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Abstract: Super-resolution is a technique for generating a high-resolution image or video from a
low-resolution counterpart by predicting natural and realistic texture information. It has various
applications such as medical image analysis, surveillance, remote sensing, etc. However, traditional
single-image super-resolution methods can lead to a blurry visual effect. Reference-based super-
resolution methods have been proposed to recover detailed information accurately. In reference-based
methods, a high-resolution image is also used as a reference in addition to the low-resolution input
image. Reference-based methods aim at transferring high-resolution textures from the reference
image to produce visually pleasing results. However, it requires texture alignment between low-
resolution and reference images, which generally requires a lot of time and memory. This paper
proposes a lightweight reference-based video super-resolution method using deformable convolution.
The proposed method makes the reference-based super-resolution a technology that can be easily
used even in environments with limited computational resources. To verify the effectiveness of
the proposed method, we conducted experiments to compare the proposed method with baseline
methods in two aspects: runtime and memory usage, in addition to accuracy. The experimental
results showed that the proposed method restored a high-quality super-resolved image from a
very low-resolution level in 0.0138 s using two NVIDIA RTX 2080 GPUs, much faster than the
representative method.

Keywords: super-resolution; reference image; texture information; deformable convolution

1. Introduction

Super-resolution (SR) is a technique for enhancing the resolution of an image or
video to obtain a high-resolution counterpart by predicting natural and realistic texture
information not included in the original input. Recently, machine learning-based methods
have achieved high accuracy. Convolutional neural networks (CNNs) have contributed to
significant improvements in super-resolution. SR is a useful technique in computer vision
and has various applications. For example, in medical image analysis [1], converting low-
resolution medical images into high-resolution ones enables a more accurate detection of
subtle lesions and abnormalities. If applied to surveillance [2], it will enhance identification
capabilities in criminal investigations and crime prevention activities. In the field of remote
sensing [3], it is helpful in obtaining a more detailed analysis of land use and disaster
monitoring. Pan et al. applied super-resolution to the images a UAV taken to detect defects
in a transmission line insulator [4].

The typical SR method is the single-image SR, which generates the high-resolution
(HR) image using only a single low-resolution (LR) image. However, the generated HR
image suffers from blurry noise due to the limited information in the LR image. To tackle
this problem, attempts were made using a generative adversarial network (GAN) [5].
The images generated by GAN are sharp; however, the details may have the wrong textures.
Another approach is the reference-based SR. Generally, two individual images, LR and HR
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images, are used in this approach. The LR image is the target that needs to be converted
to the SR image. The HR image is the reference image, which differs from the LR image.
High-frequency information is extracted from the reference image and then used to convert
the LR image to the SR image. The main challenge is extracting useful high-frequency
information to fill a gap between the LR and the reference images. There are attempts to
match both images based on an optical flow [6] and patch-matching [7]. Zheng et al. [6]
developed an optical flow-based approach. However, due to the structural limitation of its
module, which calculates the optical flow called FlowNet [8], the length and width of the
input image must be an integer multiple of 16. Zhang et al. [7] developed a patch-matching-
based network called SRNTT. However, the patch matching stage is time-consuming as
the operator executed in this stage is not implemented on a GPU. Recently, Yang et al. [9]
proposed a Transformer-based network, TTSR. However, the Transformer consumes a lot
of memory. In summary, the existing methods are inefficient at computational time and
memory consumption.

Image-processing technology using machine learning is expected to be used in various
situations, including edge computers. Using super-resolution technology in environments
other than those with high-speed, large-capacity GPUs is desirable. Therefore, there is
a demand for the development of easy-to-use methods. The purpose of this study is to
propose a lightweight method for video super-resolution using reference images. The
overview of the proposed method is shown in Figure 1. The proposed method inputs a
low-resolution image and a high-resolution reference image and outputs a super-resolution
image of the low-resolution image. Instead of time-consuming matching algorithms, such
as optical flow and patch-matching necessary for feature alignment, we adopt deformable
convolution [10,11] to align high-frequency information to the LR image. We call the pro-
posed method Reference-based Super-Resolution with Deformable Convolutional Network,
or RSRDCN. Our method accepts the input of arbitrary size and runs relatively faster than
current methods with much less memory usage. The experimental results on time and
memory usage are described in Section 4.4.2. The proposed method makes the reference-
based super-resolution a technology that can be easily used even in environments with
limited computational resources.

Low-resolution
Image (LR)

Reference
Image (Ref)

Feature
extraction Feature 

maps

Feature
alignment Aligned

feature
maps

Recon-
struction

Super-resolution
Image (SR)

Figure 1. Overview of the proposed RSRDCN. An SR image of the input LR image is generated by
aligning texture information in the reference image (Ref) to the LR image. Deformable convolution is
adopted for feature alignment.

The rest of this paper is organized as follows. First, we introduce some related works
in Section 2. The proposed reference-based super-resolution method is described in detail in
Section 3. In Section 4, we describe the experimental settings and results. Finally, Section 5
provides some concluding remarks regarding this study.

2. Related Work

This section introduces some works that are related to our proposed method. First, we
discuss works on single-image super-resolution, and then those on video super-resolution.
Finally, we introduce the works on reference-based super-resolution that are most related
to our method and discuss the similarities and differences between our proposed and
existing methods.
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2.1. Single-Image Super-Resolution

Single-image SR is a technique for generating an SR image from an LR image, and deep
learning has improved performance on SR. The first attempt using deep learning was
SRCNN [12]. This is an end-to-end image SR approach. Timofte et al. developed a DIV2K
dataset [13] composed of 1000 images in 2 K resolution. The DIV2K dataset is widely
used for training neural networks in SR. The residual block [14] was used to develop
deeper networks, such as EDSR [15] and RCAN [16]. The aforementioned methods used
pixel-based loss functions, such as mean square error, MSE, or mean absolute error, MAE.
However, generated SR images based on these criteria tend to be blurred. To tackle this
problem, perceptual loss [17] and adversarial loss [18] have been developed to incorporate
human perceptions to generate sharp SR images.

Recently, much research has been conducted using the Transformer [19] that has an
attention mechanism. Although the Transformer was originally proposed for natural lan-
guage processing, Kolesnikov et al. applied the Transformer to image recognition tasks [20].
Liang et al. proposed a method for image restoration [21] using Swin Transformer [22].
They showed the effect of the proposed SwinIR on several representative tasks, including
image super-resolution. Yao et al. proposed a super-resolution algorithm for omnidirec-
tional images based on the enhanced SwinIR [23]. Zheng et al. proposed the Efficient
Mixed Transformer by combining global and local Transformer layers [24].

2.2. Video Super-Resolution

Video SR is a technique to generate SR frames from LR frames. To this end, research
has been conducted to align information between LR frames, and the optical flow has often
been used for this purpose [25,26]. The optical flow field between a center frame and its
neighboring frames is estimated, and then the neighboring frames are warped according to
the field. However, accurate optical flow is hard to estimate if large motions occur between
the frames. To tackle this problem, a dynamic filter [27] can be used. Jo et al. proposed the
dynamic upsampling filters that are generated locally and dynamically according to the
spatiotemporal neighborhoods [28].

Another approach is to use deformable convolution [10,11], which can model geo-
metric transformations that were the limitation of the traditional convolution kernel due
to its fixed configuration. It has been used to tackle high-level vision tasks such as object
detection and semantic segmentation. The deformable convolutional networks have been
widely used in video super-resolution tasks. Tian et al. proposed the temporally deformable
alignment network that performs temporal alignment [29]. Wang et al. proposed enhanced
deformable convolutions for video restoration, EDVR, by introducing a pyramid, cascading
and deformable alignment module [30]. Chan et al. [31] showed that deformable alignment
can be formulated as a combination of feature-level flow-warping and convolution. They
also extracted offsets from the pre-trained EDVR model and compared them with optical
flows. After quantitatively studying the correlation between the offsets and optical flows,
they found that over 80% of the estimations have a difference smaller than one pixel from
the optical flow.

Recent works have revealed the effectiveness of reference frames in video super-
resolution. Zhang et al. proposed the use of bidirectional optical flows calculated from
intermediate frames [32]. Feng et al. supplemented spatial information in an LR video
by combining it with an HR video using a hybrid imaging system [33]. We followed the
findings of these works to develop the proposed method. However, we used the deformable
convolution instead of the optical flow since the optical flow is time-consuming.

2.3. Reference-Based Super-Resolution

Reference-based SR complements the details in a low-resolution input image using
another high-resolution image. A primary challenge of the reference-based SR is the align-
ment between the LR and reference images. Zheng et al. developed CrossNet using optical
flow for alignment [6]. However, calculating optical flow is time-consuming. Furthermore,
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the quality of generated SR images largely depends on the preciseness of the alignment.
SRNTT [7] uses patch matching to align features between the LR and reference images.
The Transformer is also used for reference-based SR. TTSR [9] adopted the Transformer to
select useful patches in the reference image for the LR image. Liu et al. proposed a strategy
based on dual-view supervised learning and multi-attention mechanism [34]. Their method
integrated the supervised signals of feature and image layers to optimize the network.

Shim et al. used the deformable convolution kernels for the reference-based SR [35].
They used predicted alignment parameters and offsets in the deformable convolution ker-
nels from input images. Inspired by this work, the proposed method also uses deformable
convolution kernels. In addition, since the proposed method aims to develop a lightweight
network with faster speed and lower memory consumption, it introduces a pyramidal
feature alignment scheme to predict alignment parameters efficiently.

3. Proposed Method

The proposed reference-based SR method, RSRDCN, mainly consists of three processes
as shown in Figure 1: feature extraction, feature alignment, and reconstruction. The
RSRDCN receives a low-resolution input image (LR) and a high-resolution reference
image (Ref) and learns to generate an SR image of the input LR image by aligning texture
information in the reference image to the LR image. As mentioned above, the purpose
of this study is to develop a lightweight model. To achieve this, we introduce feature
alignment at multiple scales using deformable convolution.

3.1. Feature Extraction

Feature extraction from the reference image is crucial in the reference-based SR because
appropriate features help to restore SR images accurately. We adopted VGG19 [36] for fea-
ture extraction since it has shown the ability to extract high-level perceptual information in
various image-processing tasks, such as style transfer [37], which also concerns transferring
textures between two images.

The feature extraction process is displayed in Figure 2. Reference-based super-
resolution needs to find the regions in the Ref image corresponding to each LR region.
However, it is difficult to compare the low-resolution and high-resolution images directly.
Inspired by TTSR [9], we used features extracted from LR↑ and Ref↓↑ in addition to the Ref
image. LR↑ was obtained by resizing an LR image into a 4× larger image using bicubic-
upsampling. Ref↓↑ was obtained by applying bicubic-downsampling and then upsampling
to the reference image Ref with the scale factor 4×. Then, VGG19 extracted three feature
maps at the 10th, 5th, and 2nd layers. These feature maps were the same size, half the size,
and quarter the size of the reference image, denoted by subscripts 1, 2, and 3, respectively.
The feature maps obtained from LR↑ are denoted as FLR↑1

, FLR↑2
, and FLR↑3

. The feature
maps of Ref↓↑ and Ref are denoted the same way.

LR ↑
𝐹𝐹LR↑3

LR

Ref

Feature
extractor

Downsampling
+upsampling

Upsampling

Ref ↓↑
𝐹𝐹Ref↓↑3

Feature
extractor

𝐹𝐹Ref3
Feature
extractor

𝐹𝐹LR↑1 𝐹𝐹LR↑2

𝐹𝐹Ref↓↑1 𝐹𝐹Ref↓↑2

𝐹𝐹Ref1 𝐹𝐹Ref2

Figure 2. Feature extraction. LR↑ represents the upsampled LR image. Ref↓↑ is the downsampled
and then upsampled reference image.
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3.2. Feature Alignment

The proposed feature alignment module is displayed in Figure 3. We introduced
deformable convolution [10,11] for feature alignment because traditional optical flow-based
methods are time-consuming, and the latest Transformer-based methods [9] consume a
huge amount of memory while calculating relevance embedding. The offset for deformable
convolution was estimated from LR↑ and Ref↓↑, and the feature map of the reference image
was aligned according to the offset. We introduced a pyramidal feature alignment module
inspired by EDVR [30] to achieve an efficient alignment.

𝐹𝐹𝐿𝐿𝐿𝐿↑3

𝐹𝐹Ref↓↑3

𝐹𝐹Ref3 𝐹𝐹3DConv

Offset 
estimation

𝑂𝑂3

DConv

DConv

Offset
estimation

𝐹𝐹1

Offset
estimation

𝑂𝑂2

𝑂𝑂1

𝐹𝐹LR↑2
𝐹𝐹Ref↓↑2
𝐹𝐹Ref2

𝐹𝐹Ref1

𝐹𝐹Ref↓↑1

𝐹𝐹LR↑1

𝐹𝐹2

Figure 3. Feature alignment. The offset for deformable convolution is estimated from low resolution
to high resolution using LR↑ and Ref↓↑, and the feature map of the reference image is aligned
according to the offset.

The deformable convolution kernel is defined as Equation (1):

y(p) =
n2

∑
k=1

wk · x(p + mk + ok). (1)

The kernel produces the output y(p) by applying the weights wk to an input x at a location p.
mk represents a set of movements in the kernel such as mk ∈ {(−1,−1), (−1, 0), · · · , (1, 1)}.
The input x is deformed by the offset ok. The offset has the same spatial size as the feature
map, and the number of channels is Coffset = n2 × Cfeature, where Cfeature denotes the
number of channels of the features and n denotes the kernel size usually set to 3.

We used the deformable convolution kernels to align the feature maps extracted from
the LR and Ref images. Firstly, We integrated features extracted from LR↑ and Ref↓↑ to
predict the offset

Oi = f
([

FLR↓↑i
, FRef↑i

])
, (2)

where f is a general function consisting of several convolution layers, and [·, ·] denotes the
concatenation operation.

We wanted to predict the offset using LR↑ and Ref↓↑. However, the prediction was
not straightforward since the viewpoints of the LR image and the Ref image were different.
To mitigate this problem and achieve an efficient prediction, we introduced the same
pyramid strategy as EDVR [30] to gradually predict the offset and perform alignment. The
aligned feature map Fi is generated as

Fi = DConv(FRefi , g([Oi, Oi−1
↑2]), (3)
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where DConv(·) is the deformable convolution operator, (·)↑2 refers to upsampling by
a factor 2 using bilinear interpolation, and g is a general function with several convo-
lution layers. The output of the alignment module is a pyramid of spatial size-aligned
feature maps.

3.3. Reconstruction

In the reconstruction process, an HR image was generated by applying a deep gen-
erative network, the reconstructor, to the input LR image and the aligned feature maps
at multiple scales. The overview of our reconstruction process is shown in Figure 4a.
After passing through one reconstructor, the feature map was magnified to a 2× larger
spatial size. In this study, we used three reconstructors to generate HR images.

𝐹𝐹1
Recon-
structor

Recon-
structor𝐹𝐹2

Recon-
structor

SR

LR

Pixel shuffle

Pixel shuffle

𝐹𝐹3

(a) Overview

Concat

Residual
blocks

Conv

BN

ReLU

Conv

BN

𝜓𝜓𝑙𝑙

Pixel shuffle

𝜓𝜓𝑙𝑙−1

𝐹𝐹𝑙𝑙−1

Reconstructor

(b) Reconstructor
Figure 4. Reconstruction process. The input image is progressively super-resolved using multi-scale
aligned feature maps.

The architecture of the reconstructor is illustrated in Figure 4b. We used residual blocks
to reconstruct the images since a very deep trainable network helps to recover images [16].
For the lth reconstructor, we firstly concatenated the aligned feature map Fl−1 and a feature
map ψl−1 that was the output feature map from the (l − 1)th reconstructor. We used the
input LR image as ψ1. Then, we sent the concatenated feature map into residual blocks.
Finally, the pixel shuffle block [38] was used to magnify the output.

3.4. Loss Function

We used two loss components: reconstruction loss Lrec and perceptual loss Lper. The
loss function is defined as Equation (4). We set λrec to 1 and λper to 0.1.

L = λrec Lrec + λper Lper. (4)
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As the reconstruction loss, the Charbonnier penalty function [39], defined as Equation (5),
was used for achieving a higher PSNR. It is widely accepted as a loss function in the SR
tasks for its robustness and ability to handle outliers. ε is set to 1 × 10−3.

Lrec =

√
∥IGT − ISR∥2

+ ε2. (5)

Perceptual loss has shown its ability in [17] to achieve better visual quality. With
perceptual loss, we can enhance the similarity in feature space. The perceptual loss is
defined as Equation (6). ϕ

vgg
i (·) denotes the ith layer’s feature map of VGG19. We used

the relu1_1, relu2_1, relu3_1 layer. (Ci, Hi, Wi) denotes the shape of the feature map at the
ith layer.

Lper = ∑
I

1
Ci HiWi

∥∥∥ϕ
vgg
i

(
ISR

)
− ϕ

vgg
i

(
IHR

)∥∥∥2

2
. (6)

4. Experimental Results

In this section, we present experimental results to verify the effectiveness of the
proposed method. First, we describe the dataset used in the experiments and the baseline
models. Then, we clarify the implementation details. Finally, we present the experimental
results and discussions.

4.1. Datasets

We used the datasets commonly used in super-resolution research. The training dataset
is the REalistic and Dynamic Scenes dataset, REDS [40], which contains high-quality videos.
The REDS dataset contains 240 training clips and 30 validation clips. Each clip consists of
100 consecutive frames. We re-grouped them to obtain 270 datasets, from which 4 clips
were selected as validation datasets. The validation dataset is denoted as REDS4, as in the
paper [30], in which EDVR was proposed. Specifically, REDS4 contains 000, 010, 015, and
020 clips. We let the (10i + 4)th frame in a set to be the reference frame for the [10i, 10i + 9]
frame, i.e., 10 frames share a single reference frame. So, we have 23,940 sets of images for
one epoch. We crop the LR images to 128 × 128 during training to save memory. Here, we
use random cropping for data augmentation.

We use Vid4 for the validation dataset. Vid4 [41] contains four clips of video. However,
as the CrossNet [6] requires the height and weight to be a multiple of 16, we cropped the
dataset. The calendar and city clips were cropped to 144 × 176, and foliage and walk clips
were cropped to 112 × 176. The center frame in each clip serves as the reference image
for the whole clip. We also used the CUFED5 dataset [7] as one of our validation datasets.
CUFED5 defines four similarity levels from high to low, i.e., L1, L2, L3, and L4, according to
the number of best matches of SIFT features. The testing set contains 126 groups of samples.

4.2. Baseline Models

We compared the proposed method, RSRDCN, with several existing methods. These
are representative methods often used for benchmarking super-resolution methods. We
also took Bicubic interpolation into account. The baseline methods are described below.

Single-Image Super-Resolution Method
We used the single image super-resolution architecture, RCAN [16], as one of our
baselines. Because its pre-trained model is not trained on the REDS dataset, we
trained this model on the REDS dataset for 50 epochs.

Reference-based Super-Resolution Method
We used CrossNet [6] and SRNTT [7] as our reference-based SR baselines. We used
the pre-trained model provided on GitHub.
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4.3. Implementation Details

Each mini-batch contains four LR images with size 128× 128 along with four reference
images with size 512 × 512. We used the gradient accumulation training strategy to obtain
a bigger mini-batch size. The accumulation step was set to four, and the actual mini-batch
size was 16. We trained our model with Adam optimizer by setting β1 = 0.9 and β2 = 0.999.
The learning rate was 4 × 10−4. We implemented our model with the PyTorch framework
and trained them using two NVIDIA RTX 2080 GPUs.

4.4. Results

To show the effect of the proposed method, we first present the results of a quantitative
comparison between the proposed method and baseline methods. Then, the proposed
method is compared with the reference-based SR methods regarding runtime and mem-
ory usage.

4.4.1. Quantitative Evaluation

To evaluate the proposed method, we reported the PSNR and SSIM scores of every
validation dataset in Tables 1 and 2. The bold and underlined scores represent the best and
second-best scores, respectively. The proposed method (RSRDCN) obtained the highest
PSNR and SSIM on REDS4 and CUFED5. Also, RSRDCN achieved the second-best on
Vid4. Specifically, the PSNR of RSRDCN surpassed SRNTT by 0.66 points on REDS4.
When compared with CrossNet, RSRDCN improved PSNR by 5.99 points on REDS4.
Likewise, the SSIM of RSRDCN outperformed SRNTT and CrossNet by 0.036 and 0.311 on
REDS4, respectively.

Table 1. Average PSNR over the validation datasets. Bold and underlined scores represent the best
and second-best scores, respectively.

CUFED5 Levels
Method Vid4 REDS4 1 2 3 4 5

Bicubic 20.41 25.93 22.92 22.92 22.92 22.92 22.92
RCAN 20.00 28.15 24.21 24.21 24.21 24.21 24.21
CrossNet 18.63 22.28 20.18 20.06 20.09 20.04 20.07
SRNTT 19.04 27.61 24.12 24.09 24.09 24.06 24.09
RSRDCN (ours) 20.00 28.27 24.24 24.24 24.23 24.23 24.24

Table 2. Average SSIM over the validation datasets. Bold and underlined scores represent the best
and second-best scores, respectively.

CUFED5 Levels
Method Vid4 REDS4 1 2 3 4 5

Bicubic 0.520 0.724 0.632 0.632 0.632 0.632 0.632
RCAN 0.513 0.802 0.712 0.712 0.712 0.712 0.712
CrossNet 0.372 0.504 0.465 0.451 0.454 0.448 0.448
SRNTT 0.488 0.779 0.717 0.715 0.715 0.714 0.714
RSRDCN (ours) 0.530 0.815 0.727 0.727 0.727 0.727 0.727

On the Vid4 validation dataset, Bicubic achieved the best and second-best performance
at PSNR and SSIM. However, the reconstructed images of Bicubic are deteriorated visually.
For example, as shown in Figure 5, Bicubic was better than SRNTT at PSNR and SSIM,
whereas SRNTT has restored clear texture. The result of RSRDCN was sharper than that of
Bicubic. Also, RSRDCN outperformed Bicubic and SRNTT at PSNR and SSIM. Figure 6
shows another result. The proposed RSRDCN achieved the best scores for both PSNR
and SSIM among all methods except for Bicubic. Figure 7 displays the cropped images of
Figure 6. RSRDCN reconstructed the horizontal frames of the building’s windows, while
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RCAN and SRNTT failed to recover the correct texture. Although the PSNR and SSIM of
Bicubic were the best, the image is blurry and undesirable as a high-resolution image.

(a) Bicubic (17.15/0.45) (b) SRNTT (16.40/0.44) (c) RSRDCN (17.31/0.49)

Figure 5. The reconstructed images of the first frame of Vid4’s calendar clip. The values are PSNR
and SSIM.

(a) Ground-truth (b) Bicubic (22.3/0.49) (c) RCAN (21.5/0.45)

(d) CrossNet (20.9/0.35) (e) SRNTT (21.6/0.45) (f) RSRDCN (21.6/0.47)

Figure 6. The reconstructed images of the first frame of Vid4’s city clip. The values are PSNR
and SSIM.

(a) Ground-truth (b) Bicubic (c) RCAN (d) CrossNet (e) SRNTT (f) RSRDCN

Figure 7. Cropped results of the first frame of Vid4’s city clip.

Figures 8 and 9 show results of the REDS and CUFED5’s level 1, respectively. In
Figure 8, SRNTT recovered the texture of the stone but generated a fault pattern of bricks.
In Figure 9, SRNTT recovered the shape of chairs while the others did not. From these
examples, SRNTT mostly recovered fine textures from reference images but sometimes
recovered fault textures. Our RSRDCN architecture achieved smoother images than SRNTT
and could recover correct patterns when significant information was lost.
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(a) Ground-truth (b) Bicubic (c) RCAN (d) CrossNet (e) SRNTT (f) RSRDCN

Figure 8. Cropped results of the 35th frame of REDS’ 010 clip.

(a) Ground-truth (b) Bicubic (c) RCAN (d) CrossNet (e) SRNTT (f) RSRDCN

Figure 9. Cropped results of the first frame of CUFED5’s level 1.

4.4.2. Analysis on Running Time and Memory Usage

We evaluated the computational time and memory usage of each model for one frame
on an NVIDIA GTX 1080 Ti using the Vid4 dataset. The results are shown in Figure 10.
RSRDCN’s average runtime was 0.0138 s, while CrossNet’s average runtime was 0.146 s.
SRNTT’s average runtime was 4.666 s, which means SRNTT took 30 times longer than
RSRDCN. CrossNet took 1.5 times longer than RSRDCN.

4.7, 115.5

0.01, 54.2

0.1, 163.1
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Figure 10. The runtime and memory usage for reference-based super-resolution methods on the
Vid4 dataset.

As for memory usage, RSRDCN’s average memory usage was 54.186 MiB, CrossNet’s
average memory was 163.132 MiB, and SRNTT’s average memory was 115.533 MiB. SRNTT
required twice as much memory as RSRDCN. CrossNet required three times as much
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memory as RSRDCN. Without bells and whistles, RSRDCN outperformed CrossNet and
SRNTT on runtime and memory usage.

Methods that consume large amounts of computational resources have been proposed
to improve the accuracy of reference-based super-resolution. Still, this study has confirmed
that reference-based super-resolution can be achieved with a certain degree of accuracy
with much less computational effort than conventional methods.

5. Conclusions

We have proposed a reference-based super-resolution method using deformable convo-
lutional networks. This study aimed to develop a lightweight model to make the reference-
based super-resolution applicable in practical use. By employing deformable convolution,
we could exploit high-frequency information in the reference frame with little time and
memory usage. Our proposed model consists of three processes. First, the multi-scale
feature maps are extracted from the LR and reference images. Then, the aligned feature
maps are obtained using deformable convolution. Finally, the SR image is reconstructed
from the input LR image using the aligned feature maps.

We compared the proposed model with other reference-based models in the experi-
ments. Our model achieved the best scores in PSNR and SSIM, while it ran much faster
and required less memory than optical flow-based methods. The experimental result
showed that the average runtime of the proposed method was 0.0138 s, which is more than
30 times faster than that of a representative method. We believe that our proposed method
enables reference-based super-resolution to be used in various environments, including
edge computers.

The importance and effect of deformable convolutional networks in super-resolution
have been demonstrated in this study. However, the role of deformable convolutional
networks in texture migration has not been verified. In the future, we may need to conduct
extra experiments to address deformable convolutional networks’ role in texture migration.
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