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Abstract: It is well‑believed that most trading activities tend to herd. Herding is an important topic
in finance. It implies a violation of efficient markets and hence, suggests possibly predictable trad‑
ing profits. However, it is hard to test such a hypothesis using aggregated data (as in the literature).
In this paper, we obtain a proprietary data set that contains detailed trading information, and as
a result, for the first time it allows us to validate this hypothesis. The data set contains all trades
transacted in 2019 by all the brokers/dealers across all locations in Taiwan of all the equities (stocks,
warrants, and ETFs). Given such data, in this paper, we use swarm intelligence to identify such
herding behavior. In particular, we use two versions of swarm intelligence—Boids and PSO (parti‑
cle swarm optimization)—to study the herding behavior. Our results indicate weak swarm among
brokers/dealers.
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1. Introduction
It is well‑believed that most trading activities tend to herd. Herding is an important

topic in finance (see a recent work by Mavruk [1], who adopts various machine learning
algorithms). Ukpong, Tan, and Yarovaya [2] and Rahayu et al. [3] provide an excellent re‑
view of herding in the financial markets (An earlier review can be found in Bikhchandani
and Sharma [4]). However, it is hard to test such a hypothesis using aggregated data (as
in the literature). In this paper, we obtain a propriety data set that contains detailed trad‑
ing information of herding, and as a result, for the first time it allows us to validate this
hypothesis. The data set contains all trades transacted by all the brokers/dealers across all
locations in Taiwan of all the equities (stocks, warrants, and ETFs).

Technical analysts follow patterns drawn from prices and volume and develop vari‑
ous trading indices. Other than the popular indices like 50‑day and 200‑day moving av‑
erages, there are also sophisticated ones like on‑balance volume, stochastic oscillator, and
relative strength index, among numerous others. No matter what indices these analysts
follow, they are not based upon any fundamental information of the companies. Instead,
they are based upon behaviors of the market participants—known as herding.

For pretty much the entire history of studying stock returns, such indices have been
ridiculed and looked downupon by economists. Traditional economists criticize such trad‑
ing indicators as being lacking theory, completely ad‑hoc, and highly judgmental (i.e., dif‑
ferent analysts can come to different conclusions from the same data) . . . until now. How‑
ever, we believe that all those technical indicators, although not supported by any eco‑
nomic theory, are supported by psychological behaviors of market participants—herding.

Not just in stock markets, people in general herd. Often, we vote for a political candi‑
date not because howmuchwe know about this person, or howmuchwe are familiar with
his past record, but because our friends vote for him. We listen to our friends’ suggestions
to make decisions all the time, without doing actual research ourselves. This is herding.

Information 2024, 15, 707. https://doi.org/10.3390/info15110707 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info15110707
https://doi.org/10.3390/info15110707
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://doi.org/10.3390/info15110707
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info15110707?type=check_update&version=1


Information 2024, 15, 707 2 of 37

Not only humans herd, but animals herd as well. Ants and bees rely on one an‑
other to find food and avoid prey. Computer scientists observe this and translate their
behavior into an algorithm so that we can solve complex problems related to herding—
swarm intelligence.

In this paper, we use swarm intelligence to study the herding behavior in stock mar‑
kets. This is the first time an artificial intelligence model is applied to herding in financial
markets. Swarm intelligence is perfectly suitable for herding in that herding is regarded as
a psychological behavior that is unrelated to firms’ fundamentals. In order to test if herd‑
ing exists, we estimate the hyperparameters in the swarm model. Closed‑form solutions
are derived for special cases, while the general case can be solved numerically.

The rest of the paper is organized as follows. In the next section, we discuss the basic
idea andmath of swarm intelligence. In Section 3, we also derive the closed‑form formulas
for the parameters in swarm. We then do not need to numerically solve for the parameters,
as many machine learning models do. Section 4 is the main section of the paper. We
present data and empirical results. In Section 5, we discuss the major shortcoming of this
paper—noise, insufficient granularity, and length of data. And the paper is concluded.

2. A Quick Glance on Herding
Herding is the behavior of individuals in a group acting collectively without central‑

ized direction. Herding is originally observed in animals in herds, packs, bird flocks, fish
schools, and so on, as well as in humans. Shiller [5] seems to be the first author who stud‑
ied herding in the financial market. He describes investors influenced by their peers in
making investment decisions as follows:

“Investing in speculative assets is a social activity. Investors spend a substantial
part of their leisure time discussing investments, reading about investments, or
gossiping about others’ successes or failures in investing. It is thus plausible that
investors’ behavior (and hence, prices of speculative assets) would be influenced
by social movements.”

Aswe can all agree, although humans are highly intelligent, they can behave foolishly
when they are in a crowd. Hence, with no surprise, the literature has predominantly re‑
garded herding as an irrational behavior. This is because herding does not generate better
returns (see Mavruk [1] for a review of such results). The literature documents the follow‑
ing reasons for herding, all of which demonstrate a certain behavioral bias (SeeMavruk [1]
for further details):
• fads
• fear
• greed
• reputation
• noise

All of the above causes can easily result in market disturbances and destabilization.
Hence, herding can move the market away from its fundamentals. The conclusion that
herding is irrational is consistent with the common wisdom raised by Shiller [5].

As a result, it can be expected that herding is not persistent. It happens sometimes,
ceases to happen sometimes, and furthermore contradicts itself sometimes. This is ex‑
tremely similar to the performances of technical analyses that herding is time‑varying and
situation‑dependent. For this reason, a major effort in the literature is to identify the deter‑
minants of herding. Summarized nicely by Rahayu et al. [3], herding is stronger (Please
see the citations of relevant papers in Rahayu [3]):
• when volatility is higher
• in a crisis
• for small stocks
• when there are large price movements
• in a declining market
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• when rates rise
• in a poor information environment

It is obvious that such situations are not sustainable situations. They happen only
temporarily and are naturally not persistent.

Herding is in general classified as stock herding or investor herding. As their names
suggest, the former refers to how investors rush in and out of a stock, and the latter refers to
how investors follow their peers. Understandably, the methodology to study both types
of herding is the same, while the difference is in data. For stock herding, the data are
usually more price related (i.e., in order to measure trading profits) and more frequent,
while for investor herding, the data are more shares related (i.e., investors’ holdings) and
less frequent.

Themeasures of herding vary. Yet they can be traced back to Lakonishok, Shleifer, and
Vishney [6], who define herding as the difference between the actual change in “purchase
intensity” and the expected change of “purchase intensity” (For othermeasures of herding,
see Bikhchandani and Sharma [4] and Mavruk [1] for their surveys):

|pt+1 − pt| − E[|pt+1 − pt|]

where pt is purchase intensity. While this definition reflects common wisdom, finding a
good proxy for purchase intensity is a challenge. Various authors, given data availabil‑
ity and research focus, use different proxies. Lakonishok, Shleifer, and Vishney [6] use
changes in share holdings. While this is a sensible proxy for purchase intensity, such data
are only available at the institutional level and only four times a year (i.e., quarterly). As
a result, not only does it fail to measure more frequent herding, which is how herding
can meaningfully impact trading profits, it also fails to measure retail trading, which is be‑
lieved to be more interesting (because it is more tightly related to trading profits). In other
words, their results are limited to fund managers and are in low frequency. Strictly speak‑
ing, it is a result of how information is transferred among fund managers, not herding,
which is more understood as trading related.

The other extreme is to use very frequent data (daily), and yet the quality of the proxy
is lowered. For example, Ukpong et al. [2] use excess returns (the difference between a
stock’s return and the market return) as the proxy. Contrary to Lakonishok, Shleifer, and
Vishny [6], they capture the dynamics of herding more perfectly and yet the measurement
errors in their results are larger. Using swarm, we are free of the above criticisms in that
we directly measure how individual investors follow or not their peers.

A small portion of the literature argues that herding can be rational, mainly caused
by information asymmetry. Some individuals in a group have superior information than
others. As one can understand, such evidence can only exist in investor herding (not stock
herding) and is only limited to institutional investors. These institutionsmimic one another
due to information asymmetry, which is distinctly different from and hard to reconcile
with the aforementioned reasoning of herding. In swarm intelligence, however, these two
types of herding can be easily integrated. The former is the usual notion of swarm via
separation, alignment, and cohesion (see the next section for details), and the latter is leader
following (either via a landscape or a predefined leader or a group of leaders).

Evidence on herding also indicates anti‑herding—known as contrarian. Similar to the
standard contrarian notion, anti‑herding refers to a situation where certain investors tend
to diverge from the rest of the group. Again, this can be capturedmore faithfully by swarm
intelligence via alignment, cohesion, and separation.

Some researchers relate herding to momentum (The pioneering academic research on
momentum investing can be traced back to Jegadeesh and Titman [7]. They documented
how strategies of buying recent stock winners and selling recent losers generated signif‑
icantly higher near‑term returns than the U.S. market overall from 1965 to 1989. They
established the basic time frame for momentum‑investing success as a 3‑to‑12‑month win‑
dow on either side. Since then, it has been booming into one of the largest research areas
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in finance. Recently, they (Jegadeesh and Titman [8]) wrote an excellent review piece of
the past 30 years of momentum research). As the first authors systemically documenting
herding, Grinblatt, itman, and Wermers [9] define herding as how a group of investors
move in and out of the market simultaneously—like a herd. They do not study why they
herd. Recently, Demirer, Lien, and Zhang [10] evaluate the impact of industry herding
on return momentum. They find that the profitability of industry momentum strategies
depends on the level of herding in an industry. Lin, Wu, and Zhang [11] investigate the
impact of herding behavior on the momentum effect. Using a new firm‑level herding mea‑
surement, they find that investors require higher returns in high herding stocks, and they
require even higher returns in high herding stocks among previous losers, indicating that
investors herd against the previous losers while they herd toward the winners. Chen [12],
using intra‑day volume data of 2016 over 62 countries, finds that uninformed country‑level
herding is highly related to momentum (Note that although the data used by Chen (2021)
are intra‑day, he aggregates information to daily).

Finally, herding is observed internationally. Besides Chen’s work on 62 countries,
Rahayu et al. [3] provide an excellent review of literature. They have documented strong
evidence of herding internationally (over 20 nations).

3. Swarm Intelligence
Wikipedia describes swarm intelligence as “the collective behavior of decentralized,

self‑organized systems”. The basic idea of swarm intelligence is derived from those an‑
imals (such as birds, ants, bees, and fish) that rely on group effort to achieve their basic
survival needs—seek food and avoid prey. The intelligence behind this collective behav‑
ior is how they communicate among one another.

There are two versions of swarm intelligence. They are related and yet applied dif‑
ferently on different problems. The first is Boids, and the second is particle swarm opti‑
mization. In an Appendix A, we provide a simple numerical, step‑by‑step example with
five fish and two dimensions. The example demonstrates how migration of fish in each
iteration is calculated.

3.1. Boids
Reynolds [13] was the first to “artificialize” such natural intelligence and create a com‑

puter algorithm named Boids (for bird‑oid object). Reynolds’ algorithm is amazingly sim‑
ple. For any given bird, Reynolds devises a set of linear equations (vectors) combining
which determines how the bird should fly to its next destination.

The factors that determine how various vectors are combined are: separation,
alignment, and cohesion. As their names suggest, “separation” is to avoid col‑
lision with other birds, “alignment” decides how a particular bird should fly in
a direction by referencing to its fellow birds, and “cohesion” decides how fast
(speed) a particular bird should fly to the center of its fellow birds.

There are countless versions of Boids. One can add obstacles. One can add an objec‑
tive destination (swim to target). One can do Boids in amaze. The basic Boids as described
in Figure 1 can be described by the following algorithm.

In the swarm model, let i = 1, · · · , m be firm (bird) and j = 1, · · · , n be stock (dimen‑
sion). At each given point in time, a map of the locations of bird is taken. The map is a
15‑dimensional hypercube image with each axis bounded between 0 and 1.
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⇀
x
(i)
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representing alignment, cohesion, and separation respectively.
The update of position is:

⇀
x
(i)
t =

⇀
x
(i)
t−1 +

⇀
v
(i)
t (3)

In terms of data, each position is a snapshot of the locations of all birds at a given time.
From one snapshot to another, it represents a migration (i.e., velocity).

As it can be easily seen, the main purpose of the swarm here is to describe how birds
move. For example, if cohesion is dominant, then eventually all birds will line up in a
straight line. Similarly, if alignment is dominant, then they all want to move in the same
direction parallelly. Finally, if separation is dominant, then they all move randomly. Since
there is no stopping time, these birds will keep moving indefinitely.

3.2. Particle Swarm Optimization
Particle swarmoptimization (PSO), from its name, is an optimization tool using swarm

(See Eberhart and Kennedy [14] and Shi and Eberhart [15]). In PSO, an objective function
(or penalty function) is given so birds can all reach the optimal location. The communica‑
tion mechanism among the birds is the same as Boids, and yet how they move is different.

One can think of PSO is swarm with a landscape (i.e., the objective function). Birds
now will try to reach either the peak or bottom (i.e., global optimum) of the landscape. In
this case, they will stop moving once their objective is met.

In order to achieve convergence, the velocity of a PSO is given as:

⇀
v
(i)
t = wt

⇀
v
(i)
t−1 + c1r1(

⇀
p
(i)
t−1 −

⇀
x
(i)
t−1) + c2r2(

⇀
g t−1 −

⇀
x
(i)
t−1) (4)

https://en.wikipedia.org/wiki/Boids
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where wt < 1 is a decaying weight (e.g., we can let wt = δt and δ < 1), c1 and c2 are two
constants, r1 and r2 are two random variables, and

⇀
p
(i)
t =

{
⇀
x
(i)
τ≤t|max

τ
ϕ(

⇀
x
(i)
τ )

}
where ϕ(·)isthefitnessfunction. (5)

is the personal best and
⇀
g t = max

i

⇀
p
(i)
t is the global best.

In (4), c1 and c2 are learning rates. These are standard parameters in artificial in‑
telligence to attain most effective learning. The two random variables r1 and r2 are “ex‑
ploration”, meaning that the birds do not follow what they “learn” exactly. This is key
to artificial intelligence to avoid local optima. Finally, birds follow the instruction from
⇀
g t−1 −

⇀
x
(i)
t−1 and

⇀
p
(i)
t−1 −

⇀
x
(i)
t−1 which are regarded as “exploitation” since they would like

to learn from given information.
The update of position is the same as (3) and repeated here:

⇀
x
(i)
t =

⇀
x
(i)
t−1 +

⇀
v
(i)
t (6)

A graphical depiction of the particle swarm optimization is given in Figure 2 (with

the replacement of
⇀
p
(i)
t by x̂i(t)).
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Note that swarm is very flexible, and we can put exploration separately (i.e., not min‑
gled with exploitation). In this paper, we alter (4) as follows:

⇀
v
(i)
t = wL

⇀
v
(i)
L,t + wP

⇀
v
(i)
P,t (4a)

where wP,t + wL,t = 1 and
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and
⇀
v
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⇀
x
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t−1) or = α

(i)
L (

⇀
g t−1 −

⇀
x
(i)
t−1) (8)

Note that in this paper, we do not have a landscape. The global best (which is the best
position of the landscape) is replaced by a “leader”, who is the one with the position

⇀
g t.

As a result, there is no convergence or stopping time in our empirical work.

https://medium.com/analytics-vidhya/implementing-particle-swarm-optimization-pso-algorithm-in-python-9efc2eb179a6
https://medium.com/analytics-vidhya/implementing-particle-swarm-optimization-pso-algorithm-in-python-9efc2eb179a6
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3.3. Swarm Intelligence and Herding
Swarm intelligence is particularly suitable for studying human herding in that hu‑

mans, although highly intelligent, behave rather foolishly (i.e., by instinct) when they are
in a group. They tend to follow their peers in taking certain actions as opposed to relying
on their own intelligence (which includes independent research, judgment, and analyses).
In trading stocks, the finance literature has long documented herding in human behav‑
ior. It is rather obvious if we just look around how people choose their investment targets.
Very few actually use their intelligence but rather make hasty decisions based upon the
suggestions of their peers. It is not just trading; we also observe a similar phenomenon in
political elections. Reference groups are essential to how people vote. It is this observa‑
tion that motivates this research. As a result, instead of using the traditional methods (i.e.,
statistical methods), which mainly rely upon covariances to study herding (Regressions
in the herding literature are based upon covariances (between dependent and explanatory
variables)), it is more natural and common‑sense to use swarm to study herding. In swarm,
herding is not determined by covariances of the performances of stocks. Rather, it detects
if a trader actually follows the other traders.

As seen in the above subsections, the hyperparameters of a swarm determine its be‑
havior (and in turn, determines the performance of the market). In a Boid, alignment, co‑
hesion, and separation (and leader‑following) are the main parameters. Alignment is how
an investor follows the same trend of his peers, cohesion is how an investor would like
to hold the same position of stocks as his peers, and finally, separation is how an investor
would like to be a contrarian (anti‑herding). Although one can add other behavioral pa‑
rameters (e.g., leader‑following, or grouping), Reynolds [13] argues that these are themain
parameters that a swarm needs. Indeed, the “social movements” recognized by Shiller [5]
are quite consistent with Reynolds’ design of swarm. Any individual either wants to “keep
upwith the Joneses” (i.e., cohesion), takes a successful story and learns from it (i.e., follows
its path, alignment), or takes a failure story and avoids its path (i.e., separation). In other
words, Reynolds’ swarm is a direct model for an individual who wants to herd. The sta‑
tistical methods used in herding are at best an indirect detection of herding, while swarm
intelligence is a direct recognition of herding.

Swarm intelligence has been widely used in scientific research (which is not relevant
to this paper). (Note that there is a wide variety of different swarm models (in both boids
and particle swarm optimization)). In finance, unfortunately, there have been very lim‑
ited number of applications. Recent work includes Chen [16] on stock picking, Chen and
Behrndt [17] on commodity options, Chen et al. [18] on stock options, Chen, Huang, and
Yeh [19] on portfolio construction, and Chen, Miller and Toh [20,21] on firm search (See
Huang [22] for a survey).

4. Empirical Methodology
We can estimate the parameters of swarm (Equation (1)) using data. Empirical (i.e.,

data) positions can be labeled as
⇀
ξ
(i)

t and velocity as
⇀
ν
(i)
t (to substitute for

⇀
x
(i)
t and

⇀
v
(i)
t in

(3)). Hence, similar to (3):
⇀
ν
(i)
t =

⇀
ξ
(i)

t −
⇀
ξ
(i)

t−1 (9)

Our objective function is tominimize the sum of squared errors between
⇀
ν
(i)
t and

⇀
v
(i)
t :

min
α
(i)
P,t

(
⇀
v
(i)
t −⇀

ν
(i)
t )′(

⇀
v
(i)
t −⇀

ν
(i)
t ) = min

α
(i)
P,t

∑n
j=1 (v

(i)
j,t − ν

(i)
j,t )

2
(10)

Taking partial derivative and setting it to 0:

∑ (v(i)j,t − ν
(i)
j,t )

∂v(i)j,t

∂θ
= 0 (11)
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where θ is a chosen parameter.
Clearly, (11) in general has no closed‑form solution and needs to be solved numer‑

ically. However, if we focus on one parameter at a time (i.e., holding other parameters
constant), then there is a closed‑form solution, which is what we implement in the empiri‑
cal section.

4.1. Boids
Rewrite (1) slightly as follows:

⇀
v
(i)
t = w(i)

A,t
⇀
v
(i)
A,t + w(i)

C,t
⇀
v
(i)
C,t + (1 − w(i)

A,t − w(i)
C,t)

⇀
v
(i)
S,t

= w(i)
A,t

(
⇀
v
(i)
A,t −

⇀
v
(i)
S,t

)
+ w(i)

C,t

(
⇀
v
(i)
C,t −

⇀
v
(i)
S,t

)
+

⇀
v
(i)
S,t

= w(i)
A,t

⇀
A
(i)

t + w(i)
C,t

⇀
C
(i)

t +
⇀
S
(i)

t

(1a)

Then we follow (11) and take partial derivatives with respect to alignment wA and
cohesion wC parameters, respectively. This leads to a simultaneous equation system (the
derivation is in Appendix C), and the solution is:[

w(i)
A,t

w(i)
C,t

]
=

1
x11x22 − x2

12

[
x22 −x12

−x12 x11

][
y1
y2

]
(12)

where (note that i, j, and t are dropped from x for easy expression)
xAC = ∑n

j=1 A(i)
j,t C(i)

j,t ,

yX = ∑n
j=1 ν

(i)
j,t X(i)

j,t − ∑n
j=1 X(i)

j,t S(i)
j,t (in which X is either A or C),

And finally, ν
(i)
j,t = ξ

(i)
j,t − ξ

(i)
j,t−1 is velocity computed from data.

For the reason that is clear later, we also run the estimation without separation. In
that case, (1) can be rewritten as:

⇀
v
(i)
t = w(i)

t
⇀
v
(i)
A,t + (1 − w(i)

t )
⇀
v
(i)
C,t (13)

Similar to the process in solving (12), we can solve for the weight (details in Appendix C)
as follows:

w(i)
t =

∑n
j=1(ν

(i)
j,t − v(i)C,j,t)(v

(i)
A,j,t − v(i)C,j,t)

∑n
j=1 (v

(i)
A,j,t − v(i)C,j,t)

2 (14)

Note that in this case, we force the brokers/dealers to swarm. If in reality brokers/dealers
do not swarm, then the weight should be random and present no patterns.

4.2. Particle Swarm Optimization
We have several tests (for our hypotheses). The first is to see if a broker/dealer ex‑

plores. In this test, we rewrite (7) as follows (wP = 1):

⇀
v
(i)
t =

⇀
v
(i)
P,t

= (1 − α
(i)
P )

⇀
u
(i)
t + α

(i)
P (

⇀
p
(i)
t −⇀

x
(i)
t )

(7a)

From the Appendix, we solve the coefficient analytically as:

α
(i)
P,t =

∑n
j=1(ν

(i)
j,t − u(i)

j,t )(p(i)j,t − x(i)j,t − u(i)
j,t )

∑n
j=1 (p(i)j,t − x(i)j,t − u(i)

j,t )
2 (15)
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Alternatively, we could let wL = 1 and

⇀
v
(i)
L,t = α

(i)
L,t(

⇀
g t−1 −

⇀
x
(i)
t−1)

⇀
v
(i)
L,t = αL,t(

⇀
g t−1 −

⇀
x
(i)
t−1)

(16)

where the former is each firm has its own α
(i)
L,t and the latter is all firms share the same αL,t.

The solution (see Appendix B) is:

α
(i)
L,t =

∑n
j=1 ν

(i)
j,t (gj,t − x(i)j,t )

∑n
j=1 (gj,t − x(i)j,t )

2 (17)

and the average across individual brokers/dealers is:

αL,t =
1
m ∑m

i=1 α
(i)
L,t

=
1
m ∑m

i=1

∑n
j=1 ν

(i)
j,t (gj,t − x(i)j,t )

∑n
j=1 (gj,t − x(i)j,t )

2

(18)

This can be compared to the other solutions where all firms adopt the exact same
parameter value, which is:

αL,t =
∑m

i=1 ∑n
j=1 ν

(i)
j,t (gj,t − x(i)j,t )

∑m
i=1 ∑n

j=1 (gj,t − x(i)j,t )
2 (19)

Finally, we can estimate both parameters jointly (see Appendix B).

⇀
v
(i)
t = w(i)

t
⇀
v
(i)
P,t + (1 − w(i)

t )
⇀
v
(i)
L,t (20)

However, we end up with three simultaneous equations:

∑n
j=1

{
w(i)

t u(i)
j,t z(i)j,t + wtα

(i)
P,t(z

(i)
j,t )

2
+ (1 − w(i)

t )v(i)L,j,tz
(i)
j,t − νj,tz

(i)
j,t

}
= 0

∑n
j=1[w

(i)
t v(i)P,j,t + (1 − w(i)

t )α
(i)
L,t(gj,t−1 − x(i)j,t−1)− νj,t][gj,t−1 − x(i)j,t−1] = 0

∑n
j=1(v

(i)
t−1 − ν

(i)
t−1)

{
(u(i)

t−1 + α
(i)
P,t(p(i)t−1 − x(i)t−1 − u(i)

t−1))− α
(i)
L,t(gj,t − x(i)t−1)

}
= 0

(21)

Instead of solving the system of simultaneous equations, in the empirical work, we
simplify the problem by holding the weight constant (0.5 and 0.6) and then solve for α

(i)
L,t

and α
(i)
P,t respectively. See Appendix B for details.

5. Empirical Findings
Asmentioned in the introduction, herding iswidely observed in financialmarkets, yet

it has been only studied with low‑frequency data. Furthermore, such empirical evidence
is indirect and could be subject to large measurement errors (due to proxies for herding).
In this study, a benefit from a proprietary data set, we are for the first time able to examine
at the broker/dealer level the herding behavior. We use two swarm intelligence models to
examine such a behavior.

5.1. Data
We use a proprietary data obtained from HiHedge. (We are highly grateful for the

CEO of HiHedge, Dr. Gu Jiaqi, for generously providing the data at no cost). The data
contain the whole year of 2019 of all the trading activities (prices and volumes of buy,
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sell, and trade) of all the locations of all the securities firms in Taiwan. The data therefore
include all (80) broker/dealer trades in all (294) locations in Taiwan. Consequently, the
data contain a total 205,678,058 transactions. To my knowledge, such granularity of data
has not been possible in the literature of swarm intelligence.

Each transaction is labeled as buy or sell, its price (NT$), and its volume (shares).
The data do not contain time stamps, and hence, they are aggregated within a day. In
2019, there are a total of 223 trading days. In other words, for the same broker/dealer and
location, all buy transactions and sell transactions (separately) are summed up into one
transaction within a day.

The data include stocks, warrants, and ETFs. In this study, we limit our focus on only
TSE (967) stocks. In particular, we first focus on only the top 20 stocks, which account for
50% of the market size in TSE (Note that TSMC (#2330) alone accounts for over 25% of the
TSE). The distribution is given in Figure 3.
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Figure 3. Stock Weights (excluding TSMC #2330).

As we can see, the size of companies becomes exponentially smaller. For this reason,
in our empirical work, we study swarm using all stocks as well as the top 20 stocks.

The top 20 stocks are listed in Table 1. These companies allocate across 11 industries (fi‑
nancial 6, semi‑conductor 4, plastic 2, auto 1, energy 1, telecom 1, steel 1, electronic parts 1,
computer 1, food 1, other electronics 1.

Table 1. Trading Volume of the Top 20 Firms in TSE.

Rank Ticker Name Name Share wt Dollar wt Industry Industry

1 2330 台積電 TSMC 5.31% 0.59% semi‑conductor 半導體

2 3406 玉晶光 Genius Electronic Optical 2.70% 0.20% photoelectric 光電

3 2317 鴻海 Hon Hai Precision 1.98% 0.72% other electronics 其他電子

4 2327 國巨 Yageo Electronics 1.95% 0.18% electronics 電子零組件

5 3008 大立光 Largan Precision 1.90% 0.01% photoelectric 光電

6 2454 聯發科 MediaTek 1.75% 0.15% semi‑conductor 半導體

7 3150 穩懋 WIN Semiconductors 1.70% 0.22% semi‑conductor 半導體

8 2492 華新科 Walsin Technology 1.66% 2.92% electronic parts 電子零組件

9 6488 環球晶 Global Wafer Corporation 1.50% 0.24% semi‑conductor 半導體

10 2337 旺宏 Macronix 1.45% 0.13% semi‑conductor 半導體

11 6462 神盾 Egis Technology 1.03% 1.07% semi‑conductor 半導體

12 2023 欣興 Unimicron 1.02% 0.13% electronic parts 電子零組件

13 3034 聯詠 Novatek Microelectronics 0.99% 0.80% semi‑conductor 半導體

14 2474 可成 Catcher Technology 0.88% 0.14% other electronics 其他電子
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Table 1. Cont.

Rank Ticker Name Name Share wt Dollar wt Industry Industry

15 2408 南亞科 Nanya Technology 0.84% 0.10% semi‑conductor 半導體

16 3324 雙鴻 Auras Technology 0.81% 0.55% other electronics 其他電子

17 2308 台達電 Delta Electronics 0.79% 0.34% electronic parts 電子零組件

18 2345 智邦 Accton Technology 0.76% 0.14% Telecommunication 通信網路

19 2313 華通 Compeq Manufacturing 0.65% 0.13% electronic parts 電子零組件

20 2379 瑞昱 Realtek 0.64% 0.13% semi‑conductor 半導體

As we can see, TSMC has the most share trading volume (5.31%), and yet Hon Hai
Precision has the most dollar trading volume (0.72%). However, Hon Hai Precision is
ranked #3 in share volume (1.98%), which is only one‑third of TSMC.

Both TSMC and Hon Hai Precision are Taiwan’s most valuable companies (TSMC
(ADR) is also traded on the NYSE under the ticker TSM. The market cap as of May 24 is
$826 billion. In 2019, themarket cap of TSMwas roughly $220 billion). TSMC is theworld’s
largest chipmanufacturer (According to SemiWiki, TSMCoccupies 28% of the chipmarket,
followed by Samsung of 10%), andHonHai Precision (who owns Foxconn in China), is the
most important manufacturer for Apple’s iPhones. Hence, we also provide the list of the
top 20 stocks by market capitalization in Table 2.

Table 2. Market Caps of the Top 20 Firms in TSE.

Rank Ticker Name Name Weight Industry Industry

1 2330 台積電 TSMC 26.58% semi‑conductor 半導體

2 2317 鴻海 Hon Hai Precision 2.83% other electronics 其他電子

3 2454 聯發科 MediaTek 2.30% semi‑conductor 半導體

4 2382 廣達 Quanta Group 1.81% computer 電腦週邊

5 2412 中華電 China Telecom 1.76% telecom 通訊網路

6 2308 台達電 Delta Electronics 1.65% electronic parts 電子零組件

7 2881 富邦金 Fubon Financial 1.55% financial 金融業

8 6505 台塑化 Formosa Petrochemical 1.50% energy 油電燃氣

9 2882 國泰金 Cathay Financial 1.28% financial 金融業

10 2303 聯電 United Microelectronics 1.11% semi‑conductor 半導體

11 2886 兆豐金 Mega Financial 1.04% financial 金融業

12 1303 南亞 Nan Ya Plastics 1.04% plastic 塑膠

13 1301 台塑 Formosa Plastics 1.00% plastic 塑膠

14 2891 中信金 China Trust 0.94% financial 金融業

15 3711 日月光投控 ASE Technology 0.94% semi‑conductor 半導體

16 1216 統一 Uni‑President Enterprises 0.78% food 食品

17 2002 中鋼 China Steel 0.78% steel 鋼鐵

18 2884 玉山金 E.sun Financial 0.74% financial 金融業

19 5880 合庫金
Taiwan Cooperative

Financial 0.74% financial 金融業

20 2207 和泰車 Hotai Motor 0.72% auto 汽車
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Nowwe can see that TSMC has a dominant market share in TSE of 26.58%, with Hon
Hai Precision being the second of 2.83% (not counting Foxconn in China). For our study,
we use Table 1 for our top 20 firms, so we are internally consistent.

Among the total of 80 brokers/dealers, three brokers/dealers are data error (i.e., no
such brokers/dealers in Taiwan), and two brokers/dealers trade only futures and options
but are mistakenly listed as stockbrokers/dealers. They are removed from our study. As a
result, we are left with 75 stockbrokers/dealers, which are given in Table 3.

Table 3. List of all Brokers/Dealers in Taiwan.

1 合庫
Taiwan Coop

Bank 26 新百王 NHK Securities 51 華南永昌 Hua Nan Sec’s

2 土銀 Land Bank 27 光和 Kuanz Ho Sec’s 52 富邦 Fuban Bank

3 臺銀證券
Bank Taiwan

Sec’s 28 永全 Yun Chuan Sec’s * 53 元大
Yuanta Comm

Bank

4 臺銀 Bank of Taiwan 29 大昌 Dah Chang Sec’s 54 永豐金 SinoPac Sec’s

5 台灣企銀
Taiwan Bsns

Bank 30 德信 Reliance Sec’s 55 日進 J Zin Sec’s

6 臺灣企銀
Taiwan Bsns

Bank 31 福勝 Fushan Sec’s 56 聯邦商銀 Union Bank

7 日盛 Jih Sun Bank 32 兆豐 Mega Int’l Bank 57 奔亞證券 Primasia Sec’s

8 彰銀
Chang Hwa

Bank 33 致和 Z Ho Securities * 58 台灣匯立 Hui Li Sec’s *

9 宏遠
Horizon
Securities 34 豐農 Feng Nun Sec’s * 59 美林 Merrill Lynch

10 港商麥格理
Macquarie
Group 35 石橋

Bridge Stone
Sec’s * 60 港商野村 Nomura Sec’s

11 台灣摩根士丹利 Morgan Stanley 36 金港 Kovack Securities 61 富隆 Fullong Sec’s

12 亞東
Oriental
Securities 37 北城 Pei Cheng Sec’s 62 寶盛 Monex Boom Sec’s

13 大展
Tachan
Securities 38 國票 Waterland Sec’s 63 福邦

Grand Fortune
Sec’s

14 大慶 Ta Ching Sec’s 39 台新 Taishin Int’l Bank 64 萬泰 KGI Bank

15 高橋
Mizuho
Securities 40 安泰 Entie Comm Bank 65 中農

Chung Nourn
Sec’s

16 第一金 First Financial 41 摩根大通 JP Morgan 66 全泰 Chuan Tai Sec’s *

17 永興 YS Securities 42 康和 Concord Int’l Sec’s 67 瑞士信貸 Credit Swiss

18 統一 President Sec’s 43 新光 Shin Kong Bank 68 大鼎 Da‑Din Securities

19 盈溢 I Win Securities 44 聯邦 Union Securities 69 美商高盛 Goldman Sachs

20 光隆
Kuang Long

Sec’s 45 陽信 Sunny Securities 70 港商德意志 Dueche Bank

21 元富 Masterlink Sec’s 46 玉山
E.SUN Comm

Bank 71 港商法國興業 Société Générale

22 日茂 Jee Mach Sec’s 47 國泰 Cathay Securities 72 花旗環球 Citi Bank

23 奔亞 Primasia Sec’s 48 大和國泰
Daiwa Cathay

Sec’s 73 新加坡商瑞銀 Swiss Bank

24 台中銀
Taichung Comm

Bank 49 群益金鼎 Capital Sec’s 74 法銀巴黎 Bank

25 中國信託 China Trust 50 凱基 KGI Securities 75 香港上海匯豐 HSBC

* translated (phonetically) by author.

In our empirical work, we use volume data to detect swarm. There are both share
volume and dollar volume (shares multiplied by price) bought and sold. To have a quick
glance of such data, we plot them in Figure 4. In Figure 4, we plot daily trading volumes
of all the stocks in 2019. They are shares bought and dollar volumes bought.
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It is clear that volume data are noisy, and hence, difficult to see patterns. Overall,
dollar and share volumes are similar, indicating that the variability of shares dominates
that of prices.

The average share trading volume is 5.22 billion shares per day and NT$15.3 tril‑
lion (about $5 billion). Hence, the average price per share is NT$29.28 (about 97 cents).
(Note that the largest stock in Taiwan—Taiwan Semi‑conductor Manufacturing Company,
or TSMC (ticker = 2330), shows an average price ofNT$263.5 (about $8.5) in the data. TSMC
closed at NT$867 (about $28.5) as of 24 May 2024).

We also note that there is no growth in share volume (a linear regression fit has a
slightly negative slope near 0 R2) and yet a noticeable 3.12% growth in dollar volume (R2
is 11%). Clearly, the visible growth in dollar volume is a result of price growth in 2019 of
the overall stock market in Taiwan.

The data have the following shortcomings:
• It is a one‑time collection. The data are proprietary, and hence, there is no subsequent

effort of such data collection. The year 2019 is not chosen for any particular reason.
• It does not have time stamps, which makes it impossible to study intraday swarm,

which is believed to be more evident.

5.2. Boids Results
We present two estimation results in this subsection. One is a joint estimation of all

three hyperparameters: alignment, cohesion, and separation. The other is an estimation of
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only alignment and cohesion. The purpose of eliminating separation is to directly compare
the relative strengths of alignment and cohesion, given that separation dominates.

5.2.1. Joint Estimation of Alignment, Cohesion, and Separation
The first set of results using (12) refer to Boids and are plotted in Figure 5. In Figure 5,

we set
⇀
v
(i)
S,t =

⇀
0 . Note that the idea behind separation is a random move (similar to explo‑

ration), and as a result of that, its velocity
⇀
v
(i)
S,t is a random number. This would unpleas‑

antly cause the solution to the weights w(i)
A,t and w(i)

C,t to be random. In such a case, wemust
take expected values. If the effect of Jensen’s inequality is small, the expected values of

w(i)
A,t and w(i)

C,t would be similar to (12) when the expected value of
⇀
v
(i)
S,t is 0. E[

⇀
v
(i)
S,t] = 0 is

not a bad assumption because it is a white‑noise move, and it is reasonable for its expected

value to be 0. In other words, by assuming E[⇀v
(i)
S,t] = 0, we only suffer from the bias of

Jensen’s inequality.
We plot both alignment and cohesion weights in Figure 5. We fit the model (12) to

shares bought, shares sold, dollar volume bought, and dollar volume sold. These values
are median values across all 75 brokers/dealers. While not reported here, mean values
across 75 brokers/dealers arewaymore volatile. For instance, themaximumw(i)

A,t is 6241.57
and the minimum is −4744.30 using shares bought. Similarly, using shares bought, the
maximum w(i)

C,t is 650,133.46 and the minimum is −186,886.23.
We first observe that, in all four cases, cohesion weight wC,t (median across brokers/

dealers, hence, superscript (i) disappears) is higher than alignment weight wA,t. Further‑
more, whilewC,t ismostly positive,w(i)

A ismostly negative. Secondly, there is higher volatil‑
ity of wC,t than of wA,t. The median of medians for alignment weight is around −0.6 in all
four cases, and for cohesion it is 0 in all four cases. This implies that separation is around
1.6, given that the three parameters must sum to 1 by construction.

The above result indicates that there is not much swarm (or anti‑swarm) among these
firms. Note that 0 cohesion represents that firms do not move towards the positions of
other firms, and negative alignment represents that firms move in an opposite direction of
other firms. However, these median values are not significant (although there is no formal
statistical test, we can see that the standard deviation is over 10 times of the median).
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Figure 5. Time Series of Alignment and Cohesion weights (median).
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5.2.2. Joint Estimation of Alignment and Cohesion Only (Without Separation)
In lieu of the above result, we remove separation and only compare cohesion against

alignment. In other words, we solve for the alignment weight in (14). The results are
presented in Figure 6.

The purpose to remove separation and only concentrate on alignment and cohesion is
to distinguish the relative strengths of the two swarm behaviors. In estimating (12), we do
not constrain on alignment or cohesion. Here, we constrain that w(i)

A,t + w(i)
C,t = 1. Similar

to Figure 5, Figure 6 also contains four time series plots. Both means and medians of w(i)
A,t

across 75 brokers/dealers are plotted in Figure 6. w(i)
C,t is simply 1 − w(i)

A,t.
Now, we find that the means and medians are closer to each other, indicating no

extreme values (across 75 brokers/dealers). A quick glance of Figure 6 leads to a general
observation that cohesion is stronger than alignment. Buy share volume has an overall
median of 0.1507 (i.e., average of medians while the median of medians is 0.1324), and sell
share volume average ofmedians is 0.1053 andmedian ofmedians is 0.0882. This indicates
that, overall, brokers/dealers have a much weaker alignment than cohesion, since sum of
the two weights is 1.

This result confirms the relative magnitude of the two parameters, that cohesion has
a higher value than alignment. However, the interpretation of the result is quite different.
Since now both are positive (since we remove separation, hence anti‑swarm), we can more
easily see that firms tend to move toward the positions of their competitors rather than
follow where they want to go.

Dollar volumes tell the same story. The median of medians for the buy volume is
0.1689 and for the sell volume is 0.1604 (while the averages of the median are 0.1776 and
0.1900, respectively). The average (i.e., average of averages) buy dollar volume yields an
even more negligent alignment of −0.0220, and the dollar sell volume yields similarly of
0.0184. This is even a stronger cohesion tendency than share volumes.

Secondly, it is clear that alignment (hence cohesion) is volatile, for both median and
mean. This prevents us from identifying a time series pattern of swarming by Taiwanese
brokers/dealers (at least in our sample period 2019). There are some possible explanations.
Themost obvious one is that the volume data are known to be extremely noisy. As a result,
it is translated to model parameters—cohesion and alignment. In such a case, the remedy
is usually to take moving average. However, given that we have only a very short time
series (and worse, the data are daily), taking moving averages is no more insightful than
simply looking at the overall averages.
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Figure 6. Time Series of Alignment Weights wA (note: Each result is the mean/median across 75 bro‑
kers/dealers).
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To see that, we calculate a series of correlation coefficients and report them in Table 4.
Table 4 reports correlation coefficients between alignment and cohesion weights and vol‑
ume data plotted in Figure 4.

Table 4. Correlation Between Alignment, Cohesion and General Volume.

Buy
Share

Sell
Share

Buy
Dollar

Sell
Dollar

alignment 12.30% 24.93% 1.30% 25.82%
p value 0.1027 0.0307 0.4320 0.0287
cohesion −23.27% −22.92% −22.75% −22.36%
p value 0.0351 0.0361 0.0366 0.0378

We can see that in general, the correlation values are quite substantial. The cohesion
weight has over 22% correlation with volume data in all four categories. The alignment
weight can be as highly correlated with shares sold as almost 25% (although with shares
bought, the correlation values are low). This confirms the suspicion above that noisy data
impacts the estimates of parameters. With this observation in mind, we can roughly con‑
clude that the brokers/dealers in the Taiwan stock market present a weak but non‑trivial
swarm behavior.

The only outlier is how alignment is correlated with dollar volume bought (1.30%).
Also note that the second lowest correlation is between alignment and share volumebought
(12.30%), although it is barely significant at the 10% level. Both of these low correlation re‑
sults indicate that buy volumes do not significantly impact alignment of brokers/dealers.
In contrast, cohesion seems to reflect more closely of data (correlation is consistently at
−22~23%). If we look at the equation that computes the alignment parameter, it is clear
that it is dominated by how alignment velocity is different from the cohesion velocity. It
is the randomness in this quantity that results in low correlation between alignment buy
volume data.

5.2.3. Who Swarms?
As in Lakonishok, Shleifer, and Vishny [6], we study investor herding as opposed to

stock herding. Yetmore insightful than Lakonishok, Shleifer, and Vishny [6], the swarm re‑
sult can identify the tendency of herding of each individual firm. This is the key advantage
of using swarm intelligence as a traditional statistical method.

In this subsection, we examinewhich brokers/dealers are the strongest followers in the
swarm. The results are plotted in Figure 7. Like previous figures, we present the results in
four volume panels. We sort these brokers/dealers by w(i)

A,t the alignment weight (y‑axis).

Note that the cohesion weight is w(i)
C,t = 1 − w(i)

A,t. The x‑axis is dealer/broker (by their
numbers listed in Table 3).

Except for the buy dollar volume, the other three panels have no higher than one
alignment weight. In the case of share volumes (buy and sell), the value of wA,t (average
across brokers/dealers and hence, subscript (i) disappears) is 0.7 and −0.4. The decrease
of wA,t is roughly linear, indicating that there are no particular outliers (however, we do
notice two outliers in buy dollar volume and one outlier in sell dollar volume).

We selectively look at the top 20 brokers/dealerswho show strongw(i)
A (average across

time and hence, subscript t disappears). Their names are given in Table 5. There are 32 non‑
repeating names in Table 5.
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Table 5. Top 20 Highest Cohesion Brokers/Dealers.

Share Bought Share Sold Dollar Bought Dollar Sold

16 16 39 34
56 56 42 56
35 34 22 19
34 36 8 16
36 35 72 33
18 31 70 17
7 19 1 20
65 65 14 18
19 18 19 6
33 17 51 36
2 33 33 65
20 2 13 14
31 20 73 72
54 7 16 31
17 54 35 7
30 12 4 30
12 71 56 50
71 30 2 12
51 6 52 51
14 50 30 35

In Table 5, we first observe that there are six brokers/dealers who are on the list of all
four panels: #16 (First Financial), #19 (IWin Securities), #30 (Reliance Securities), # 33 (ZHo
Securities), #35 (Bridge Stone Securities), and #56 (Union Bank). There is no coincidence
that these are all small brokers/dealers. Small firms follow large firms in that they do not
have the same research capabilities as well as market power to lead the market. They are
more of a follower as a result. For the remaining 26 firms, 12 of which are on three of the
four panels. This indicates that regardless which volume measure is used, a follower in
one tends to be also a follower in another.
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5.3. PSO Results
In addition to estimating the Boids swarmmodel, we also estimate the particle swarm

optimization model. Particle swarm optimization (PSO) is a swarm model but is mainly
used to seek the optimum of an objective function (known as landscape). As a result, PSO
can be regarded as a heuristic search (or smart grid search). Boids now are assigned a
target to meet.

Because of this particular purpose, while the intelligence of swarm is reserved, the in‑
formation sought by these birds is different. Now they look for a leader to follow. Hence,
instead of following the whole crowd (i.e., align with the crowd in directions or seek to
move to toward the crowd), now each bird will identify who the leader (which is the one
closest to the target) is and move toward the leader (known as “exploitation”), but at the
same time, it is necessary for each bird to “explore” its current neighborhood to see if the
true optimum is simply just nearby. Note that there are a number of ways to structure
exploration. Equation (4) is the most common expression where exploitation and explo‑
ration are intertwined. However, this is not necessarily the case. For the purpose of our
empirical work, we follow a modified PSO as in (4a).

We first, as in the previous section, use only the top 20 stocks (listed in Table 2) to fit
a PSO model. Then, as a robust check, we use the entire stock market in TSE, which has
967 stocks in total. A flow chart is provided in Figure 8.
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Figure 8. Flow Chart of Various Tests of PSO.

In Figure 8, the relationships of various tests are provided. From Figure 8, one can see
how parameters can differ if a different setup of swarm is used. As we can see, we fit the
swarmmodel to the entire data set (976 stocks) and also the top stocks (20 stocks). We also
fit the model to share volume (both buy volume and sell volume) as well as dollar volume.
We experiment various possibilities such as net buy (which is buy volume subtracting sell
volume) and net sell (which is sell volume subtracting buy volume). As a result, there are
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a large number of pair comparisons. To conserve space, we only represent those pairs that
show a substantial difference. Other results are available upon request.

It seems that the swarm behaviors between different volume measures and different
sample sizesmatter themost. And between the two, sample sizemattersmore than volume
measure. As a result, we select four comparisons (other results are available on request) in
Figure 9:
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(1)‑(5) share volume versus dollar volume under all (967) stocks.
(2)‑(6) share volume versus dollar volume under top (20) stocks
(5)‑(4) all (967) stocks versus top (20) stock under dollar volume
(3)‑(2) all (967) stocks versus top (20) stock under share volume
Figure 9 plots a joint estimate of exploitation (leader‑following) α

(i)
L and exploration

(personal‑freedom) α
(i)
P in panels (A) and (B), respectively. Along the x‑axis are 75 bro‑

kers/dealers (i = 1, · · · , 75 and the names of the brokers/dealers are given in Table 3).
Each α

(i)
L value is an average across time, and hence, subscript t drops out) for each bro‑

ker/dealer.
The first comparison, (1)‑(5), is share volume versus dollar volume, where the leader

is defined as holding the highest net buy position and all 976 stocks are considered. α
(i)
L in

both cases are largely negative but less negative for share volume than for dollar volume.
Furthermore, the two sets of estimates aremarginally similar to each other. The correlation
between them is 23.77% (significant at the 6.5% level).

We do observe some exceptionally large positive values but only very few. The grand
averages are still negative even with these exceptionally large positive values. They are
−0.39 and −0.51, respectively. (The medians are −0.61 and −0.53, respectively).

In contrast, (2)‑(6), is the same comparison (share volume versus dollar volume), but
only the top 20 stocks are considered (hence, a much smaller sample). Similar to the case
(1)‑(5), both sets of α

(i)
L values are similar to each other. However, they are much more

similar than the case (1)‑(5). The correlation now is much higher 82.60% (significant at the
0.5% level).

This indicates that in a smaller sample, we observe less difference between share vol‑
ume and dollar volume. Note that the smaller sample is also more dominant in that the
top 20 stocks account for a large portion of the market. In other words, except for the top
stocks, the majority of the stocks in TSE provide a lot of noise trading.

Nowwe turn to comparingdirectlywhole same (967 stocks) and subsample (20 stocks).
We first compare the two under the share volume, i.e., (3)‑(2). In comparison (3)‑(2), we ob‑
serve drastic differences. α

(i)
L values are substantially less negative in the case of 20 stocks

than in the case of all stocks. The averages are−0.50 and−0.04, respectively, for all stocks
and 20 stocks. The correlation is −27.31% (significant at the 5% level), implying that the
two set of estimates are rather opposite of each other. This indicates that not only the top 20
stocks do not dominate the market, but the other stocks also move in an opposite direction
from the top 20 stocks.

In contrast, the dollar volume comparison (5)‑(4) presents a different result fromwhich
of (3)‑(2). The grand averages are−0.39 and−0.08, respectively, for all stocks and 20 stocks.
The correlation is only −8.36% (insignificant). This indicates that the effect that the other
stocks move against the top 20 stocks is significantly less. Again, this is due to the price
impact. Alternatively speaking, the general price trend negates the negative correlation
between the whole market and the top submarket.

The same set of graphs for α
(i)
P is provided in Panel (B) of Figure 9. They are quite

different from the results of following the leader α
(i)
L . Except that the values of α

(i)
P are

mostly negative, similar to the values of α
(i)
L , the difference between whole market and

submarket (i.e., (3)‑(2) for share volume, and (5)‑(4) for dollar volume) is less substantial.
Now the two markets both show positive correlation (25.12% and 8.35%, respectively).

In terms of difference between share and dollar volumes (i.e., (1)‑(5) for all stocks
and (2)‑(6) for 20 stocks), the α

(i)
P values are very similar (between −0.4 and −0.6). The

correlation is 40.51% and 42.49%, respectively (significant at 2% level). This is different
from the case of α

(i)
L (see above).

To further investigate the difference, we turn to the rawdata (that are used to compute
α
(i)
L and α

(i)
P ) of all 967 stocks and only the top 20 stocks. We compute the daily net shares

bought and net dollars bought of all stocks and the top 20 stocks. To conserve space, these
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results are available on request. The correlation between the two of share volume is 2.82%
and the correlation of dollar volume is 46.48%. It is clear that high correlation in price
movements boosts the correlation of the two‑dollar volume measurements.

Note that the net dollar volume of the stock is the net purchase of the stock. Hence,
it is reasonable to assume that a broker/dealer will swarm according to the net purchases
of other brokers/dealers. As a result, this is a more reliable metric to measure how bro‑
kers/dealers swarm.

To grasp a general sense of the magnitudes of the results, we report their summary
statistics in Table 6. In Table 6, the columns correspond to Figure 8. However, different
from Figure 9 that show swarm by brokers/dealers (i.e., taking averages over time for each
broker/dealer), Table 6 first takes averages across brokers/dealers, and then the summary
statistics are taken over 223 days.

Table 6. Summary Statistics of Swarm Parameters.

(A) α
(i)
L,t

(5) (1) (4) (7) (3) (2) (6)
min −1.1039 −6.2376 −0.4679 −1.1039 −6.2376 −0.4633 −0.4679
max 2.0728 1.6416 1.2320 2.0728 1.6416 0.0379 1.2320
avg −0.4001 −0.6777 −0.0739 −0.4001 −0.6777 −0.0568 −0.0739
std 0.3936 0.4920 0.1792 0.3936 0.4920 0.0642 0.1792
med −0.4573 −0.6897 −0.0968 −0.4573 −0.6897 −0.0428 −0.0968
(B) α

(i)
P,t

(5) (1) (4) (7) (3) (2) (6)
min −2.4921 −2.0772 −2.0000 −2.4921 −2.0772 −3.3800 −2.0000
max 0.0000 0.0000 5.5925 0.0000 0.0000 2.5114 9.5754
avg −0.6893 −0.4554 −0.6372 −0.6893 −0.4554 −0.6572 −0.5466
std 0.2897 0.1992 0.7322 0.2897 0.1992 0.5287 1.0786
med −0.6413 −0.4340 −0.7388 −0.6413 −0.4340 −0.7256 −0.7542

Wecan see thatwhile various versions of PSO showdifferences in howbrokers/dealers
swarm in Figure 9, the overall averages are quite similar. Regardless of different versions
of PSO, they are all negative and roughly at a level about −0.4 (with cases #2, #4, and #6
at about −0.07). We notice that the minimum and maximum values are mild, mainly due
to each day there is already an average taken across all brokers/dealers. We also notice
that the difference between αL (average over both brokers/dealers and time, and hence (i)
and t both drop out) and αP is much smaller, although αP is slightly more negative than αL.
Besides, αP is more uniform across different versions of PSO, ranging from−0.43 to−0.74.

The next empirical work is to estimate α
(i)
L,t and α

(i)
P,t by themselves separately (not

jointly). We obtain the same number of results for α
(i)
L,t and α

(i)
P,t estimated separately on

their own. To conserve space, we only choose a few to compare to the results that they are
estimated jointly. The results are reported in Figure 10.

The first is to use case #6 where all (967) stocks and dollar volume are used to estimate
α
(i)
L,t and α

(i)
P,t, as seen in the Panel (A) of Figure 10. On the left, we compare α

(i)
L (average

across time, and hence, subscript t drops out) when it is estimated on its own andwith α
(i)
P .

As we can see, the two results are similar in direction and yet different in magnitude. The
correlation between the two is 40.64%, which is significant. Interestingly the magnitude
(and also variation) of α

(i)
L estimated jointly is so much larger than if estimated in separation.

In the middle of Panel (A) is the same comparison for α
(i)
P (average across time, and

hence, subscript t drops out). We do see that when α
(i)
P has a larger magnitude when it is

estimated jointly with α
(i)
L than by itself. This is similar to the result of α

(i)
L . Also similar is

the high correlation between the two, which is 41.92%.
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While α
(i)
L and α

(i)
P (average across time, and hence, subscript t drops out) both have

highermagnitudeswhen they are estimated together jointly, they tend to compensate each
other. To see that, we plot the two on the right of Panel (A). Now, it is clear that α

(i)
L and α

(i)
P

move in exactly the opposite direction. This is expected in that they split the total velocity.
The correlation here is –95.36%.
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Now we turn to compare α
(i)
L and α

(i)
P (average across time, and hence, subscript t

drops out) in Panel (B) when they are estimated on their own separately. For the first
comparisons, we choose the case of the top (20) stocks. On the very left of Panel (B) is
dollar volume, and in the middle of Panel (B) is share volume. As we can see, the two
results have very similar conclusions. α

(i)
L and α

(i)
P move in the same direction in both

cases. The correlation is about 12%, which is not as high as those in Panel (A) and yet is
still quite noticeable, especially for those last several brokers/dealers. Also, we observe
that α

(i)
P has a much larger magnitude than α

(i)
L . This is expected as the former contains a

random number in each iteration.
Lastly, we examine the similarity between α

(i)
L and α

(i)
P (average across time, and

hence, subscript t drops out) when they are estimated jointly. This is analogous to the
right‑most case in Panel (A). The difference is here we have dollar volume and in Panel
(A) it is share volume. We see that some brokers/dealers are similar, but some others are
different. For example, we can see that the last few brokers/dealers whose α

(i)
L and α

(i)
P

move in oppose directions in both cases. Yet, those brokers/dealers in the middle tend to
move in opposite directions in Panel (A) but in the same direction in Panel (B). There are
two possible sources that can cause such a result. First is the number of stocks considered.
In Panel (B), only 20 stocks are used as opposed to all 967 stocks in Panel (A). Furthermore,
dollar volume has a price influence. As prices move higher as a general trend, it will cause
positive correlation (or negate negative correlation).

To grasp a general sense of the magnitude of the results, we report their summary
statistics in Table 7. Columns of Table 7 correspond to Figure 8, reflecting different versions
of PSO.

The values of αL and αP (average across both brokers/dealers and time, and hence, (i)
and t drop out) in Table 7 are quite similar to those in Table 6. The averages of αL and αP
in particular are similar to those in Table 6. However, the standard deviations are smaller.
In the case of αL, they are at the magnitudes of 0.1 and 0.2 now as opposed to 0.3 and 0.4
in Table 6. This is same in the case of αP. Minimum and maximum values are also milder
when they are estimated separately than jointly.

https://en.wikipedia.org/wiki/Boids
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Table 7. Separation Estimation of α
(i)
L,t and α

(i)
P,t.

(A) α
(i)
L,t 75 Brokers Under Various Scenarios (αL only)

(5) (1) (4) (7) (3) (2) (6)
min −0.7659 −0.7500 −0.4550 −0.7659 −0.7500 −0.3874 −0.2692
max 0.7199 0.3377 0.2741 0.7199 0.3377 0.0054 0.0471
avg −0.4598 −0.5109 −0.0940 −0.4598 −0.5109 −0.0391 −0.0106
std 0.2106 0.1571 0.1533 0.2106 0.1571 0.0860 0.0444
med −0.5148 −0.5266 −0.0121 −0.5148 −0.5266 −0.0017 0.0000
(B) α

(i)
P,t 75 Brokers Under Various Scenarios (αL only)

(5) (1) (4) (7) (3) (2) (6)
min −0.7022 −0.6947 −0.8377 −0.7022 −0.6947 −0.9061 −0.8377
max −0.1680 −0.0272 0.7602 −0.1680 −0.0272 −0.0599 0.7602
avg −0.4603 −0.4213 −0.3849 −0.4603 −0.4213 −0.3822 −0.3849
std 0.1196 0.1335 0.2376 0.1196 0.1335 0.1594 0.2376
med −0.4799 −0.4422 −0.3979 −0.4799 −0.4422 −0.3932 −0.3979

6. Limitations of Data (We Thank an Anonymous Referee for His/er Excellent Insight
and Suggestions Toward This Limitation of This Paper)

There are two major limitations of the data used in this study. The first is its lack
of intraday time stamps. The second is the noisy nature of volume data (compared to
institutional holdings).

6.1. Lack of Time Stamps
Theproprietary data given byHiHedge contain intraday trading by all brokers/dealers

across all locations in Taiwan. Theoretically, this would be an ideal data set for studying
swarm. Unfortunately, these trades lack time stamps during the day. As a result, we must
aggregate the trades into daily volumes. In a swarm, each fish is moving according to its
neighbor fish. With time stamps, each broker/dealer then can observe, at every moment,
all the other brokers/dealers’ tractions and decide if it wants to align with them, cohere to
the same holdings as them, or separate from them. With estimation Equations (14)~(17),
we can then use data to back out what a particular movement of a particular broker/dealer
means. Does he align, cohere, or separate (or follow a leader). This is superior to using an in‑
direct proxy to measure herding and a linear regression model to determine its determinants.

Unfortunately, without time stamps, we cannot actually detect such swarm. Instead,
we can only observe between each day how holdings of each broker/dealer change. This
is similar to Lakonish, Shleifer, and Vishney [6], yet we do have one advantage—daily as
opposed to quarterly.

Not only dowe lose information by aggregating, we alsomitigate the effects of swarm
due to not able to precisely observe the time of the movements. In daily data, we implicitly
assume that themovement of today is based upon themovement of others of yesterday. As
we clearly see, this is not accurate at all if the true swarm is based upon intra‑day reactions.
For example, a trade in the middle of day is based upon the movements of the others on
the same day, not the previous day.

6.2. Volume Too Noisy
While the deficiency of intra‑day information is data collection limitation, the volume

data themselves are simply noisy (even noisier for intra‑day). It is natural that noisy vol‑
ume data can result in noisy parameter estimates. Such a limitation cannot be fixed via
better data collection methods. It must be handled via noise reduction methods.

Fortunately there are many powerful noise‑reduction (smoothing) methods in statis‑
tics such as Kalman filter or Savitzky‑Golay filter. One can also employ image processing
techniques for pattern recognition to screen out noise. Although we can use these tech‑
niques on our volume data (in fact, we did play with Savitzky‑Golay filter), simple eye‑
balling the data clearly reveals that the data presents no pattern. This is because we have
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too few points (232 only) to show any pattern. A longer dataset (either via a higher fre‑
quency such as intra‑day or a longer time period such as multi‑year) is necessary.

However, unfortunately, with just one year of data (our major empirical limitation),
we would not be able to fully benefit from a filter. Without a visible pattern or trend, fil‑
tered data would generate result very similar to just a simple average of current estimates.
(Imagine an extreme case where raw data contain only noise but no pattern or trend. Then
a filter will simply produce a straight line as the result—at the average). Waggle and Agr‑
rawal [23], when discussion the “sell‑in‑May” anomaly, study the seasonal effects in trad‑
ing profits. When such an effect (or any patterns) is observed, it is possible that swarm is
existent. Then filters like Kalman or Savitzky‑Golay would then be helpful in reducing the
noise in raw data.

7. Conclusions and Future Research
In this paper, we examine if the stock brokers/dealers in Taiwan swarm. The contri‑

butions of this paper are as follows: (i) It is the first paper to use swarm intelligence to
model herding. Swarm is a perfect choice for herding in that it describes a group behav‑
ior. The goal‑seeking incentive (e.g. bees seeking honey) that underlies swarm is the same
as profit‑seeking investors. (ii) We explicitly estimate hyper‑parameters of swarm (via a
set of closed‑form solutions derived in this paper) which allow readers (different from all
previous herding research) to see the exact behavior of herding. (iii) We luckily acquired
a proprietary dataset from HiHedge. The data contain all transactions happened in all the
branches of all the brokers/dealers in Taiwan in 2019. Without such data the swarmmodel
could not be estimated.

Two swarm models are employed in the study. One is Boids which describes how
birds swarm and the other is particle swarm optimization (PSO) which use swarm to find
the global optimum. We adapt both models to fit in our situation here. In particular, we
modify the PSO algorithm to capture if there is a leader that all firms follow.

The results show a weak swarm behavior in Taiwan’s stock market in 2019. The PSO
result is slightly stronger than the Boids result. This weak result can be largely attributed
to noisy volume data in the first place. Noisy data translate naturally to noisy parameter
estimates. We find high co‑movements between parameter estimates and raw volume data.
For future research, we must reduce noise in the volume data.

Not only do we detect swarm in Taiwan’s stock market, we also observe some econo‑
metric issues. For example, we find that parameters in swarm tend to offset each other.
This is frequently observed in financial studies as models are forced to fit data.

Finally, as mentioned earlier, Mavruk [1] uses various machine learning algorithms
to retrieve features that explain herding. However, his study separates stock herding from
investor herding. Using swarm, we jointly study which investor herds which stock. As a
result, we can fully benefit his feature‑selection algorithms in improving the current paper
(provided that better data (i.e., longer and more granular) can be accessible).

There are limitations to this study. First, there is no time stamp attached to each trans‑
action. As a result, although there are over 200 million transactions, they are aggregated
to less than a million observations on a daily basis. Such a loss of information drastically
reduces the validity of the result. One obvious problem, as mentioned above, is how infor‑
mation is transmitted in a swarm. Note that in a swarm, each fish examines where other
fish are located and how they want to move, and then decides how it will make its own
move. Such an assumption requires at any time s on day t, positions of all fish at time s− 1
on day t are known. Without intraday time stamps, each fishmakes its move at time s (e.g.,
10:30 a.m.) on day t (e.g., 2 June 2019) based upon information on day t − 1 (i.e., 1 June
2019), as opposed to time s − 1 (i.e., 10:30 a.m.) on day t (i.e., 2 June 2019). This clearly
defeats the validity of the result. Another problem is the noisy nature of the volume data.
With a long enough time series of data, one can adopt various statistical tools, such as filters
and pattern‑recognition tools in image processing to reduce noises. Due to the aggregation
of intraday data into daily data, we lose a large majority of data. This prohibits us from
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identifying any pattern in the volume data. This is clearly present in Figure 4 in which it
is indistinguishable between herding and noise.

For future research, the methodologies proposed in this paper can be applied when
more granular data are available in order to obtain more insightful results. Furthermore,
one can utilize textual data to obtain insightful results. This is because herding is often
triggered by news. The development of models used to retrieve information from textual
data has been exploding, most notably “generative pre‑trained transformers” (or GPT).
The methodologies proposed in this paper can be applied to these transformers to obtain
more insightful results.

Funding: This research received no external funding.

Institutional Review Board Statement: The study did not require ethical approval.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is unavailable due to privacy restrictions.

Acknowledgments: We are grateful for HiHedge for the proprietary data.

Conflicts of Interest: The author declares no conflicts of interest.

Appendix A
This appendix provides an example of a simple swarm algorithmwith five fish in two

dimensions. We first randomly set the initial positions of the five fish in a unit square (i.e.,
between 0 and 1) and also initial velocity (between 0 and 1), as follows:

position velocity
x1 x2 v1 v2

1 0.2038 0.6760 0.5824 0.6446
2 0.1787 0.4814 0.6943 0.0557
3 0.7132 0.8629 0.0372 0.9300
4 0.2838 0.2329 0.9947 0.3429
5 0.7271 0.2468 0.8690 0.6400

From the position values, we can calculate cohesion. From the velocity values, we can
calculate alignment. Finally, we can add separation by prohibiting fish from colliding into
one another. Note that each fish has a tendency to swim toward the center of other fish.
Hence, for each fish, we need to calculate the averages of the coordinates of other fish (i.e.,
center). For example, for fish 1, the center of the other 4 fish (fish 2, 3, 4, and 5) is, following
Equation (2):

x1‑axis: 0.1787 + 0.7132 + 0.2838 + 0.7271 = 0.4757
x2‑axis: 0.4814 + 0.8629 + 0.2329 + 0.2468 = 0.4560
The distance of fish 1 from this center is simply to subtract the position of fish 1 from

the position of the center:
x1‑axis: 0.4757 − 0.2038 = 0.2719
x2‑axis: 0.4560 − 0.6760 = −0.2200
This is cohesion. Fish 1 will take a portion of this to make its next move (weighted

by a fraction). Now, one can repeat the same process for other fish, and the final result is
given below:

Cohesion
x1 x2

1 0.2719 −0.2200
2 0.3033 0.0232
3 −0.3649 −0.4536
4 0.1719 0.3339
5 −0.3822 0.3164
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The alignment is calculated the same way. Instead of position center, nowwe need to
find the center of velocity for every fish. Again, for fish 1, we need to calculate the averages
of the coordinates of the other four fish (fish 2~fish 5):

x1‑axis: 0.6943 + 0.0372 + 0.9947 + 0.8690 = 0.6488
x2‑axis: 0.0557 + 0.9300 + 0.3429 + 0.6400 = 0.4921
and then similarly calculate the difference of the velocity of fish 1 and this center in

order to obtain alignment.
x1‑axis: 0.6488 − 0.5824 = 0.0664
x2‑axis: 0.4921 − 0.6446 = −0.1524
Now we simply repeat the process to calculate the alignment amounts for the other

fish, shown in the table below:
Alignment

x1 x2
1 0.0664 −0.1524
2 −0.0734 0.5837
3 0.7479 −0.5092
4 −0.4490 0.2247
5 −0.2919 −0.1467

The last step is the weighted sum up of the two forces to arrive at the total velocity

as in Equation (1):
⇀
v
(i)
t = wA

⇀
v
(i)
A,t + wC

⇀
v
(i)
C,t. With the hyperparameters for alignment and

cohesion to be 1.5 and 0.8, respectively.
x1‑axis: 1.5 × 0.0664 + 0.8 × 0.2719 = 0.3170
x2‑axis: 1.5 × (−0.1524) + 0.8 × 0.2200 = −0.4046
Now, we simply repeat the same process for all the other fish and obtain the velocity

for all the fish as in Equation (2), listed as follows:

total velocity
x1 x2

1 0.3170 −0.4046
2 0.1325 0.8941
3 0.8299 −1.1268
4 −0.5359 0.6042
5 −0.7436 0.0331

Adding the velocity to the current position, we obtain the position of the next iteration,

as in Equation (3)
⇀
x
(i)
t =

⇀
x
(i)
t−1 +

⇀
v
(i)
t , shown as follows:

position in the next iteration
x1 x2

1 0.5209 0.2713
2 0.3112 1.3755
3 1.5431 −0.2639
4 −0.2522 0.8370
5 −0.0165 0.2800

In our empirical study, we do not use Equation (1)
⇀
v
(i)
t = wA

⇀
v
(i)
A,t + wC

⇀
v
(i)
C,t + wS

⇀
v
(i)
S,t

but rather calculate separation separately. Note that Equation (1) does not guarantee the
minimum distance. It is merely a way to incorporate a certain degree of separation. In
a Boids example, this is fine. And yet in our work, we do not use actual fish to collide
with one another. Separation is activated if a fish is too close to any other fish; otherwise,
separation is ignored. We implement separation in the order of fish numbers. That is, we
examine if separation is needed for fish 1, then fish 2, and so on. Certainly, if we use a
different order, the result will be different. For example, we can randomly select fish for
separation (e.g., 3, 4, 2, 1, 5 as opposed to 1, 2, 3, 4, 5).
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Appendix B
This appendix derives separate estimation of αP and αL.
Note that, for αP only

⇀
v
(i)
t =

⇀
v
(i)
P,t (A1)

where
⇀
v
(i)
P,t = (1 − α

(i)
P,t)

⇀
u
(i)
t + α

(i)
P,t(

⇀
p
(i)
t −⇀

x
(i)
t )

=
⇀
u
(i)
t + α

(i)
P,t(

⇀
p
(i)
t −⇀

x
(i)
t −⇀

u
(i)
t )

(A2)

where
⇀
p
(i)
t is bird i’s personal best and

⇀
g t−1 is the global best. Taking derivative w.r.t. α

(i)
P :

∂v(i)P,j,t

∂α
(i)
P

= p(i)j,t − x(i)j,t − u(i)
j,t (A3)

The objective is to solve for cohesion across all stocks:

∂

∂α
(i)
P,t

∑n
j=1 (v

(i)
j,t − ν

(i)
j,t )

2
= ∑n

j=1 2(v(i)j,t − ν
(i)
j,t )

∂v(i)j,t

∂α
(i)
P,t

= 0 (A4)

Hence, the solution to α
(i)
P,t is:

0 = ∑n
j=1(v

(i)
j,t − ν

(i)
j,t )(p(i)j,t − x(i)j,t − u(i)

j,t )

∑n
j=1 v(i)j,t (p(i)j,t − x(i)j,t − u(i)

j,t ) = ∑n
j=1 ν

(i)
j,t (p(i)j,t − x(i)j,t − u(i)

j,t )

∑n
j=1(u

(i)
j,t + α

(i)
P,t(p(i)j,t − x(i)j,t − u(i)

j,t ))(p(i)j,t − x(i)j,t − u(i)
j,t ) = ∑n

j=1 ν
(i)
j,t (p(i)j,t − x(i)j,t − u(i)

j,t )

α
(i)
P,t ∑n

j=1(p(i)j,t − x(i)j,t − u(i)
j,t )(p(i)j,t − x(i)j,t ) = ∑n

j=1(ν
(i)
j,t − u(i)

j,t )(p(i)j,t − x(i)j,t − u(i)
j,t )

α
(i)
P,t =

∑n
j=1(ν

(i)
j,t − u(i)

j,t )(p(i)j,t − x(i)j,t − u(i)
j,t )

∑n
j=1 (p(i)j,t − x(i)j,t − u(i)

j,t )
2

(A5)

Because u(i)
j,t is random, α

(i)
P,t is random. To calculate E[α(i)P,t], we must simulate u(i)

j,t a
number of times.

To estimate αL only,
⇀
v
(i)
t =

{
⇀
v
(i)
L,t

⇀
v L,t

where the former is each firm has its own α
(i)
L,t and the latter is all firms share the same αL,t.

In the first case, α
(i)
L,t. Taking derivative w.r.t. α

(i)
L,t:

∂
⇀
v
(i)
j,t

∂α
(i)
L,t

=
⇀
g
(i)
j,t −

⇀
x
(i)
j,t (A6)

Differentiate the objective function with respect to α
(i)
L,t:

∂

∂α
(i)
L,t

∑n
j=1 (v

(i)
j,t − ν

(i)
j,t )

2
= ∑n

j=1 2(v(i)j,t − ν
(i)
j,t )

∂v(i)j,t

∂α
(i)
L,t

= 0 (A7)
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The solution to α
(i)
L,t is:

0 = ∑n
j=1 2(v(i)j,t − ν

(i)
j,t )(gj,t−1 − x(i)j,t−1)

∑n
j=1 v(i)j,t (gj,t−1 − x(i)j,t−1) = ∑n

j=1 ν
(i)
j,t (gj,t−1 − x(i)j,t−1)

∑n
j=1 α

(i)
L,t(gj,t−1 − x(i)j,t−1)(gj,t−1 − x(i)j,t−1) = ∑n

j=1 ν
(i)
j,t−1(gj,t−1 − x(i)j,t−1)

α
(i)
L,t =

∑n
j=1 ν

(i)
j,t (gj,t−1 − x(i)j,t−1)

∑n
j=1 (gj,t−1 − x(i)j,t−1)

2

(A8)

In the second case αL,t.

0 = ∑m
i=1 ∑n

j=1(v
(i)
j,t − ν

(i)
j,t )

∂vj,t

∂αL,t

∑m
i=1 ∑n

j=1 v(i)j,t
∂vj,t

∂αL,t
= ∑m

i=1 ∑n
j=1 ν

(i)
j,t

∂vj,t

∂αL,t

∑m
i=1 ∑n

j=1 αL,t(gj,t−1 − x(i)j,t−1)(gj,t−1 − x(i)j,t−1) = ∑m
i=1 ∑n

j=1 ν
(i)
j,t (gj,t−1 − x(i)j,t−1)

αL,t =
∑m

i=1 ∑n
j=1 ν

(i)
j,t (gj,t−1 − x(i)j,t−1)

∑m
i=1 ∑n

j=1 (gj,t−1 − x(i)j,t−1)
2

(A9)

Compare to the average of α
(i)
L,t.

Appendix C
This appendix derives joint estimation of αP and αL.
Now,

⇀
v
(i)
t = w

⇀
v
(i)
P,t + (1 − w)

⇀
v
(i)
L,t ∂

∂αP

⇀
v
(i)
t = 0

∂
∂αL

⇀
v
(i)
t = 0

(A10)

We have αL
⇀
v
(i)
L,t = α

(i)
L,t(

⇀
g t−1 −

⇀
x
(i)
t−1)

⇀
v
(i)
P,t =

⇀
u
(i)
t + α

(i)
P (

⇀
p
(i)
t −⇀

x
(i)
t−1 −

⇀
u
(i)
t )

∂v(i)P,j,t

∂α
(i)
P,t

= p(i)j,t − x(i)j,t − u(i)
j,t ;

∂v(i)L,j,t

∂α
(i)
P,t

= 0

and then αP
⇀
v
(i)
L,t = α

(i)
L,t(

⇀
g t−1 −

⇀
x
(i)
t−1)

⇀
v
(i)
P,t =

⇀
u
(i)
t + α

(i)
P (

⇀
p
(i)
t −⇀

x
(i)
t−1 −

⇀
u
(i)
t )

∂v(i)L,j,t

∂α
(i)
L,t

= gj,t−1 − x(i)j,t−1;
∂v(i)P,j,t

∂α
(i)
L,t

= 0

Solving the equation leads to:

∂

∂α
(i)
P,t

∑n
j=1 [wv(i)P,j,t + (1 − w)v(i)L,j,t − νj,t]

2

= ∑n
j=1 2[wv(i)P,j,t + (1 − w)v(i)L,j,t − νj,t]

∂v(i)P,j,t

∂α
(i)
P,t

= ∑n
j=1 2[wv(i)P,j,t + (1 − w)v(i)L,j,t − νj,t][p

(i)
j,t − x(i)j,t − u(i)

j,t ] = 0
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and
∂

∂α
(i)
L,t

∑n
j=1 [wv(i)P,j,t + (1 − w)v(i)L,j,t − νj,t]

2

= ∑n
j=1 2[wv(i)P,j,t + (1 − w)v(i)L,j,t − νj,t]

∂v(i)L,j,t

∂α
(i)
L,t

= ∑n
j=1 2[wv(i)P,j,t + (1 − w)v(i)L,j,t − νj,t][gj,t−1 − x(i)j,t−1] = 0

Let z(i)j,t = p(i)j,t − x(i)j,t − u(i)
j,t (to simplify notation). Then, we can set up the first equation

as:
(1) ∑n

j=1

{
wu(i)

j,t z(i)j,t + wα
(i)
P,t(z

(i)
j,t )

2
+ (1 − w)

⇀
v
(i)
L,j,tz

(i)
j,t − νj,tz

(i)
j,t

}
= 0

Expanding the equation, we have:

wα
(i)
P,t ∑n

j=1 (z
(i)
j,t )

2
= ∑n

j=1

{
νj,tz

(i)
j,t − wu(i)

j,t z(i)j,t − (1 − w)v(i)L,j,tz
(i)
j,t

}
From which we can then solve for the parameter α

(i)
P,t as follows:

α
(i)
P,t =

∑n
j=1

{
νj,tz

(i)
j,t − wu(i)

j,t z(i)j,t − (1 − w)v(i)L,j,tz
(i)
j,t

}
w ∑n

j=1 (z
(i)
j,t )

2

where
z(i)j,t = p(i)j,t − x(i)j,t − u(i)

j,t

Now, we can set up the second equation as follows:

(2) ∑n
j=1[wv(i)P,j,t + (1 − w)α

(i)
L,t(

⇀
g t−1 −

⇀
x
(i)
t−1)− νj,t](gj,t−1 − x(i)j,t−1) = 0

Similarly, we can expand it and get:

∑n
j=1(1 − w)α

(i)
L,t(gj,t−1 − x(i)j,t−1)(gj,t−1 − x(i)j,t−1)

= ∑n
j=1[νj,t − wv(i)P,j,t](gj,t−1 − x(i)j,t−1)

Solving for α
(i)
L,t to get:

α
(i)
L,t =

∑n
j=1(νj,t − w(u(i)

j,t + α
(i)
P (p(i)j,t − x(i)j,t − u(i)

j,t )))(gj,t−1 − x(i)j,t−1)

(1 − w)∑n
j=1 (

⇀
g t−1 −

⇀
x
(i)
t−1)

2

Putting (1) and (2) together, we then solve for both parameters simultaneously as fol‑
lows:

α
(i)
P,t =

∑n
j=1

{
νj,t(p(i)j,t − x(i)j,t )− (1 − w)α

(i)
L,t(gj,t−1 − x(i)j,t−1)(p(i)j,t − x(i)j,t )

}
w ∑n

j=1 (z
(i)
j,t )

2

=
∑n

j=1 νj,t(p(i)j,t − x(i)j,t )

w ∑n
j=1 (p(i)j,t − x(i)j,t )

2 − α
(i)
L,t

(1 − w)∑n
j=1(gj,t−1 − x(i)j,t−1)(p(i)j,t − x(i)j,t )

w ∑n
j=1 (p(i)j,t − x(i)j,t )

2

= π1 − π2α
(i)
L,t
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and

α
(i)
L,t =

∑n
j=1(νj,t − wα

(i)
P (p(i)j,t − x(i)j,t ))(gj,t−1 − x(i)j,t−1)

(1 − w)∑n
j=1 (gj,t−1 − x(i)j,t−1)

2

=
∑n

j=1 νj,t(gj,t−1 − x(i)j,t−1)

(1 − w)∑n
j=1 (gj,t−1 − x(i)j,t−1)

2 − α
(i)
P

w ∑n
j=1(p(i)j,t − x(i)j,t )(gj,t−1 − x(i)j,t−1)

(1 − w)∑n
j=1 (gj,t−1 − x(i)j,t−1)

2

= ρ1 − ρ2α
(i)
P

Finally,
α
(i)
L,t =

ρ1−ρ2π1
1−ρ2π2

α
(i)
P,t =

π1−π2ρ1
1−π2ρ2

(A11)

Appendix D
This appendix derives estimation of alignment, cohesion and separation. Rewrite (1)

slightly as follows

⇀
v
(i)
t = wA,t

⇀
v
(i)
A,t + wC,t

⇀
v
(i)
C,t + (1 − wA,t − wC,t)

⇀
v
(i)
S,t

= wA,t

(
⇀
v
(i)
A,t −

⇀
v
(i)
S,t

)
+ wC,t

(
⇀
v
(i)
C,t −

⇀
v
(i)
S,t

)
+

⇀
v
(i)
S,t

= wA,t
⇀
A
(i)

t + wC,t
⇀
C
(i)

t +
⇀
S
(i)

t

(1a)

Then we follow (11) and take partial derivatives with respect to alignment wA and
cohesion wC parameters respectively.

∑n
j=1 2(v(i)j,t − ν

(i)
j,t )

∂v(i)A,j,t

∂wA,t
= 0

∑n
j=1 2(v(i)j,t − ν

(i)
j,t )

∂v(i)C,j,t

∂wC,t
= 0

(A12)

This leads to the following simultaneous equation system:∑n
j=1

(
A(i)

j,t

)2
∑n

j=1 A(i)
j,t C(i)

j,t

∑n
j=1 A(i)

j,t C(i)
j,t ∑n

j=1

(
C(i)

j,t

)2

[ wA,t
wC,t

]
=

 ∑n
j=1 ν

(i)
j,t A(i)

j,t − ∑n
j=1 A(i)

j,t S(i)
j,t

∑n
j=1 ν

(i)
j,t C(i)

j,t − ∑n
j=1 A(i)

j,t S(i)
j,t

 (A13)

and the solution is:

[
wA,t
wC,t

]
=

 ∑n
j=1

(
A(i)

j,t

)2
∑n

j=1 A(i)
j,t C(i)

j,t

∑n
j=1 A(i)

j,t C(i)
j,t ∑n

j=1

(
C(i)

j,t

)2


−1 ∑n

j=1 ν
(i)
j,t A(i)

j,t − ∑n
j=1 A(i)

j,t S(i)
j,t

∑n
j=1 ν

(i)
j,t C(i)

j,t − ∑n
j=1 A(i)

j,t S(i)
j,t


=

[
x11 x12
x12 x22

]−1[ y1
y2

]
=

1
x11x22 − x2

12

[
x22 −x12

−x12 x11

][
y1
y2

]
We also estimate another setup of the model where both alignment and cohesion

weights are equal, i.e., w(i)
A,t = w(i)

C,t = w(i)
t , as follows:
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min∑n
j=1 (v

(i)
j,t − ν

(i)
j,t )

2

∑n
j=1 2(v(i)j,t − ν

(i)
j,t )

∂v(i)j,t

∂wt
= 0

∑n
j=1 v(i)j,t

∂v(i)j,t

∂wt
= ∑ ν

(i)
j,t

∂v(i)j,t

∂wt

∑n
j=1(wt(v

(i)
S,j,t − v(i)A,j,t − v(i)C,j,t) + v(i)A,j,t + v(i)C,j,t)(v

(i)
S,j,t − v(i)A,j,t − v(i)C,j,t) = ∑n

j=1 ν
(i)
j,t (v

(i)
S,j,t − v(i)A,j,t − v(i)C,j,t)

w(i)
t ∑n

j=1(v
(i)
S,j,t − v(i)A,j,t − v(i)C,j,t)(v

(i)
S,j,t − v(i)A,j,t − v(i)C,j,t) = ∑n

j=1(ν
(i)
j,t − v(i)A,j,t − v(i)C,j,t)(v

(i)
S,j,t − v(i)A,j,t − v(i)C,j,t)

w(i)
t =

∑n
j=1(ν

(i)
j,t − v(i)A,j,t − v(i)C,j,t)(v

(i)
S,j,t − v(i)A,j,t − v(i)C,j,t)

∑n
j=1 (v

(i)
S,j,t − v(i)A,j,t − v(i)C,j,t)

2

Since v(i)S,j,t is random, w(i)
t is random. Take expectation

E[wt] ≈
∑n

j=1(ν
(i)
j,t − v(i)A,j,t − v(i)C,j,t)(c − v(i)A,j,t − v(i)C,j,t)

∑n
j=1 (c − v(i)A,j,t − v(i)C,j,t)

2

=
∑n

j=1(ν
(i)
j,t − v(i)A,j,t − v(i)C,j,t)(−v(i)A,j,t − v(i)C,j,t)

∑n
j=1 (−v(i)A,j,t − v(i)C,j,t)

2

Lastly (This result is not presented in the paper but can be available upon request),
we can estimate alignment and cohesion without separation as follows:

⇀
v
(i)
t = w(i)

t
⇀
v
(i)
A,t + (1 − w(i)

t )
⇀
v
(i)
C,t

The solution is:

∑n
j=1 2(v(i)j,t − ν

(i)
j,t )

∂v(i)j,t

∂wt
= 0

∑n
j=1 v(i)j,t

∂v(i)j,t

∂wt
= ∑ ν

(i)
j,t

∂v(i)j,t

∂wt

∑n
j=1(wt(v

(i)
A,j,t − v(i)C,j,t) + v(i)C,j,t)(v

(i)
A,j,t − v(i)C,j,t) = ∑n

j=1 ν
(i)
j,t (v

(i)
A,j,t − v(i)C,j,t)0.3

w(i)
t ∑n

j=1(v
(i)
A,j,t−

(i)
C,j,t)(v

(i)
A,j,t − v(i)C,j,t) = ∑n

j=1(ν
(i)
j,t −

(i)
C,j,t)(v

(i)
A,j,t − v(i)C,j,t)

w(i)
t =

∑n
j=1(ν

(i)
j,t − v(i)C,j,t)(v

(i)
A,j,t − v(i)C,j,t)

∑n
j=1 (v

(i)
A,j,t − v(i)C,j,t)

2
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