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Abstract: We propose an enhanced privacy-preserving method for image classification using Con-
vMixer, which is an extremely simple model that is similar in spirit to the Vision Transformer (ViT).
Most privacy-preserving methods using encrypted images cause the performance of models to de-
grade due to the influence of encryption, but a state-of-the-art method was demonstrated to have the
same classification accuracy as that of models without any encryption under the use of ViT. However,
the method, in which a common secret key is assigned to each patch, is not robust enough against
ciphertext-only attacks (COAs) including jigsaw puzzle solver attacks if compressible encrypted
images are used. In addition, ConvMixer is less robust than ViT because there is no position embed-
ding. To overcome this issue, we propose a novel block-wise encryption method that allows us to
assign an independent key to each patch to enhance robustness against attacks. In experiments, the
effectiveness of the method is verified in terms of image classification accuracy and robustness, and it
is compared with conventional privacy-preserving methods using image encryption.

Keywords: privacy preserving; image classification; patch embedding; image encryption; access control

1. Introduction

Deep neural networks (DNNs) have been deployed in many applications including
security-critical ones such as biometric authentication and medical image analysis. In
addition, training a deep learning model requires a huge amount of data and fast com-
puting resources, so cloud environments are increasingly used in various applications of
DNN models. However, since cloud providers are not always trusted in general, privacy-
preserving deep learning has become an urgent problem [1–9].

One of the privacy-preserving solutions for DNNs is to use encrypted images to
protect visual information in images for testing models. In this approach, which has been
inspired by various compressible encryption methods [1,10,11], images are transformed by
using a secret key, and images transformed by using a perceptual encryption method are
used as testing data. However, most conventional methods [12–14] have a problem, that is,
the performance of encrypted models degrades compared with models without encryption.
Conventional cryptographic methods such as homomorphic encryption [15–19] are one of
the other privacy-preserving approaches, but the computational cost of implementation
is high, and it is not easy to apply these methods to state-of-the art DNNs directly. In
contrast, privacy-preserving federated learning [16,20,21] allows users to train a global
model without centralizing the training data on one machine, but it cannot protect privacy
during inference for test data when a model is deployed in an untrusted cloud server.

Accordingly, we focus on a use of encrypted images that does not degrade the per-
formance of models. It was also pointed out that the use of an isotropic network such as
the Vision Transformer (ViT) [22] can avoid the performance degradation of models under
some requirements [23] even when encrypted images are applied to a model. Nevertheless,
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the encrypted images derived from [23] are vulnerable to an extended jigsaw puzzle solver
(EJPS) attack [24]. The EJPS attack can effectively restore visual information from the
encrypted images, especially when compressible image encryption methods are applied.
This vulnerability is more noticeable when the model is replaced with ConvMixer [25].
ConvMixer is another isotropic network, demonstrating comparable performance with
fewer parameters than ViT. However, in contrast to ViT, ConvMixer does not have position
embedding to handle patches in a random order. Thus, block scrambling cannot be applied
to the encrypted images in this case. This increases vulnerability to the EJPS attack, since
block scrambling plays a critical role in obfuscating visual information.

In this paper, to overcome this issue, an enhanced privacy-preserving method is
proposed for image classification using ConvMixer by extending the key assignment used
for image encryption. In experiments, the proposed method is verified not only to enhance
robustness against ciphertext-only attacks (COAs) including the EJPS attack but to also
maintain the same classification accuracy as that of models without encryption on the
CIFAR-10 dataset [26].

We make the following contributions in this paper.

(a) We propose a novel image encryption method that allows us to use independent keys
for each patch to enhance resistance against attacks.

(b) We verify that the proposed sub-block-wise encryption using independent keys is
more robust that conventional ones even against the state-of-the-art attack, EJPS, while
maintaining the same classification accuracy as that of using plain images.

The rest of this paper is structured as follows. Section 2 presents related works on
image encryption for deep learning and ConvMixer. Regarding the proposed method,
Section 3 gives an overview and includes image encryption, model encryption, and security
analysis. Experiments for verifying the effectiveness of the method, including classification
accuracy and robustness against attacks, are presented in Section 4, and Section 5 concludes
this paper.

2. Related Work

Image encryption methods for deep learning and ConvMixer are summarized here.

2.1. Image Encryption for Deep Learning

Image transformation methods using a secret key, often referred to as perceptual image
encryption or image cryptography, have been studied so far for various applications. Image
encryption enables us not only to protect the visual information of plain images but also to
embed unique features controlled with the key into images. One of the origins of image
transformation with a key is in block-wise image encryption, that is, compressible encryp-
tion for encryption-then-compression (EtC) systems [1,10]. In addition, encrypted data
have been demonstrated to be effective in privacy-preserving learning [10,12–14,27–29],
adversarial defense [30], and access control [31].

Tanaka first introduced a block-wise learnable image encryption method (LE) with
an adaptation layer [12], which is used prior to a classifier to reduce the influence of
image encryption. Another encryption method is a pixel-wise encryption (PE) method in
which negative–positive transformation (NP) and color component shuffling are applied
without using an adaptation layer [32]. However, these two encryption methods are not
robust enough against ciphertext-only attacks (COAs), as reported in [33,34]. To enhance
the security of encryption, LE was improved to an extended learnable image encryption
method (ELE) [13] by adding a block scrambling (permutation) step and a pixel encryption
operation with multiple keys. However, ELE has an inferior accuracy compared with
using plain images, even when an additional adaptation network is applied to reduce the
influence of the encryption.

Recently, block-wise encryption was also pointed out to have a high similarity with
isotropic networks such as ViT [22] and ConvMixer [25], and this similarity enables us to
reduce performance degradation [20], but these methods still have the same performance
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degradation problem as conventional block-wise encryption methods. In contrast, it was
pointed out that the use of an isotropic network such as ViT and ConvMixer can avoid the
performance degradation of models under some requirements [23] even when encrypted
images are applied to a model. However, the EJPS attack [24] was demonstrated to restore
visual information in images from encrypted ones when compressible encrypted images
are applied to a model.

To overcome this issue, we propose an enhanced privacy-preserving method using
compressible encrypted images for image classification with ConvMixer.

2.2. ConvMixer

ConvMixer is a convolutional neural network (CNN) with patch embedding inspired
by ViT. Despite its simplicity, ConvMixer outperforms standard vision models, including
ViT, ResNet, and some of their variants for similar parameter counts and dataset scales [35].

As shown in Figure 1, a standard ConvMixer consists of a patch embedding fol-
lowed by L ConvMixer layers, where each ConvMixer layer is composed of a depthwise
convolution block and a pointwise convolution block.
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Figure 1. Standard inference pipeline of ConvMixer for image classification.

Similar to ViT, in a standard inference pipeline of ConvMixer, an input image
X ∈ RH×W×C is first divided into N non-overlapping patches with a size of P × P. Here, H,
W, and C are the height, width, and channel number of the input image, respectively. Thus,
the total number of patches N can be given by N = (HW/P)2. To convert the patches to a
valid input to the first ConvMixer layer, each patch is processed through patch embedding
expressed as

z = [x1
pE, x2

pE, . . . , xi
pE, . . . , xN

p E]. (1)

In the above equation, each patch is flattened into a vector denoted by xi
p ∈ RP2C, where

i ∈ {1, 2, . . . , N}. Each xi
p is subjected to a linear transformation with a matrix E ∈ RP2C×D,

resulting in a D-dimensional vector xi
pE. Here, E is a learnable weight. Finally, all the

D-dimensional vectors are integrated into a sequence denoted by z, serving as the input to
the first ConvMixer layer. z passes through L ConvMixer layers to the classification head,
from which a prediction result is output.

As shown in Equation (1), ConvMixer does not have position embedding due to
its CNN backbone, but ViT does. The lack of position embedding makes it difficult for
ConvMixer to handle EtC images with block scrambling (BS), so EtC images for ConvMixer
are less robust against attacks than those for ViT.

3. Proposed Method
3.1. Overview of Proposed Method

Figure 2 shows the framework of privacy-preserving image classification using en-
crypted images, where an untrusted cloud provider has an encrypted ConvMixer as a
model, which is provided by a model developer. The model developer encrypts a model
trained with plain images by using a key chain.
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Figure 2. Framework of privacy-preserving image classification using encrypted images.

Next, to prevent unauthorized clients or attackers from maliciously using the model,
an authorized client encrypts query images with the same key chain as that of the model
encryption and sends the encrypted ones to the server. This server does not have both
the keys and the visual information of the query images. If the encrypted images are
compressible, called EtC images, the clients can send compressed data to the server.

Using the above framework, we make the following contributions in this paper (see
Figure 3). We propose a novel image encryption method that allows us to use independent
keys for each patch to enhance resistance against attacks. In addition, the proposed sub-
block-wise encryption using independent keys is demonstrated to be robust even against
the state-of-the-art attack, EJPS, while maintaining the same classification accuracy as that
of using plain images.

Learnable image encryption

Independent-key 
assignment

Common-key 
assignment

Block-wise EtC
(Section 3.3)

Pixel shuffling
(Section 3.2)

Proposed

Sub-block-wise EtC
(Section 3.4)

Figure 3. Overview of proposed method.

3.2. Image Encryption with Block-Wise Pixel Shuffling

In this section, we elaborate on the block-wise image encryption mentioned in Figure 3.
This image encryption obfuscates an image block by block. However, in previous works,
the encryption of each block was guided by a single common key. In contrast, we de-
velop a novel key assignment method that uses an independent key for each block. To
help understand our method, we present a fundamental procedure based on block-wise
pixel shuffling, in which encrypted images are not compressible. The procedure is given
as follows.

Step 1: Divide a query image X ∈ RH×W×C into N non-overlapping blocks with a size of
P × P as follows:

B = {B1, . . . , Bi, . . . , BN}, (2)

where each block Bi ∈ RP×P×C, and i ∈ {1, 2, . . . , N}. Note that N and P are iden-
tical to the number of patches and the patch size in patch embedding, respectively.



Information 2024, 15, 723 5 of 14

Step 2: Prepare a key chain K, where K is expressed as K = {k1, . . . , ki, . . . , kN}, where
ki ∈ K denotes a random permutation matrix with a size of P2C × P2C, defined as

ki =


ki(1, 1) ki(1, 2) · · · ki(1, P2C)
ki(2, 1) ki(2, 2) · · · ki(2, P2C)

...
...

. . .
...

ki(P2C, 1) ki(P2C, 2) · · · ki(P2C, P2C)

. (3)

Step 3: Flatten each block Bi ∈ B into a vector xi
p given by

xi
p = [xi

p(1), . . . , xi
p(j), . . . , xi

p(P2C)]. (4)

Here, xi
p(j) represents a pixel in Bi.

Step 4: Using permutation matrix ki, shuffle pixel positions within vector xi
p by

x̂i
p = xi

pki, (5)

where x̂i
p denotes the encrypted form of xi

p.
Step 5: Reshape each x̂i

p to a block with a size of P × P and integrate the blocks into an
encrypted query image X̂.

In previous methods, a single common key that met k1 = k2 = . . . = kN was as-
signed to each block. In contrast, in the proposed method, independent keys that meet
k1 ̸= k2 ̸= . . . ̸= kN are applied to generate encrypted images. As described later, the novel
key assignment can enhance the security of encrypted images.

3.3. Image Encryption with Block-Wise EtC

We introduced a novel image encryption method with independent keys for Con-
vMixer in Section 3.2, but the encrypted images are not compressible. Accordingly, we
propose generating block-wise EtC images with independent keys. In general, block-wise
EtC images are generated by using four block-wise transformations, namely, rotation and
flip, negative–positive inversion, channel shuffling, and block scrambling, but ConvMixer
does not allow us to apply block scrambling for image encryption because sequence z in
Equation (1) does not have position embedding. Due to this limitation, the EtC images
used for ConvMixer are not robust enough against attacks.

To address the issue, two strategies are applied to EtC images for ConvMixer in this
paper. The first one is the key assignment method presented in Section 3.2, and the second
one is a sub-block-wise operation, which will be discussed in Section 3.4. Prior to sub-block-
wise EtC, block-wise EtC using independent keys is explained below (see Figure 4).

Step 1: Divide an image X ∈ RC×H×W into N non-overlapping blocks with a size of P × P.
These blocks are represented as B = {B1, . . . , Bi, . . . , BN}.

Step 2: Prepare a key chain consisting of N keys given by K = {k1, . . . , ki, . . . , kN}. In
this case, each key ki ∈ K is defined as ki = {k1

i , k2
i , k3

i }, where k1
i ∈ {1, 2, . . . , 8},

k2
i ∈ {1, 2}, and k3

i ∈ {1, 2, . . . , 6}.
Step 3: Apply the following transformations to block Bi:

(a) Randomly rotate and flip block Bi with the pattern provided in Figure 5, where
the pattern is decided on k1

i ∈ ki.
(b) Randomly invert the pixel values of each block obtained in Step 3 (a) with the

pattern provided in Figure 6, where the pattern is decided on k2
i ∈ ki.

(c) Randomly permute the order of color channels in the block obtained in Step 3
(b) as in Figure 7, where the order is decided on k3

i ∈ ki.

Step 4: Integrate all the blocks into an image to obtain an encrypted image X̂.
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Figure 4. Encryption pipeline of block-wise EtC.
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Figure 5. Possible patterns for rotation and flip.
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Figure 6. Possible patterns for negative–positive inversion.

Order 2 Order 3

Order 4 Order 5 Order 6

Order 1

Original order
(R, G, B)

R
G
B

R
G
B

R
B
G

G
B
R

B
G
R

B
R
G

G
R
B

Figure 7. Random order permutation of three channels.

3.4. Image Encryption with Sub-Block-Wise EtC

Block-wise EtC images for ConvMixer are generated by using three of the block-wise
transformations: rotation and flip, negative–positive inversion, and channel shuffling. To
add sub-block scrambling for image encryption, sub-block-wise EtC is proposed here.
Sub-block-wise EtC is an extension of block-wise EtC and conducts transformations on the
sub blocks divided from a block.

Figure 8 shows the procedure for generating sub-block-wise EtC images. In this figure,
a given image is encrypted with the following steps:

Step 1: Divide a given image into N blocks with P × P pixels. These blocks are denoted by
B = {B1, . . . , Bi, . . . , BN}.
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Step 2: Divide each block Bi into Ns sub blocks with S × S pixels as

Bi = {b1
i , . . . , bj

i , . . . , bNs
i }, (6)

where Ns = (P/S)2.
Step 3: Prepare a key chain K = {k1, . . . , ki, . . . , kN}, where ki ∈ K is expressed as

ki = {k1
i , k2

i , k3
i , k4

i }. (7)

Here, k1
i , k2

i , k3
i , and k4

i are given by

k1
i = {α1

i , . . . , α
j
i , . . . , αNs

i },

k2
i = {β1

i , . . . , β
j
i, . . . , βNs

i },

k3
i = {γ1

i , . . . , γ
j
i , . . . , γNs

i },

k4
i = {δ1

i , . . . , δ
j
i , . . . , δNs

i },

(8)

where α
j
i ∈ {1, 2, . . . , 8}, β

j
i ∈ {1, 2}, γ

j
i ∈ {1, 2, . . . , 6}, and δ

j
i ∈ {1, 2, δ

j
i , . . . , δl

i , . . . , Ns}.
Note that

δ
j
i ̸= δl

i , i f j ̸= l. (9)

Step 4: Using k1
i , k2

i , k3
i , and k4

i , encrypt sub block bj
i in accordance with the following

procedure:

(a) Randomly rotate and flip sub block bj
i with the pattern provided in Figure 5,

where the pattern is decided on α
j
i ∈ k1

i .
(b) Randomly invert the pixel values of the sub block obtained in Step 4 (a) with

the pattern provided in Figure 6, where the pattern is decided on β
j
i ∈ k2

i .
(c) Randomly permute the order of color channels in the sub block obtained in

Step 4 (b) as in Figure 7, where the order is decided on γ
j
i ∈ k3

i .

Step 5: Randomly permute the positions of sub blocks in the block obtained in Step 4 in

accordance with δ
j
i ∈ k4

i . Figure 9 shows an example of the sub-block scrambling.
Finally, an encrypted image can be obtained by integrating all the blocks.

Block division
Sub-block 

division

Block 𝑖

Sub-block-wise transformations

Rotation
and flip

Negative-positive 
inversion 

Channel
shuffling

Sub-block
scrambling Encrypted image

𝑘!" 𝑘!# 𝑘!$𝑘!%

Figure 8. Generation of sub-block-wise EtC images.

Sub-block scrambling

Block with 
4 sub blocks

𝑘!" = {𝛿!#, 𝛿!$, 𝛿!%, 𝛿!"}

Block with 
permutated sub blocks

𝑏!$𝑏!#

𝑏!"𝑏!%
𝑏!%𝑏!"

𝑏!#𝑏!$

= {4, 3, 2, 1}

Figure 9. Example of sub-block scrambling (Ns = 4).



Information 2024, 15, 723 8 of 14

3.5. Model Encryption

As shown in Figure 2, a model trained with plain images is encrypted by using
the same key chain as that used for image encryption. The model encryption is applied
to Equation (1). Other parameters in the model are the same as those of plain model.
For example, for block-wise pixel shuffling, E in Equation (1) is transformed with ki in
Equation (3) as

Êi = k⊤i E, (10)

where ki is a random permutation matrix, which is a square binary matrix that has exactly
one entry of 1 in each row and each column, with all other entries being 0. Every per-
mutation matrix is orthogonal, with its inverse equal to its transpose. Accordingly, when
encrypted query images are input to the encrypted model, a sequence of embedded patches
is given by

ẑ = [x̂1
pÊ1, x̂2

pÊ2, . . . , x̂i
pÊi, . . . , x̂N

p ÊN ]

= [x1
pk1k⊤1 E, x2

pk2k⊤2 E, . . . , xi
pkik⊤i E, . . . , xN

p kNk⊤N E]

= [x1
pE, x2

pE, . . . , xi
pE, . . . , xN

p E]

= z

. (11)

From the above equation, we can confirm that the classification accuracy when using
encrypted models is the same as that of using original models without any encryption. ki
used for block-wise EtC and sub-block-wise EtC can also be given a random permutation
matrix, so the proposed method does not cause any accuracy degradation even when
encrypted images are used.

3.6. Security Enhancement

Here, we discuss the security strength of our method in terms of key space. Key space
refers to the total number of possible keys that can be used in an encryption algorithm. The
size of the key space directly affects the robustness against brute force attacks that attempt
to try all possible keys so that the correct one can be found. Generally, a key space of 2256

or larger is recommended for strong security.
In the block-wise EtC images, a query image is divided into N blocks, each of which is

subjected to three block-wise transformations. Using our method, each block is encrypted
with a key independent of other blocks. Therefore, when independent keys are assigned to
N blocks, the key space is

Oind
b = (8 × 2 × 6)N , (12)

where 8, 2, and 6 represent key spaces for rotation and flip, negative–positive inversion,
and channel shuffling, respectively. Similarly, in the sub-block-wise EtC, the key space can
be calculated as

Oind
sb = 8Ns × 2Ns × 6Ns × Ns!. (13)

In this case, since each transformation is performed in a sub-block-wise manner, the key
spaces for rotation and flip, negative–positive inversion, and channel shuffling are rewritten
as 8Ns , 2Ns , and 6Ns , respectively. Ns! represents the key space for sub-block scrambling.

We assume that 224 × 224 query images are compressed with the JPEG standard,
where the block size and sub-block size are set to 16 × 16 and 8 × 8, respectively. For this
setting, Table 1 shows a key space comparison among four types of EtC methods. From
the table, it is evident that the key space is significantly smaller than the recommended
size when adopting the common key assignment, regardless of whether block-wise EtC or
sub-block-wise EtC is used. This makes the encrypted images highly vulnerable to brute
force attacks. In contrast, when our independent key assignment is used, the key space is
enlarged exponentially. In other words, the robustness against brute force attacks is greatly
enhanced. To comprehensively evaluate the security, we further assess the robustness of
encrypted images using the EJPS attack in the following experiments.
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The EJPS attack was demonstrated to restore visual information from sub-block-wise
images encrypted with a common key under the use of ConvMixer, so sub-block-wise
images encrypted with independent keys have to be robust against the attack. The EJPS
attack is the strongest attack against EtC images, and it mainly involves two steps: sub-
block restoration and jigsaw-puzzle solution. The first step restores each block by analyzing
the edge pixel correlation among the sub blocks in a block, and the restored blocks are then
reassembled into an image through the second step. Therefore, using an independent key
for each block is expected to significantly increase the complexity of the first step, improving
robustness against the EJPS attack. In the next section, we will verify the effectiveness of
our proposed method by simulating a scenario involving the EJPS attack.

Table 1. Key space of EtC images. Note that N denotes the number of blocks in the query image, and
Ns denotes the number of sub blocks in each block.

Method Key Assignment Key Space (N = 196, Ns = 4)

Block-wise EtC Common 8 × 2 × 6 ≪ 2256

Block-wise EtC (Proposed) Independent (8 × 2 × 6)196 ≫ 2256

Sub-block-wise EtC Common 84 × 24 × 64 × 4! ≪ 2256

Sub-block-wise EtC (Proposed) Independent (84 × 24 × 64 × 4!)196 ≫ 2256

4. Experiments

In experiments, the effectiveness of our method is verified in terms of the classification
accuracy of the method and the security of sub-block-wise EtC images.

4.1. Experimental Setup

Our experiment was conducted with the CIFAR-10 dataset [26]. To be equal to the
standard input size of ConvMixer, each image was resized to 224 × 224 pixels by bicubic
interpolation. We compared the proposed method with the previous method using a
common key. An example of encrypted images is shown in Figure 10, where Com-16 and
Ind-16 are encryption methods using block-wise EtC with a common key and independent
keys, and Com-16/8 and Ind-16/8 are those using sub-block-wise EtC with a common key
and independent keys, respectively. For instance, in Com-16/8, the block and sub-block
sizes are 16 and 8, respectively.

Ind-16/8Com-16/8Ind-16Com-16 Plain

Image sample

IndependentCommonIndependentCommon−Key assignment
Sub-block-wiseSub-block-wiseBlock-wiseBlock-wise−Transformation

16×1616×1616×1616×16−Block size
8×88×8−−−Sub-block size

Figure 10. Image details for evaluation.

A baseline (plain) model used for accuracy measurements was obtained by fine-tuning
a pretrained ConvMixer model on the training set of CIFAR-10. The pretrained model
was trained by using the TIMM framework [36]. The patch size P adopted for the patch
embedding layer in ConvMixer was 16 × 16, which was equal to the block size adopted for
the image encryption. The training and testing were conducted using an NVIDIA GeForce
RTX 4080 16GB GPU (NVIDIA, Santa Clara, CA, USA).

In addition, the experiments were carried out by using a PC equipped with an Intel
Core i9-12900K processor (Intel, Mountain View, CA, USA) running at 3.2 GHz and having
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128 GB of main memory. The programs including the EJPS attack and its processing time
measurement were implemented by Python 3.11.9, utilizing the ProcessPoolExecutor class
to effectively manage and execute multiple processes in parallel.

4.2. Classification Accuracy

The proposed method was evaluated in terms of the accuracy of image classification.
Table 2 shows experiment results, where plain indicates that neither the query images nor
the corresponding model was encrypted. From the table, even when independent keys
were assigned, the proposed method could achieve the same accuracy as that of plain and
common keys. Accordingly, our method was verified to have no accuracy degradation.

The accuracy of classification tasks depends on the dataset used in experiments, so the
accuracy of plain in Table 2 will be changed if we use a dataset other than the CIFAR-10
dataset. In contrast, the accuracy for the encrypted images can remain the same as for plain
as in Equation (1) even when a dataset other than the CIFAR-10 dataset is used.

Table 2. Classification accuracy.

Query Images Classification Accuracy [%]

Plain 96.86
Com-16 96.86

Ind-16 (Proposed) 96.86
Com-16/8 96.86

Ind-16/8 (Proposed) 96.86

4.3. Compression Performance

The compression performance of various EtC images was evaluated under the use
of JPEG compression, where rate–distortion (RD) curves were used to measure the com-
pression performance. To plot RD curves, encrypted images were decrypted after decom-
pressing the compressed ones, and peak signal-to-noise ratio (PSNR) values were then
calculated. The JPEG codec provided by libjpeg [37] was used for JPEG compression, where
chroma subsampling was set to 4:4:4. From Figure 11a, we can see that the EtC images were
compressible unlike pixel shuffling, as shown by its curve. To ensure that this compression
performance does not depend on the dataset, we conducted another evaluation using a
subset of ImageNet-1K [38]. As shown in Figure 11b, the RD curves for ImageNet-1K
show a similar trend to those for CIFAR-10. Thus, the compression performance of the
encrypted images created by our method is comparable to that of plain images, regardless
of the dataset.

(a) CIFAR-10 (b) ImageNet-1K

Figure 11. Rate–distortion curves. Each curve was calculated by using the average value of 10 images
from each dataset.
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4.4. Security Analysis for Block-Wise EtC Images

We evaluated the robustness of our method against the EJPS attack. The evaluation
focused on two metrics: reconstruction quality and the processing time required for recon-
struction. We randomly sampled nine EtC images from images encrypted with Com-16
and Ind-16, respectively. An example of images reconstructed by the EJPS attack is given
in Figure 12. It is clear that the visual information of plain images was restored from the
block-wise EtC images by using the EJPS attack.

(a) Plain
Encrypted  Estimated Encrypted Estimated

(b) Com-16 (c) Ind-16

Figure 12. Results of Reconstruction by EJPS attack against block-wise EtC images.

In contrast, Table 3 shows the mean reconstruction times required for the EJPE attack.
From this table, the EJPE attack required more time to reconstruct the Ind-16 images than
the Com-16 ones, so the use of independent keys is effective in enhancing robustness
against the EJPS attack even for block-wise EtC images.

Table 3. Computational time required for EJPS attack.

EtC Images Average Processing Time [s]

Com-16 0.10
Ind-16 4996.94

4.5. Security Analysis for Sub-Block-Wise EtC Images

We also confirmed the robustness of sub-block-wise EtC images. We used the same
nine images as those used in Section 4.4 and prepared encrypted images using Com-16/8
and Ind-16/8, respectively.

Figure 13 shows an example of restoration results for three EtC images. Most visual
information of the plain images was restored from the images encrypted with Com-16/8.
In contrast, the images encrypted with Ind-16/8 were not restored, so the estimated images
had no identifiable information. Accordingly, the combined use of sub-block-wise EtC
and independent keys can generate encrypted images that are robust against the EJPS
attack. The use of smaller size images results in fewer patches, so the images are more
vulnerable to the EJPS attack. Since the image size of the CIFAR-10 dataset is smaller, using
these images is an evaluation under a more stringent condition. However, as shown in
Figure 13, the proposed method is robust against EJPS even when using the CIFAR-10
dataset. Therefore, it is evident that the resistance is even higher when datasets with larger
size images are adopted.
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(a) Plain
Encrypted  Estimated Encrypted Estimated

(b) Com-16/8 (c) Ind-16/8

Figure 13. Results of reconstruction by EJPS attack against sub-block-wise EtC images.

5. Conclusions

In this paper, we proposed a novel image encryption method for privacy-preserving
ConvMixer using compressible encrypted images. This method allows us not only to
assign independent keys to each patch for image encryption but also to maintain the same
classification accuracy as that of plain models without encrypted images. In addition,
the combined use of the independent key assignment and sub-block wise encryption can
enhance robustness against attacks. In image classification experiments, the effectiveness of
this method was demonstrated in terms of the accuracy of encrypted models and robustness
against attacks including the state-of-the-art attack, EJPS. In this paper, we focused on the
use of ConvMixer, but our method is expected to be effective in other isotropic networks
such as ViT. We shall evaluate the performance of our method under the use of other
networks in our future work.
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