviews) [29]. Therefore, we select
VADER to perform the sentence-level sentiment analysis in the present work.

On the other hand, previous studies performed on different corpora in several lan-
guages taken mainly from Web-based content (online forums, blogs, Twitter, etc.) have
found that positive words carry less information [30] and that words with a positive emo-
tional content are more frequently used [30,31]. However, these previous studies have been
centered in a word-by-word sentiment analysis. Are these conclusions still valid if the
analysis is performed at a higher level, i.e., at sentence level?

Our goal is to analyze the evolution of the sentiment along the text by examining the
statistics associated to the sentiment value of each sentence and then assess the presence of
correlations. We find that, for all the texts analyzed, the correlations follow power laws
with exponent values that differ from the randomized case, confirming the existence of
long-term memory. We also quantify the dependence of sentiment values on transitions to
positive, negative, or neutral, and find that either neutral or positive sentences are more
likely to be followed by neutral or positive ones as well. We focus on single-author works
for which the writing dynamics differ from those of Web-based content (online forums,
blogs, Twitter, etc.) since the authors take more time to conclude the text after reviewing
it as part of the writing process and, oftentimes, the texts are also subject to the editor’s
review process. Therefore, these literary works are subject to a longer production process,
implying that the selection of words in the sentences is more thoroughly performed. Thus,
our approach supplements the previous studies based on a high number of authors in
online opinion forums or Twitter, and then this allows to compare the behavior of an
ensemble of authors on shorter texts versus the longer texts produced by single authors
under more scrutiny.

This paper is organized as follows: in Section 2, we present the related work. In Section 3,
we describe briefly the sample of books that were considered. In Section 4, we describe
the methods to obtain series of sentiment values from the texts which are processed to
investigate correlations. In Section 5, we discuss the results. Finally, the concluding remarks
are given in Section 6.
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2. Related Work

Sentiment analysis in literary texts is a developing field that leverages computational
techniques to understand and interpret the emotional dimensions that appear in literary
texts. As is widely recognized, emotions play a transcendental role in narratives or stories
developed by authors, shaping characters’ motivations and influencing readers. The study
of emotions in literature has been modified to include more quantitative analyses through
computational methods, which has allowed for more extensive and systematic investiga-
tions of how emotions are displayed through a literary text. VADER offers an important
tool for sentiment analysis within literary studies, as it allows the emotional dimensions
of texts to be quantified. It has been noted that it also has certain limitations—especially
in relation to sarcasm and domain specificity—but its ease of use and effectiveness make
it an attractive option for both qualitative and quantitative literary analysis. As the field
has progressed, integrating tools such as VADER into literary research can enhance our
understanding of emotional dynamics in literature. For example, Bizzoni et al. [32] explored
the complexities of analyzing sentiment in narrative texts such as those of E. Hemingway.
Yeruva et al. [33] analyzed data from literary texts related to human feeling in classical
Greek tragedy. More recently, S. Vinodini [34] conducted a sentiment analysis of selected
novels by the celebrated Brazilian author Paulo Coelho.

On the other hand, long-range correlations are characterized by a relationship or mem-
ory between subsequences separated by significant distances. In the context of literature,
this can be understood as recurrence of ideas or emotional motifs that recur throughout
a text, regardless of their physical distance in the narrative. The presence of correlations
in literary texts has been reported in various contexts such as word lengths [35–37], sen-
tences [38], and sentiment trajectories [39]. Also, it has been reported that the temporal
organization of written texts can be analyzed from a multifractal perspective [40,41].

3. Input Data

The input data are comprised of 50 ebooks in English language downloaded from the
websites of the Gutenberg Project (http://www.gutenberg.org/, last accessed date: 27 May
2024) and the Project Gutenberg Australia (http://gutenberg.net.au/, last accessed date:
27 May 2024). The titles of the written texts are described online at https://figshare.com/
articles/dataset/A_sentence-level_sentiment_analysis_of_some_literary_texts_inEnglish_
language/27092008, last accessed date: 30 September 2024. There was no particular strategy
to select the titles. The selected books were first published in different epochs and countries,
therefore offering diversity in time and cultures of origin. We remove the preface, table of
contents, etc., of the books and only retain the text.

4. Methods
4.1. Vader Sentiment Values

VADER provides four scores for the sentiment and intensity of a sentence: positive
(pos), neutral (neu), negative (neg), and compound (com). The pos, neu, and neg scores are
ratios for proportions of text that fall in each category; therefore, these should all add up to
be 1. These are the most useful metrics for multidimensional measures of sentiment for a
given sentence. Moreover, the compound score is computed by summing the valence scores
of each word in the lexicon, adjusted according to certain rules, and then normalized to be a
floating number between −1 (most extreme negative) and +1 (most extreme positive) [29].
This is the most useful metric for a single unidimensional measure of sentiment for a
given sentence.

Using the compound score, standardized thresholds can be set for classifying sentences
as either positive, neutral, or negative. Typical threshold values are [29]:

• positive sentiment: compound ≥ 0.05,
• neutral sentiment: −0.05 < compound < 0.05,
• negative sentiment: compound ≤ −0.05.

http://www.gutenberg.org/
http://gutenberg.net.au/
https://figshare.com/articles/dataset/A_sentence-level_sentiment_analysis_of_some_literary_texts_inEnglish_language/27092008
https://figshare.com/articles/dataset/A_sentence-level_sentiment_analysis_of_some_literary_texts_inEnglish_language/27092008
https://figshare.com/articles/dataset/A_sentence-level_sentiment_analysis_of_some_literary_texts_inEnglish_language/27092008
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In the present work, we choose the compound score since we are interested in a single
unidimensional measure of sentiment for each sentence in order to study correlations of
sentiment along the text as well as the evolution of sentiment by studying the changes in
sentiment from one sentence to the next.

In order to estimate the sentiment of the sentences in a text, we start by parsing the
text to split it into sentences. Each sentence is then evaluated with VADER to obtain its
compound sentiment score, and therefore, the text is mapped to a data series of senti-
ment values. Figure 1 shows an example of these sentiment series for an specific book.
The complete resulting corpus containing the sentiment scores for each book can be found
online at https://figshare.com/articles/dataset/A_sentence-level_sentiment_analysis_
of_some_literary_texts_inEnglish_language/27092008, last accessed date: 30 September
2024. These series are then processed to investigate the kind of correlations that they
contain, for which we apply the well-known Higuchi Fractal Dimension (HFD) [42] and
the Detrended Fluctuation Analysis (DFA) [43] methods.

Figure 1. Example of one of the data series of sentiment values estimated with VADER. In this case,
for the book The Adventures of Sherlock Holmes by Arthur Conan Doyle.

Moreover, we use the classification threshold mentioned previously to transform each
series of compound sentiment into a series of three possible discrete values (states) of
sentiment: positive, neutral, or negative (see Figure 2). In order to study the sentiment
transitions along the text, we count the number of transitions of each type. For instance,
let us suppose that the kth sentence is classified as positive and the k + 1th is classified as
negative, then the number of transitions of the type pos → neg is increased by one. Once
the counting of transitions is finalized, we normalize the matrix to obtain a state transition
matrix p for each one of the books in our sample:

p =

 ppos→pos ppos→neu ppos→neg

pneu→pos pneu→neu pneu→neg

pneg→pos pneg→neu pneg→neg

 (1)

Therefore, we map the evolution of the classified sentiment to a Markov chain for each
book, with the state transition coefficients given by Equation (1). Shannon used Markov
chains to predict sequences of words, observing that a reasonable approximation to English

https://figshare.com/articles/dataset/A_sentence-level_sentiment_analysis_of_some_literary_texts_inEnglish_language/27092008
https://figshare.com/articles/dataset/A_sentence-level_sentiment_analysis_of_some_literary_texts_inEnglish_language/27092008
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could be produced if each word was chosen based not just on the previous word but on the
last few words, and introduced a mathematical framework for analyzing the information
provided by the word [44]. Also, Markov chains have been used to compute how probable
each instance of a word is based on the last few words, providing a way to measure the
predictability of a word in its context [45]. Interestingly, Markov himself published a report
in which he computes the probabilities that a vowel is followed by a vowel or a consonant
in a text excerpt containing 20,000 Russian letters of the Russian alphabet from Pushkin’s
novel [46].

In the present work, we are interested not in the word length, but in the sentiment of
the sentence. Given that we wrote a sentence with certain sentiment, what is the probability
that the next sentence either switches to another sentiment state or stays on the same
one? How does the sentiment of a certain sentence relate to the sentiment of the previous
few sentences?

Figure 2. Diagram depicting the possible transitions between sentiment values of sentences in a text.

4.2. Fractal Dimension Method and Detrended Fluctuation Analysis

Fractals are complex patterns that show self-similarity at different scales and are
characterized by a dimension that is not necessarily an integer value, which quantifies
the complexity of the fractal pattern. In the case of time series, which are considered non-
isotropic fractals because they extend over time while the values of the variable remain in a
bounded range (auto-affinity), the fractal characterization can be performed using several
methodologies. To capture this statistical self-affinity property, it is usually resorted to
quantify a measure of the object at different scales. This leads to a power law (G(x) ∼ xa),
where the scaling exponent a represents the level of spatio-temporal organization displayed
by the time series. The power spectrum is the method traditionally used to characterize
autocorrelations in time series. For example, we consider a stationary stochastic process
with an autocorrelation function following a power law C(s) ∼ sγ , where s is the lag
and γ is the correlation exponent, 0 < γ < 1. The presence of long-range correlations is
related to the fact that the mean correlation time diverges for infinite time series. According
to the Wiener–Khintchin theorem, the power spectrum is the Fourier transform of the
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autocorrelation function C(s), and for the case described above, we have the scaling
relation S( f ) ∼ f−β , where f is the frequency and β is called the spectral exponent and is
related to the correlation exponent by γ = 1 − β. However, the estimation of β may not be
as accurate when we have a nonstationary series. Alternative methods have been proposed
for evaluating the correlations and fractal properties of stationary and nonstationary time
series [42,47–49]. Here, we briefly describe two robust methods for the estimation of the
fractal scaling exponents:

(i) Fractal Dimension Method. We evaluate the time organization in sequences of
sentiment values by means of the Fractal Dimension Method (FDM), also known as
Higuchi Fractal Dimension (HFD) method [50]. Briefly, we explain the main steps of
the FDM [50,51]. Given the time series x1, x2, ..., xN , we construct new time series xk

m de-
fined as xm, xm+k, xm+2k, ..., x(m+[ N−k

k ]·k), with m = 1, 2, 3, ..., k, [ ] denoting Gauss’ notation,
that is, the bigger integer and m and k are integers that indicate the initial time and the
interval time, respectively. The length of the curve xk

m, is defined as

Lm(k) = 1
k

[(
∑
[ N−m

k ]
i=1 |x(m + ik)− x(m + (i − 1)k)|

)
N−1

[ N−m
k ]k

]
(2)

and the term (N − 1)/[(N − m)/k]k represents a normalization factor. The length of each
sequence xk

m is considered to construct the length of the original curve for the time interval
k, ⟨L(k)⟩. Finally, if a scaling behavior of the form ⟨L(k)⟩ ∝ k−D is observed, then the curve
is fractal with dimension D [50]. It is known that the fractal dimension is related to the
spectral exponent β by means of β = 5 − 2D [50]. We notice that this relationship is valid
for 1 < D < 2 and 1 < β < 3, and thus FDM is not a reliable method for signals with
strong anticorrelated behavior, that is, for −1 < β < 0. To overcome this problem, we
first integrate the original time series prior to applying the standard FDM. In this way,
for processes which can be described as the first derivative of fluctuations with spectral
exponent within the interval 1 < β < 3, the relationship between β and D changes to
β = 3 − 2D. A process with positive long-range correlations leads to D < 1.5, whereas
for anticorrelated processes, D > 1.5. The irregular fluctuations with no memory are
represented by D = 1.5.

(ii) Detrended Fluctuation Analysis. This method was introduced to quantify long-range
correlations in the heartbeat interval time series and DNA sequences [43,48,52]. The DFA
method has been used to explore the presence of correlations in different areas of science,
from heartbeat [52] and stock markets to earthquakes [53]. Briefly, the DFA is described
as follows: First, we integrate the original time series to obtain y(k) = ∑k

i=1[x(i)− xave].
The resulting series is divided into boxes of size n. For each box, a straight line is fitted
to the points, yn(k). Next, the line points are subtracted from the integrated series, y(k),
in each box. The root mean square fluctuation of the integrated and detrended series is
calculated by means of

F(n) =

√√√√ 1
N

N

∑
k=1

[y(k)− yn(k)]
2. (3)

This process is taken over several scales (box sizes) to obtain a power law behavior
F(n) ∼ nα, with α being an exponent which reflects self-similar and correlation properties
of the signal. An uncorrelated signal leads to α = 0.5, α = 1 represents a long-range corre-
lated process (1/ f noise), and α = 1.5 corresponds to a Brownian motion. For 0.5 < α < 1,
the scaling exponent α and the Hurst exponent provide the same information, and therefore
both can be used interchangeably [54]. The exponent α is also related to the spectral expo-
nent β (within the interval 0 < β < 1) through relation β = 2α − 1. Thus, fractal dimension
D is related to α by means of α = 2 − D, as expected for auto-affine signals [47,55].
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5. Results and Discussion
5.1. Correlations Analysis

Figure 3 shows the log–log plots for the HFD and DFA analyses performed on the
data series of compound sentiment scores for all the books in our sample. As can be seen,
these data series exhibit fractal behavior with different scaling exponents for both analyses.
In order to further study these correlations, we shuffle the sentences in each book prior to
estimating the VADER sentiment and the resulting data series are analyzed with the HFD
and DFA methods.

Figure 3. Top row: Log–log plots of ⟨L(k)⟩ vs. k for the HFD (left) and F(n) vs n for the DFA (right).
Each trace with different color on both plots corresponds to one book. As can be seen, the composite
sentiment data series are monofractal and can be characterized by a single scaling exponent, either D
or α. Buttom row: Similar log–log plots as in the top row but for the series resulting after shuffling
the sentences in the books.

Figure 4 shows a scatter plot of α vs. D for the original texts and the shuffled ones.
The mean values for the scaling exponents for the original texts are D = 1.38 ± 0.04 and
α = 0.62 ± 0.04. Even though there is scattering in the values for the scaling exponents,
we can see from the values of α that the data series of sentiment are slightly long-term
correlated. On the other hand, the mean values of the scaling exponents for the shuffled
texts are D = 1.49 ± 0.03 and α = 0.50 ± 0.02. We perform a two-sample t-test for each
scaling exponent between the original sequences and the shuffled ones, with the null
hypothesis that the two populations have no statistically significant difference. In other
words, we take the population of one scaling exponent computed for the original sequence
(for instance, α) and perform the t-test to assess statistical difference to the population of the
values of α obtained for the shuffled sequences, and similar approach is followed for the
fractal dimension D. The p-values obtained for the scaling exponents are: pD = 7.4 × 10−29

and pα = 4.5 × 10−22. They allow us to reject the null hypothesis, i.e., we find statistically
significant differences in α and D between the original sequences and the randomized ones.

We also observe that there is a good concordance between the median values obtained
from both methods. By using the relationship α = 2 − D, it is easy to show that D̄ = 1.38
yields to ᾱ = 0.62, which matches the value obtained by means of the DFA. This also applies
for the case of the shuffled sequences.

We compute the fraction of the number of sentences on each sentiment state to the total
number of sentences for each book. Figure 5 shows box plots for each fraction for all the
books considered in our study, with the median values of each population shown within the
box. As can be seen, the majority of sentences are valued as neutral, followed by the positive
and then the negative ones. The observation that there are more positive than negative
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sentences in the books under study is in agreement with recent studies reporting a positive
bias in human expression [30,31], although in those works, the positivity in the language is
based on a word-by-word analysis, and in our case, the analysis is made on a sentence-by-
sentence basis, which supplements and extends those previously reported results.

Figure 4. Scaling exponents for the HFD and DFA for the original texts and the shuffled ones.
The straight line corresponds to the relationship α = 2 − D.

Figure 5. Box plots for the fraction of sentences on each sentiment state ( f+ for positive, f× for neutral
and f− for negative sentiments) with respect to the total number of sentences in the book. The values
shown are the median (inside the box) and the lower and upper quartile. The whiskers extend from
the box to show the range of the data, while the flier points are those past the end of the whiskers
and are considered as outliers.
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In order to investigate further the bias towards positive sentiment in language, for each
book, we obtain the normalized histograms for the compound sentiment series. Figure 6
shows the overlay of the histograms. As can be seen, there is a peak for the sentiments
around the neutral values of sentiment. Moreover, we compute the area under the positive
(denoted by A+) and the negative (A−) sides, which offer the probability of finding positive
or negative sentences in the text, respectively. The scatter plot of A+ vs A− in the inset of
Figure 6 shows that for most of the cases, the probability of finding positive sentences is
larger than the one for the negative ones. Moreover, we compute the empirical cumulative
distribution function for the series of compound series and compare the positive and
negative tails (see Figure 7). As can be seen, the probability of finding sentences with a
compound value lower than a certain value c0 decreases faster for the negative tail.

Figure 6. Normalized histogram (F(c)) for the compound sentiment c, where each trace with different
color corresponds to a book. The inset is a scatter plot of the areas under the histograms for the
positive and negative sides, which shows that the probability of finding sentences with positive
sentiment is higher than with negative sentiment (the identity line is provided as a visual guide).

Figure 7. Cumulative distribution function for the compound values for the positive sentiment (left)
and the negative one (right). Each trace corresponds to a book, green color for positive values and
red for negative ones. The straight line is provided as a visual guide.
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5.2. Observations from the Transition Coefficients

As mentioned in the Methods section, we discretize the compound sentiment series by
applying a classification approach. After counting the number of sentiment states transition,
we come up with a state transition matrix for each book. Figure 8 shows box plots for the
coefficients of each possible transition, for both populations: original text and shuffled text.
As can be seen, the most likely transition is from a neutral sentence to another neutral one,
followed by the transitions from a positive (negative) sentences to a positive (negative) one.

Figure 8. Box plots for the normalized populations of each state transition coefficient. The values for
the original text and its shuffled version are given side by side (box plots in red color represent the
shuffled text). The median values are marked within each box plot with a dotted line, while the mean
values are marked with a solid line. The whiskers extend from the box to show the range of the data,
while the flier points are those past the end of the whiskers and are considered as outliers.

We see that for the three states, the transition to a neutral sentence is the one with
higher probability, which suggests that the neutral sentence is an inflection point for
the sentiment when changing emotion (positive to negative or vice versa) or that these
sentences are providing general and contextual information in the narrative. Starting
from a positive sentence, it is more likely to move to a positive sentence, and from a
negative sentence to a negative one, except that the latter transition is less differentiated
with respect to the transitions to neutral or positive sentences, while moving from a
neutral to a neutral sentence is markedly more likely compared to the other two transitions.
Moreover, the medians of the transition coefficients show that the transition matrices are not
symmetric, since there is a certain bias for transitions to positive and to neutral sentences. In
summary, Table 1 shows the list of state transitions in descending order on the probabilities
of transitioning to a certain state given a start on a particular one.
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Table 1. List of state transitions in descending order of transition probabilities.

Initial State First Most Likely Transition Second Third

positive positive neutral negative

neutral neutral positive negative

negative negative positive neutral

On the other hand, Figure 8 also shows the state transition coefficients for the shuffled
sentences. As can be seen, the transition matrix between states of the same type (pos–pos,
neg–neg and neu–neu) exhibit mean values that are smaller than the values corresponding
to the original data, while for the other transitions, the differences between the mean values
is less noticeable. We see that for the shuffled sentences, the transition coefficient to a
certain state is the same independently of on which state we started with, while there is a
bias towards neutral sentences followed by positive ones. Again, the transition to negative
sentences has the lower probability. Therefore, even in this case of shuffled sentences, there
is a bias towards positive sentiment in human language, as previously reported in other
studies [56]. One interesting thing to note here is that the median values of the transition
coefficients for the shuffled texts follow the same proportion that the fraction of text that it
is in a certain sentiment state (see Figure 5).

The long-term correlations in the sentiment data series that are revealed by the DFA
analysis are somehow expected since, by construction, the writing process has memory
given that the narrative is about concatenating sentences that are related. Our results
on the presence of long-term correlations with values in fractal exponents, which reveal
slight persistence, are in agreement with previous results reported for sentiment value
sequences and those based on word-length [35,37,38], sentence-length [57], and sentiment
arcs [58]. In addition, this approach could eventually be used to evaluate certain individual
characteristics of the texts, which would provide an alternative way of identifying them
through their organization across different scales. On the other hand, by introducing
a Markov chain approach, we find that the sentiment state of a sentence depends on
the immediately preceding one. This approach allows us to reveal the biases on the
transitions to neutral and positive sentences in the evolution of the sentiment along the
text. The narrative has sentiment scores that are correlated, but the story being told can
vary in emotion and intensity from one sentence to the next; therefore, the sentiment
evolution along the text could be mapped to a Markov chain. In other words, the long-term
correlation approach allows to make a global assessment of the book sentiment, while the
state transition matrix approach provides local information on the evolution of sentiment
along the text. These local and global properties have been recognized as features present
in systems that exhibit, at the same time, the presence of event “clustering” and long-
term correlations [59–61]. The main limitation of this study lies in the sentiment values
returned by VADER, where the compound sentiment construction may exhibit biases
when analyzing content with sarcasm or other representations where the tool is not robust.
Although these evaluations can be made more robust by considering other sentiment
analysis tools, it remains a complex task. Further studies are needed to explore the feasibility
of obtaining specific features of sentiment evolution in literary texts, and whether the levels
of correlations are representative of the type of text being analyzed to determine properties
such as literary genres, authors, etc.

6. Conclusions

We perform a sentence-level sentiment analysis of several literary works in English.
This study has two approaches: (i) a global one through the assessment of the correlations
in the sentiment along the text and (ii) a local one through the analysis of the transitions
of sentiment from a sentence to the next. The global assessment, performed by applying
the Higuchi Fractal Dimension and the Detrended Fluctuation Analysis methods, shows
that the data series of sentiment scores is monofractal with long-term correlations, which
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can be explained by the fact that the writing process has memory by construction with
a sentiment evolution that is self-similar. The local assessment, performed by counting
the sentiment state transitions, shows that there are biases that make more likely the
transitions to neutral and positive sentences, implying a bias towards positive sentiment in
the texts. Previous studies based on word-level sentiment analysis have found a similar
bias to positive sentiment [56]. These two approaches supplement each other because the
long-term correlation approach allows a global assessment of the sentiment of the book,
while the state transition matrix approach provides local information about the sentiment
evolution along the text.
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