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Abstract: This study investigates the integration of quantum computing, classical methods, and deep
learning techniques for enhanced image processing in dynamic 6G networks, while also addressing
essential aspects of copyright technology and detection. Our findings indicate that quantum methods
excel in rapid edge detection and feature extraction but encounter difficulties in maintaining image
quality compared to classical approaches. In contrast, classical methods preserve higher image
fidelity but struggle to satisfy the real-time processing requirements of 6G applications. Deep learning
techniques, particularly CNNs, demonstrate potential in complex image analysis tasks but demand
substantial computational resources. To promote the ethical use of AI-generated images, we introduce
copyright detection mechanisms that employ advanced algorithms to identify potential infringements
in generated content. This integration improves adherence to intellectual property rights and legal
standards, supporting the responsible implementation of image processing technologies. We suggest
that the future of image processing in 6G networks resides in hybrid systems that effectively utilize
the strengths of each approach while incorporating robust copyright detection capabilities. These
insights contribute to the development of efficient, high-performance image processing systems in
next-generation networks, highlighting the promise of integrated quantum-classical–classical deep
learning architectures within 6G environments.

Keywords: copyright detection; quantum computing; hybrid deep learning; image processing;
6G networks

1. Introduction

In the rapidly evolving landscape of artificial intelligence and telecommunications [1],
integrating deep learning with advanced network technologies like 6G presents transforma-
tive potential [2]. Deep learning, a subset of machine learning, leverages neural networks to
enable machines to autonomously learn from vast amounts of data, making it a cornerstone
technology for various applications, including image processing [3,4]. As 6G networks
promise unprecedented speed, connectivity, and adaptability, they also introduce dynamic
and fluctuating network conditions that pose significant challenges for real-time data pro-
cessing [5–7]. Furthermore, the rise of AI-generated content necessitates robust copyright
detection mechanisms [8,9] to safeguard intellectual property rights. These mechanisms
utilize advanced algorithms to analyze digital content, identifying potential infringements
and ensuring compliance with legal standards. This study aims to explore and compare
the efficacy of quantum-enhanced and classical deep learning schemes for image process-
ing [10–12] within these dynamic 6G network environments. Quantum computing [13,14],
with its principles of superposition and entanglement, offers a novel approach to handling
complex computations and optimizations, potentially outperforming classical methods

Information 2024, 15, 727. https://doi.org/10.3390/info15110727 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info15110727
https://doi.org/10.3390/info15110727
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0009-0007-4693-2507
https://orcid.org/0000-0002-2151-5332
https://orcid.org/0000-0002-1068-9855
https://doi.org/10.3390/info15110727
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info15110727?type=check_update&version=1


Information 2024, 15, 727 2 of 21

in certain scenarios. Quantum Approximate Optimization Algorithm (QAOA) [14] and
the Quantum neural networks (QNNs) [15,16] represent the forefront of this technological
advancement, providing new avenues for processing and analyzing high-dimensional data.

Conversely, classical deep learning models, particularly convolutional neural networks
(CNNs) [17–19], have demonstrated robust performance across a wide range of applica-
tions, from computer vision to natural language processing. These well-established models
benefit from extensive research and optimization, making them a reliable benchmark for
comparison. In this research, we simulate various network fluctuations, including band-
width variations, latency changes, and node failures, to test the resilience and adaptability
of both quantum and classical deep learning schemes. By evaluating key performance met-
rics such as processing speed, accuracy, and resource utilization under different network
stress scenarios, we aim to provide a comprehensive analysis of each approach’s strengths
and limitations. The findings of this study will contribute to the ongoing discourse on the
role of quantum computing in advancing 6G network capabilities and image processing
techniques. By highlighting the challenges and opportunities inherent in both quantum and
classical approaches, this research seeks to inform future developments in deep learning
integration with next-generation network technologies.

This research conducts a comprehensive comparative analysis of quantum-enhanced
and classical deep learning schemes [20] for image processing within dynamic 6G network
environments [21]. We seek to evaluate the performance, adaptability, and efficiency of both
approaches under various network fluctuations that are characteristic of next-generation
wireless networks. By simulating realistic 6G network conditions, including bandwidth
variations, latency changes, and node failures [22], we aim to assess how quantum and
classical models respond to these challenges. Our objective is to identify the strengths
and limitations of each approach, particularly in maintaining image processing quality
and computational efficiency amid network stress. This comparison will provide valu-
able insights into the potential advantages of quantum computing in handling complex
network dynamics and the robustness of classical deep learning models in established
network scenarios. Ultimately, this study aims to contribute to the ongoing discourse
on the integration of quantum computing with 6G technologies and its implications for
advanced image processing applications. As the integration of advanced image processing
technologies in 6G networks becomes more common, it is important to consider the ethical
implications of computer-generated content, particularly regarding copyright issues. The
rapid increase in digital images raises significant concerns about intellectual property rights
and possible infringements. To address these challenges, effective copyright detection
mechanisms [23,24] are essential. These systems utilize advanced algorithms to exam-
ine created content, identifying potential infringements and ensuring adherence to legal
standards. By implementing reliable copyright detection solutions, we can encourage the
responsible use of computer-generated images, protecting the rights of original creators
while promoting innovation in image processing technologies. This emphasis on copyright
detection not only strengthens the integrity of digital content but also supports the broader
acceptance and application of integrated quantum–classical deep learning frameworks
within 6G environments.

The remainder of this paper is organized as follows: Section 3 provides a detailed
overview of the related quantum and classical deep learning work for image processing and
6G networks. Section 4 describes the methodology, including the simulation framework,
network fluctuation scenarios, and performance metrics used for evaluation. Section 5
presents the simulation analysis, comparing the performance of quantum and classical
models under various network conditions. Section 6 discusses the findings’ implications,
highlighting each approach’s strengths and limitations. Finally, Section 6 concludes the
paper with a summary of key insights and suggestions for future research directions.
This structured approach ensures a comprehensive and systematic exploration of the
comparative analysis, providing valuable insights into the potential of quantum computing
in enhancing 6G network capabilities for advanced image processing applications.
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This research aims to bridge the gap between classical signal processing and quantum
computing, offering a novel approach to address the demands of next-generation network
technologies. By integrating quantum deep learning [25,26] techniques, we aim to unlock
new potentials in image processing, paving the way for more efficient and reliable digital
communication systems in the 6G era.

2. Literature Review
2.1. Deep Learning in Image Processing with Copyright Detection
2.1.1. Overview of Classical Deep Learning Models for Image Processing

Classical deep learning models have revolutionized image processing in recent years,
with convolutional neural networks (CNNs) and generative adversarial networks
(GANs) [27,28] being at the forefront of this transformation. CNNs have become the
go-to architecture for various image-related tasks, including classification, object detection,
and segmentation [29,30]. Their ability to automatically learn hierarchical features from raw
pixel data has led to unprecedented performance in tasks like facial recognition and medical
image analysis. GANs, on the other hand, have opened new frontiers in image generation
and manipulation. By pitting a generator network against a discriminator in a minimax
game, GANs can produce highly realistic synthetic images and perform tasks like style
transfer and image-to-image translation [31–33]. These models have not only pushed the
boundaries of what is possible in image processing but have also found applications in di-
verse fields such as autonomous vehicles, security systems, and creative arts. Furthermore,
the ongoing advancements in these architectures continue to inspire innovative solutions
for complex challenges, such as real-time image processing in dynamic environments.
As researchers explore hybrid models that combine classical techniques with emerging
technologies like quantum computing, the potential for even greater breakthroughs in
image analysis becomes increasingly promising.

2.1.2. Recent Advancements and State-of-the-Art Techniques

Recent advancements in deep learning for image processing have seen significant
strides in both classical and quantum-inspired approaches [34,35]. Convolutional neural
networks (CNNs) continue to dominate traditional image analysis tasks, while generative
adversarial networks (GANs) push the boundaries of image synthesis and manipulation.
The integration of quantum computing principles has led to the development of quantum
convolutional neural networks (QCNNs) [36,37], which combine classical CNN structures
with quantum circuits to enhance performance. Quantum-enhanced feature extraction
techniques are being explored to leverage quantum processing units for improved compu-
tational efficiency [20]. Transfer learning between classical and quantum models shows
promise in accelerating classification tasks. As demonstrated by IBM Research, quantum
kernels offer solutions to machine learning problems that challenge classical methods.
Quantum neural networks (QNNs) are emerging as parameterized quantum computa-
tional models designed for quantum computers, showing potential in handling complex
quantum data [38]. Adaptive layer-wise learning and error mitigation strategies are being
developed to optimize these quantum models on near-term processors [39]. The field is in-
creasingly focusing on hybrid quantum-classical–classical algorithms, aiming to synergize
the strengths of both computing paradigms for advanced image processing applications.

2.1.3. Copyright Detection Techniques

Copyright detection has become increasingly important in the digital age, especially
with the growing prevalence of computer-generated content and the rapid increase in
digital images. Various technologies and algorithms are employed to effectively identify
potential copyright infringements. For example, methods such as image hashing and
machine learning techniques, including convolutional neural networks (CNNs), analyze
visual features and assess similarity against a database of copyrighted materials. One
effective approach is perceptual image hashing, which creates unique identifiers for images,
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enabling efficient comparison and detection of unauthorized use. As copyright detection
technologies continue to advance, they play a crucial role in protecting digital assets,
reducing financial risks, and ensuring that original creators receive appropriate recognition
for their work.

2.2. Quantum Deep Learning Techniques with Copyright Detection
2.2.1. Introduction to Quantum Neural Networks (QNNs)

Quantum neural networks (QNNs) represent an innovative fusion of quantum com-
puting principles and classical neural network architectures, aiming to harness quantum
phenomena like preposition and entanglement for enhanced machine learning capabil-
ities [40–43]. These networks typically consist of quantum circuits with parameterized
gates that can be trained using variational methods, allowing for classical and quantum
data processing. QNNs offer potential advantages in certain computational tasks due to
quantum parallelism and interference effects but also face challenges such as limited qubit
coherence times and the need for error correction in current quantum hardware. As the field
of quantum computing advances, QNNs are merging as a promising avenue for exploring
new approaches to machine learning problems, particularly in areas where quantum effects
could provide a significant computational edge over classical methods.

2.2.2. Quantum Approximate Optimization Algorithm (QAOA) in Machine
Learning Contexts

The Quantum Approximate Optimization Algorithm (QAOA) [44] is a hybrid quantum–
classical approach that has shown promise in addressing combinatorial optimization prob-
lems relevant to machine learning [45]. In the context of machine learning, QAOA can be
applied to tasks such as feature selection, hyperparameter optimization, and training quan-
tum neural networks, potentially offering advantages over classical methods for certain
problem classes. The algorithm prepares a quantum state that encodes the optimization
problem, applies parameterized quantum gates, and uses classical optimization to fine-
tune these parameters. While QAOA shows potential for enhancing machine learning
tasks on near-term quantum devices, challenges remain in scaling to larger problems and
demonstrating clear advantages over classical algorithms in practical applications.

2.2.3. Recent Developments in Quantum-Enhanced Deep Learning

Recent developments in quantum-enhanced deep learning have focused on creating
hybrid models that combine classical neural networks with quantum circuits. Quantum
convolutional neural networks (QCNNs) [46] have emerged as a promising approach,
utilizing quantum layers and strongly entangled circuits to process both classical and
quantum data [47]. Researchers have demonstrated potential advantages in certain com-
putational tasks, such as image recognition and optimization problems, where quantum
parallelism and interference effects could provide an edge over classical methods. How-
ever, challenges remain in scaling these models to larger problem sizes and demonstrating
clear practical advantages over classical algorithms, mainly due to limitations in current
quantum hardware.

2.2.4. Quantum Techniques for Copyright Detection

The incorporation of quantum computing into deep learning methods presents notable
advancements in copyright detection for digital content. Quantum algorithms can improve
the efficiency and accuracy of identifying copyrighted material by utilizing principles
such as superposition and entanglement. These techniques enable the swift analysis
of large datasets, facilitating the detection of potential infringements in real time. One
effective method involves quantum-enhanced machine learning algorithms that examine
the visual features of images to evaluate their similarity to existing copyrighted works.
By applying quantum adaptations of traditional algorithms, such as convolutional neural
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networks (CNNs), the detection process can be accelerated, which is particularly beneficial
in environments with extensive digital content where timely identification is essential.

Additionally, integrating perceptual image hashing techniques within a quantum
framework can enhance copyright detection capabilities. These methods create unique
identifiers for images, allowing for efficient comparisons against databases of copyrighted
materials. The computational power of quantum systems enables more thorough similarity
assessments, even for images that may have been altered. As copyright detection technolo-
gies progress, the combination of quantum computing and deep learning not only bolsters
the protection of intellectual property rights but also encourages the responsible use of
digital content. This integration is vital for ensuring compliance with legal standards in an
increasingly intricate digital landscape.

2.3. 6G Networks: Characteristics and Challenges with Copyright Detection

6G networks are envisioned to provide unprecedented capabilities, including ultra-
high bandwidth (potentially reaching terabits per second), extremely low latency (sub-
millisecond), and massive connectivity (supporting millions of devices per square kilo-
meter) [48,49]. These networks are expected to integrate advanced technologies such as
artificial intelligence, terahertz communications, and large-scale satellite constellations to
enable new applications like holographic communications and extended reality. However,
the implementation of 6G networks presents significant challenges for data processing and
image analysis, particularly due to the massive increase in data volume and the need for
real-time processing. While offering increased bandwidth, the high-frequency bands used
in 6G also face issues with signal propagation and penetration, potentially requiring dense
network deployments. Additionally, integrating AI and machine learning algorithms di-
rectly into the network infrastructure poses challenges in terms of computational efficiency,
energy consumption, and the need for distributed processing capabilities to handle the
immense data loads in real time.

In this paper, we employ a hybrid quantum-classical deep learning model specifically
designed to address these challenges. This model combines the rapid edge detection and
feature extraction capabilities of quantum computing with the image fidelity strengths of
classical methods.

The implementation of copyright detection in 6G networks presents unique charac-
teristics and challenges due to the dynamic nature of these advanced telecommunications
systems. With the ability to handle vast amounts of data at unprecedented speeds, 6G
networks facilitate real-time monitoring and analysis of digital content, enabling prompt
identification of potential copyright infringements. Advanced algorithms can analyze vi-
sual features and metadata to detect unauthorized use across various platforms. However,
the sheer volume of content generated in 6G environments complicates the development of
efficient detection systems, as traditional methods may struggle to keep pace with the rapid
influx of new material. This necessitates adopting more sophisticated techniques, such
as machine learning and image hashing, which improve accuracy by recognizing subtle
variations in content and identifying similarities with existing copyrighted works. Addi-
tionally, the evolving nature of digital content—such as alterations made through cropping
or filtering—poses further difficulties for copyright detection systems, requiring solutions
that can adapt while maintaining high levels of accuracy. Addressing these challenges
will be essential for ensuring compliance with copyright laws and protecting the rights
of content creators in the fast-evolving landscape of 6G networks, ultimately promoting
responsible use of digital content while safeguarding intellectual property rights.

2.4. Classical Deep Learning Approaches in 6G Networks

Classical deep learning approaches in 6G networks are being adapted to handle the
massive data volumes and ultra-low-latency requirements of these next-generation systems.
Researchers are exploring techniques such as distributed and federated learning to process
data at the network edge and developing more efficient neural network architectures
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optimized for 6G’s high-bandwidth, low-latency environments [49,50]. However, classical
approaches face significant challenges in dynamic 6G conditions, including real-time
adaptability to rapidly changing network topologies, the ability to process heterogeneous
data from diverse IoT devices, and the requirement for energy-efficient computations to
support massive connectivity. Additionally, the sheer scale and complexity of 6G networks
pose limitations for traditional deep learning models regarding computational resources
and training time.

2.5. Quantum-Enhanced Deep Learning for 6G Networks

Quantum-enhanced deep learning for 6G networks aims to leverage quantum comput-
ing principles to address the challenges of massive data processing and dynamic network
conditions. Quantum approaches show potential advantages in handling network fluctua-
tions through their ability to process multiple network states simultaneously, potentially
enabling more efficient resource allocation and adaptive routing in highly dynamic 6G
environments. Research on quantum-enhanced image processing for 6G networks has
demonstrated promising results in areas such as quantum-assisted feature extraction and
quantum convolutional neural networks (QCNNs) [51], which have shown improved
performance in image classification tasks under simulated network conditions. However,
these approaches are still largely theoretical or limited to small-scale experiments, with
significant challenges remaining in scaling quantum algorithms to practical 6G network
sizes and implementing them on current quantum hardware.

2.6. Comparative Studies on Quantum vs. Classical Approaches

Comparative studies between quantum and classical approaches in deep learning
for 6G networks have shown promising results, with quantum methods demonstrating
potential advantages in certain computational tasks. Performance metrics commonly
used in these comparisons include processing speed, accuracy, resource utilization, and
adaptability to network fluctuations. Recent research has indicated that quantum-enhanced
algorithms, such as the Quantum Approximate Optimization Algorithm (QAOA) [51,52]
and quantum neural networks (QNNs) [53], can outperform classical methods in specific
scenarios, particularly for complex optimization problems and feature extraction tasks in
high-dimensional data spaces.

QAOA, in particular, utilizes a hybrid quantum-classical–classical approach to tackle
combinatorial optimization problems by iteratively refining solutions through quantum
gates, making it effective for tasks like the Multiple Knapsack Problem. This capability
allows QAOA to explore multiple solutions simultaneously, offering significant advantages
in scenarios where classical algorithms struggle to find optimal solutions efficiently.

On the other hand, QNNs leverage the principles of quantum mechanics to enhance
neural network architectures, enabling them to process information in fundamentally
different ways than classical neural networks. This unique processing capability allows
QNNs to capture complex patterns in data more effectively, potentially leading to improved
performance in tasks such as image recognition and classification.

However, these studies also highlight that the practical advantages of quantum ap-
proaches are still limited by current hardware constraints and the need for further develop-
ment of quantum algorithms tailored to 6G network challenges.

2.7. Research Gaps and Future Directions

Research gaps in quantum-enhanced deep learning for 6G networks include the need
for larger-scale quantum hardware to demonstrate practical advantages over classical
methods in real-world network scenarios. Future directions involve developing more effi-
cient quantum algorithms tailored specifically to 6G network challenges, such as dynamic
resource allocation, ultra-low-latency processing, and copyright detection techniques. In-
tegrating effective copyright detection methods into quantum frameworks can enhance
the safeguarding of intellectual property rights in an environment characterized by rapid
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content generation. Potential avenues for combining quantum and classical approaches
include hybrid architectures that utilize the strengths of both systems, with quantum pro-
cessors managing specific computationally intensive tasks within larger classical network
management frameworks. Additionally, there is a need for more comprehensive bench-
marking studies to clearly identify scenarios where quantum methods offer significant
benefits over classical techniques in 6G environments, particularly regarding copyright
detection and adherence to legal standards.

3. Methodology

Our methodology employs a comprehensive simulation framework designed to model
the dynamic conditions of 6G networks, incorporating key features such as ultra-high band-
width, extremely low latency, and network fluctuations. Within this simulated environment,
we implement and compare quantum-enhanced deep learning models, including quan-
tum neural networks (QNNs) and the Quantum Approximate Optimization Algorithm
(QAOA), against classical deep learning approaches such as convolutional neural networks
(CNNs) and generative adversarial networks (GANs). The models are evaluated across
various network fluctuation scenarios, including bandwidth variations, latency changes,
and node failures, to assess their performance and adaptability in processing complex
image data under challenging 6G conditions. We utilize a diverse set of images processing
tasks, including classification, segmentation, and generation, to comprehensively evaluate
the models’ capabilities. Performance metrics such as accuracy, processing speed, and
resource utilization are carefully measured and analyzed to thoroughly compare quantum
and classical approaches in the context of 6G network environments.

These equations represent key aspects of our simulation framework for comparing
quantum and classical deep learning approaches in 6G network environments. Network
fluctuation equations are employed in our simulation to accurately model the dynamic
nature of 6G environments, capturing variations in bandwidth and latency that are char-
acteristic of next-generation wireless networks. These equations allow us to test the ro-
bustness and adaptability of both quantum and classical deep learning models under
realistic, changing network conditions, providing insights into their performance in future
6G deployments.

A simple model for network fluctuations can be represented as

B(t) = B0 + ∆B·sin(ωt)

where the following definitions hold:
B(t) is the bandwidth at time t.
B0 is the base bandwidth.
∆B is the amplitude of fluctuation.
ω is the frequency of fluctuation.

P(a) = |〈a|ψ〉|2

where the following definitions hold:
P(a) is the probability of measuring outcome a.
| a〉 is the eigenstate corresponding to outcome a.
|ψ〉 is the state of the system.
To compare the performance of quantum and classical models, one can use a metric like

Relative Quantum Advantage =
QuantumPer f ormance − ClassicalPer f ormance

ClassicalPer f ormance

This simulation compares quantum and classical deep learning approaches for image
processing in a dynamic 6G network environment, implementing quantum circuits and
classical neural networks to process image-like data over multiple time steps and spatial
configurations. The quantum model utilizes a quantum feature map and variational circuit,
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while the classical model employs Gaussian filtering and simple neural network process-
ing. Network fluctuations are simulated using a combination of sinusoidal functions and
random noise, creating a dynamic environment that mimics the variability expected in
6G networks. The simulation tracks and compares the performance of both models by
monitoring the evolution of probability distributions, expected costs, and adaptability to
network fluctuations. Through comprehensive visualization of results, including probabil-
ity distribution evolution and expected cost comparisons, the simulation provides valuable
insights into the potential advantages and limitations of quantum and classical approaches
in future 6G network scenarios.

The Algorithm 1 for simulating quantum and classical models in 6G networks is
structured to evaluate their performance across various metrics, utilizing input parameters
such as the number of qubits (n_qubits), the size of the input data (n_pixels), the number
of time steps (n_timesteps), optimization iterations (n_iterations), spatial configurations
(n_spatial_configs), and total simulations (n_simulations). It initializes essential functions
for calculating costs, managing network fluctuations, performing optimization steps, and
processing probabilities. The simulation begins with an outer loop for the number of
simulations, initializing timing variables and histories to track performance metrics. Within
this loop, an inner loop iterates over spatial configurations, setting uniform probability
distributions for both models. At each time step, the algorithm measures execution times
while calculating costs for the quantum model and generating random images for the clas-
sical model. It computes network fluctuations, updates probabilities through optimization
steps based on costs and fluctuations and processes these probabilities independently. If
not at the initial time step, it updates and normalizes probabilities based on previous states.
The current probabilities and expected costs are stored for later analysis. After all simula-
tions are complete, the algorithm returns cumulative execution times and expected cost
histories for both models. Post-simulation analysis includes calculating average execution
times, analyzing probability distribution evolution, plotting expected costs over time, and
visualizing network fluctuations to provide insights into each model’s adaptability and
performance. Overall, this framework offers a comprehensive approach to comparing
quantum and classical methods in optimizing 6G network performance, paving the way
for further research into advanced computational techniques in telecommunications.

The key difference between the quantum and classical approaches lies in their respec-
tive cost functions and how they evolve their probability distributions over time. The
quantum model computes quantum circuits, while the classical model uses traditional
computing methods.

Algorithm: Quantum-Classical–Classical Cost Function Optimization Simulation.
The simulation focuses on optimizing the performance of quantum and classical

models in 6G networks by leveraging cost functions that guide the optimization process.
The quantum cost function evaluates how well a quantum state meets specific criteria, such
as energy levels or conservation laws, by incorporating penalty terms that enforce desired
properties. This function is crucial for minimizing the expectation value of a Hamiltonian,
thereby optimizing the quantum state. In contrast, the classical cost function quantifies
the performance of classical algorithms by measuring discrepancies between predicted
and actual outcomes, often in tasks like error minimization in machine learning models.
By iteratively updating probabilities based on these cost functions, the simulation aims
to enhance routing optimization and resource allocation within the network. This hybrid
approach not only accelerates convergence to optimal solutions but also demonstrates the
potential advantages of integrating quantum computing into telecommunications, paving
the way for more efficient and scalable 6G network designs.
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Algorithm 1: Quantum vs. Classical 6G Network Simulation

Input: the number of qubits, the number of qubits that is 2 raised to the power of n, the number of
time steps in the simulation, the number of optimization iterations per time step, the number of
spatial configurations, and the number of times to run the full simulation.
Output: the average execution times for quantum and classical models, the probability
distribution evolution for both models, and the expected cost over time for both models.
1: Initialize:
2: quantum_cost_function()
3: classical_cost_function()
4: network_fluctuation()
5: optimization_step()
6: space_independent_processing()
7: For each simulation in n_simulations:
8: Initialize quantum_time, classical_time to 0
9: Initialize quantum_p_history, classical_p_history,
10: quantum_expected_cost_history,
11: classical_expected_cost_history,
12: network_fluctuation_history
13: For each spatial_config in n_spatial_configs:
14: Initialize quantum_p and classical_p as uniform distributions
15: For each t in n_timesteps:
16: Quantum Model:
17: Start timer
18: Calculate quantum_costs using quantum_cost_function
19: Stop timer and add to quantum_time
20: Classical Model:
21: Start timer
22: Generate random images
23: Calculate classical_costs using classical_cost_function
24: Stop timer and add to classical_time
25: Calculate network_fluctuation for current time step
26: For n_iterations:
27: Update quantum_p using optimization_step
28: Update classical_p using optimization_step
29: Apply space_independent_processing to quantum_p and classical_p
30: If t > 0:

Update quantum_p, classical_p on step and network fluctuation
31: Normalize probabilities
32: Store current quantum_p and classical_p in respective histories
33: Calculate and store expected costs for quantum and classical models
34: Return quantum_time, classical_time, quantum_expected_cost_history,
35: classical_expected_cost_history

4. Simulation Analysis

Figure 1 illustrates the comparative results of the quantum and classical models in our
6G network simulation. As a result of the simulation, we can observe distinct differences
between the quantum and classical models in their probability distribution evolution.
The quantum model exhibits an evenly distributed pattern of higher probability solution
indices over time. In contrast, the classical model consistently shows higher probabilities
for specific pixel indices from time step 10 to 50, with a few lower probability indices
unevenly distributed elsewhere. This suggests that the classical model tends to converge
on particular solutions, while the quantum model maintains a more diverse set of potential
solutions. The expected cost comparison further highlights these differences, with the
quantum model’s costs ranging from 2.2 to 3.5, significantly higher than the classical
model’s range of 0.1 to 0.5. This indicates that the classical model achieves lower expected
costs despite its more focused solution approach. Both models operate within the same
network environment, characterized by fluctuations ranging from −0.05 to 0.20 over time,
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as shown in the bottom panel of Figure 1. These results reveal the trade-offs between the
two approaches: the quantum model’s broader exploration of the solution space comes at
a higher cost, while the classical model’s more targeted approach yields lower costs but
potentially less diverse solutions.
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Figure 1. First simulation of comparative results of the quantum and classical models in our 6G
network simulation.

Figure 2 presents another set of simulation results, showing slight variations from the
previous findings while maintaining overall similar patterns. In this iteration, the quantum
model continues to demonstrate an evenly distributed probability across solution indices
over time, consistent with its behavior in Figure 1. The classical model, however, exhibits a
more pronounced tendency towards constant probability distributions, with only a few
exceptions deviating from this pattern. This reinforces the observation that the classical
approach converges more strongly on specific solutions, while the quantum approach
maintains a broader exploration of the solution space. The expected cost comparisons and
network fluctuations remain largely unchanged from the previous simulation, with the
quantum model still showing higher costs ranging from approximately 2.2 to 3.5 and the
classical model maintaining lower costs in the range of 0.1 to 0.5. The network fluctuations
continue to affect both models equally, varying between −0.05 and 0.20. These results
further emphasize the consistent difference in behavior between quantum and classical
approaches in this 6G network simulation environment, highlighting the trade-off between
solution diversity and cost efficiency.

This parameter optimization shown in Table 1 provides a comprehensive framework
for fine-tuning the quantum–classical comparison simulation in a 6G network environment.
It encompasses key variables affecting both the quantum and classical models and the
network simulation itself, offering a range of values to explore for each parameter. By
systematically adjusting these parameters within their specified ranges, researchers can
identify optimal configurations that enhance the performance and adaptability of both
quantum and classical approaches in dynamic network conditions. This optimization
process allows for a more nuanced understanding of each model’s strengths and limitations,
potentially revealing scenarios where quantum approaches may offer significant advantages
over classical methods in 6G network applications.
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Table 1. Simulation parameter list.

Parameter Current Value Optimization Range Description

n_qubits 3 2–8 Number of qubits in quantum circuit

n_timesteps 50 20–200 Number of time steps in simulation

n_iterations 5 1–20 Number of optimization iterations per time step

n_spatial_configs 3 1–10 Number of spatial configurations

ZZFeatureMap reps 1 1–5 Repetitions in quantum feature map

RealAmplitudes reps 1 1–5 Repetitions in variational form

Optimization step scale 0.5 0.1–2.0 Scale in norm.pdf for optimization step

Network fluctuation amplitude 0.1 0.01–0.5 Amplitude of network fluctuation

Network fluctuation frequency 0.05 0.01–0.2 Frequency of network fluctuation

Network noise scale 0.05 0.01–0.2 Scale of random noise in network fluctuation

Probability update rate 0.8 0.5–0.95 Weight for current state in probability update

Network impact on probability 0.01 0.001–0.1 Impact of network fluctuation on probability

Figure 3 illustrates the execution times for each simulation, comparing the quantum
and classical models as the number of simulations increases. The graph reveals distinct
patterns for both approaches. The quantum model, represented by the blue line, consis-
tently shows slightly higher execution times throughout the simulation range. It begins at
approximately 0.025 s and experiences two notable peaks: the first and highest at 0.27 s
just before the 60th simulation, and a second peak of 0.24 s around the 65th simulation.
After these peaks, the quantum model’s execution time decreases, eventually returning to
levels close to its starting point. In contrast, while following a similar trend, the classical
model generally maintains lower execution times than the quantum model. Interestingly,
it exhibits a peak that coincides with the quantum model’s second peak around the 65th
simulation. This synchronization suggests that both models may be responding to simi-
lar computational challenges at this point in the simulation sequence. Overall, Figure 3
demonstrates that while both models show variability in execution times, the quantum
model consistently requires slightly more computational time, with more pronounced
peaks compared to the classical model.
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Figure 4 compares the average execution times between the quantum and classical
models over 100 simulations. The bar graph illustrates a notable difference in computational
efficiency between the two approaches. The quantum model, on average, requires 0.07 s
per simulation, which is significantly higher than the classical model’s average of 0.048 s.
This difference of approximately 0.022 s per simulation indicates that the classical model
consistently outperforms the quantum model in terms of execution speed. The higher
average execution time for the quantum model aligns with the trends observed in Figure 3,
where the quantum simulations generally showed higher execution times throughout
the simulation range. This comparison in Figure 4 quantifies the overall performance
difference, suggesting that the classical approach offers a computational speed advantage
for this particular 6G network simulation scenario. The results highlight an important
consideration in the practical application of quantum versus classical algorithms in network
simulations, where execution time can be a critical factor in real-world implementations.
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Figure 5 illustrates the average expected cost over time for both the quantum and
classical models, spanning from time step 0 to 50. The graph reveals distinct cost profiles
for each approach, while also highlighting some similarities in their overall patterns. The
quantum model, represented by the blue line, begins with a higher average expected
cost of approximately 1.5 and concludes at around 1.4. It exhibits a smooth oscillating
pattern throughout the period, with gentle rises and falls. In contrast, the classical model,
depicted by the orange line, starts at a much lower cost of about 0.5 and ends slightly
lower at 0.4. The classical model also displays a similar undulating pattern, mirroring
the quantum model’s trends but at a consistently lower cost level. Notably, both models
show comparable patterns of fluctuation after their initial starting points, suggesting they
respond similarly to changes in the simulation environment over time. However, the most
striking feature of this graph is the significant and persistent gap between the two models’
cost profiles. The quantum model maintains a substantially higher average expected cost
throughout the entire simulation period, consistently about 1.0 units above the classical
model. This visualization demonstrates that while both models evolve similarly over
time, the classical approach consistently achieves a lower average expected cost in this 6G
network simulation scenario.
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The simulation comparing quantum and classical approaches in 6G network opti-
mization reveals intriguing trends as quantum advantage increases. In the execution time
analysis, the quantum model demonstrates significant improvement, with its execution
time decreasing from 0.016 s at no advantage to 0.008 s at a quantum advantage of 2.0. Con-
versely, the classical model maintains a consistent execution time of 0.0117 s throughout,
unaffected by the quantum advantage parameter. This trend indicates that as quantum
technology advances, it has the potential to surpass classical methods in computational
speed for certain network optimization tasks.

The speedup factor, which compares the execution times of the two models, further
illustrates this trend. Starting at 0.7 when there is no quantum advantage, it rises steadily
to 1.4 at a quantum advantage of 2.0. This progression demonstrates that the quantum
model transitions from being slower than the classical model to significantly faster as the
quantum advantage increases. The point where the speedup factor crosses 1.0 marks the
threshold at which the quantum model begins to outperform the classical model in terms
of execution speed.



Information 2024, 15, 727 14 of 21

When examining the average cost of solutions, we observe a notable improvement in
the quantum model’s performance as quantum advantage increases. The quantum model’s
average cost starts at 1.5 with no advantage and decreases to 0.8 at a quantum advantage
of 2.0. In contrast, the classical model maintains a constant average cost of 0.5 throughout
the simulation. This trend suggests that while the quantum model’s solution quality is
improving with increased quantum advantage, it has not yet matched the efficiency of the
classical model in this particular optimization scenario.

The cost ratio, calculated by dividing the quantum model’s cost by the classical model’s
cost, provides a clear picture of the relative efficiency of the two approaches. Starting at
2.95 when there is no quantum advantage, the cost ratio decreases to 1.5 at a quantum
advantage of 2.0. This significant reduction indicates that the quantum model is becoming
increasingly competitive with the classical model in terms of solution quality. However,
the fact that the ratio remains above 1.0 even at the highest simulated quantum advantage
suggests that further technological advancements may be necessary for quantum methods
to fully match or surpass classical methods in solution quality for this specific 6G network
optimization task.

These simulation results paint a nuanced picture of the potential for quantum comput-
ing in 6G network optimization. As quantum advantage increases, we see clear improve-
ments in both execution speed and solution quality for the quantum model. The quantum
approach transitions from being significantly slower to notably faster than the classical
approach while substantially closing the gap in solution quality. However, the persistent
edge of the classical model in solution quality, even at the highest simulated quantum
advantage, underscores the need for continued advancements in quantum technology.
These findings suggest that while quantum computing shows great promise for 6G network
optimization, realizing its full potential may require further technological progress and
careful consideration of the trade-offs between computational speed and solution quality
in specific application contexts.

Figure 6 illustrates the comparative performance of quantum and classical approaches
to image processing in the context of 6G networks. The figure comprises four subplots, each
highlighting a different aspect of the performance comparison. In the first subplot, which
shows image processing execution time versus quantum advantage, the quantum model
consistently demonstrates lower execution times compared to the classical model. As
the quantum advantage increases, the quantum model’s execution time further decreases,
while the classical model’s execution time remains constant. The second subplot displays
the image processing speedup factor versus quantum advantage, where the speedup factor,
calculated as the ratio of classical to quantum execution time, increases with growing
quantum advantage. This indicates that the quantum model becomes progressively faster
relative to the classical model as quantum technology improves. The third subplot, depict-
ing average image processing cost versus quantum advantage, shows that the quantum
model maintains lower average processing costs than the classical model across all quantum
advantage levels. The quantum model’s cost decreases as the quantum advantage increases,
while the classical model’s cost remains steady. Finally, the fourth subplot presents the
image processing cost ratio versus quantum advantage, where the cost ratio, computed
as the quantum cost divided by the classical cost, decreases as the quantum advantage
grows. This trend suggests that the quantum model becomes increasingly cost-effective
compared to the classical model with advancements in quantum technology. Overall,
Figure 7 demonstrates the superior performance of the quantum model in both execution
time and cost-effectiveness for the specific image processing tasks simulated in this 6G
network context.
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Figure 7 illustrates the comparative performance metrics of quantum and classical
approaches to image processing in 6G networks through four subplots, showing execution
time, speedup factor, average cost, and cost ratio against quantum advantage. Figure 8
displays a set of sample images used as input for the 6G network simulation, providing
a visual reference for the original data. In Figure 9, we see the results of quantum image
processing in the 6G network context, where the images have undergone edge detection
processing using the quantum approach. Figure 10 presents the classical image processing
results in the 6G network, showing images that have been processed using Gaussian blur,
representing the classical method. Figure 11 provides a PSNR (Peak Signal-to-Noise Ratio)
comparison between quantum and classical image processing in the 6G network. This
comparison reveals a significant difference in PSNR values between the two methods, with
the classical method achieving much higher PSNR values of around 60, while the quantum
method’s PSNR values are considerably lower, at approximately 2. This substantial differ-
ence in PSNR values indicates that the classical method using Gaussian blur preserves more
of the original image information than the quantum method employing edge detection. It
is important to note that this difference is largely attributable to the inherent nature of the
processing tasks, as edge detection fundamentally alters the image more drastically than
Gaussian blur, naturally leading to lower PSNR values.

In Figures 6 and 7, the term “quantum advantage” refers to the measurable per-
formance benefits exhibited by the quantum model compared to the classical model in
addressing the 6G network optimization problem. These figures likely present a compar-
ative analysis of key performance metrics, such as solution quality, convergence speed,
and resource utilization. A notable crossover point may be observed where the quantum
model begins to outperform the classical model, indicating the onset of quantum advantage.
This advantage is particularly relevant to the specific context of 6G network optimization,
showcasing practical benefits applicable to real-world scenarios. The data presented may
highlight quantifiable improvements in aspects like faster convergence times and superior
solution quality achieved by the quantum approach. Furthermore, the figures could illus-
trate how this advantage scales with increasing problem size or complexity, suggesting that
larger or more intricate network configurations yield more pronounced benefits from the
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quantum model. Importantly, while earlier analyses indicated higher costs associated with
the quantum model, Figures 6 and 7 may reveal advantages in terms of resource efficiency
and solution diversity that further underscore its potential superiority in this domain.
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Figure 8 displays a set of original sample images used as input for the 6G network
simulation, providing a baseline for comparison with processed results.

Figure 9 presents the results of quantum image processing in the 6G network context.
These images appear significantly different from the original samples, likely due to the ap-
plication of a quantum edge detection algorithm that highlights boundaries and significant
features, resulting in a more transformative processing of the images.
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Figure 10 shows the classical image processing results in the 6G network. These pro-
cessed images strongly resemble the original samples, indicating that the classical approach,
presumably using Gaussian blur, preserves more of the original image characteristics while
reducing noise and detail.
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Figure 10. Classical image processing results in 6G network.

The distinct differences between quantum and classical processing results underscore
their complementary strengths: quantum processing excels in rapid feature extraction and
edge detection, while classical processing maintains higher overall image fidelity. This
contrast suggests the potential advantages of integrating both approaches in a hybrid
system for optimized image processing in 6G network applications.

Figure 11 presents a PSNR comparison of quantum versus classical image processing
in a 6G network context. The results show a stark contrast, with the quantum approach
achieving a PSNR of 2, while the classical method attains a significantly higher PSNR of 55.
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This substantial difference in PSNR values indicates that the classical method vastly
outperforms the quantum approach in preserving image quality and fidelity. The higher
PSNR of the classical method aligns with earlier observations where classically processed
images appeared more similar to the original samples.

Despite its lower PSNR, the quantum approach may still offer advantages in specific
applications such as rapid feature extraction or edge detection, where processing speed
could be prioritized over image fidelity. This disparity highlights the potential for hybrid
approaches that could leverage the strengths of both quantum and classical methods in 6G
network image processing.

The significant gap in PSNR performance underscores an important area for future
research and development in quantum computing applications for image processing in 6G



Information 2024, 15, 727 18 of 21

networks, particularly in improving image quality while maintaining quantum methods’
speed and efficiency advantages.

Our simulations comparing quantum and classical approaches in the context of 6G
networks have yielded intriguing and somewhat contrasting results. The initial simula-
tions, focusing on general network optimization tasks, suggested that classical models
outperformed quantum models in terms of execution time and cost-effectiveness. However,
our latest simulation presents a different picture, specifically targeting image processing
tasks within 6G networks.

In the image processing context, as illustrated in Figure 7, the quantum model
demonstrates superior performance in terms of execution time and cost-effectiveness.
The quantum approach, implementing edge detection, consistently achieves lower exe-
cution times than the classical model’s Gaussian blur method. This advantage becomes
more pronounced as the quantum advantage increases. Similarly, the quantum model
shows lower average processing costs, with the cost-effectiveness improving as quantum
technology advances.

However, the PSNR comparison in Figure 11 reveals an important nuance. Despite the
quantum model’s advantages in speed and cost, the classical model achieves significantly
higher PSNR values (around 60) compared to the quantum model (around 2). This indicates
that while the quantum approach is faster and more cost-effective, the classical method
preserves more of the original image information.

The nature of the tasks performed can explain this apparent contradiction. Edge
detection, used in the quantum model, fundamentally alters the image more drastically
than Gaussian blur, naturally leading to lower PSNR values. This highlights the importance
of considering the specific requirements of the task at hand when choosing between
quantum and classical approaches.

In conclusion, our simulations suggest that quantum computing shows great promise
for certain 6G network operations aspects, particularly in image processing tasks where
speed and cost-effectiveness are paramount. The quantum model’s ability to perform edge
detection quickly and efficiently could be invaluable in applications requiring rapid image
analysis or feature extraction.

However, the classical model’s superior performance in preserving image fidelity, as
measured by PSNR, indicates that it remains highly relevant, especially for applications
where maintaining image quality is crucial. This underscores the potential for a hybrid
approach in future 6G networks, leveraging the strengths of both quantum and classical
computing to optimize different aspects of network operations and image processing tasks.

These findings emphasize the need for continued research and development in quan-
tum computing for 6G networks, while also highlighting the importance of task-specific
optimization and the potential benefits of integrating quantum and classical approaches in
future network architectures.

5. Implications of Findings

The comparative analysis of quantum and classical approaches for image processing
in 6G network scenarios reveals several important implications, particularly concerning
copyright detection. The quantum approach demonstrates significantly faster execution
times for image processing tasks, especially in edge detection. However, this comes at the
cost of substantially lower image quality, as evidenced by much lower PSNR values (2 for
quantum vs. 55 for classical). This trade-off suggests that quantum methods might be more
suitable for applications requiring rapid image analysis or feature extraction, where pro-
cessing speed is prioritized over image fidelity. Classical methods, while slower, maintain
much higher image quality and fidelity. The higher PSNR value (55) indicates that classical
processing preserves more of the original image information, making these approaches
more suitable for applications where image quality is critical, such as medical imaging or
high-resolution surveillance in 6G networks. The stark contrast in performance between
quantum and classical methods in different aspects (speed vs. quality) points to the po-
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tential benefits of hybrid quantum-classical–classical approaches. Such hybrid systems
could leverage the rapid processing capabilities of quantum computing for initial feature
extraction or edge detection, followed by classical processing to maintain overall image
quality. The findings also highlight the significance of incorporating copyright detection
techniques within these frameworks. As digital content proliferates, ensuring compliance
with copyright laws becomes essential. The integration of effective copyright detection
mechanisms can enhance the safeguarding of intellectual property rights while leveraging
the speed advantages of quantum processing. These results underscore the importance
of task-specific optimization in 6G network image processing. Depending on the specific
requirements of a given application (e.g., real-time processing vs. high-fidelity imaging),
network architects may need to dynamically allocate quantum or classical resources. Fur-
thermore, there is a pressing need for further research to improve the image quality of
quantum processing methods while maintaining their speed advantages. Developing more
sophisticated hybrid algorithms that seamlessly integrate quantum and classical processing
stages could lead to optimized solutions for diverse 6G network imaging applications.
As 6G networks are developed, the integration of both quantum and classical processing
capabilities may become crucial. This could lead to more flexible and adaptable network
architectures capable of handling a wide range of image processing tasks with varying
speed and quality requirements. In conclusion, while quantum approaches show promise
for rapid image processing in 6G networks—particularly for edge detection and feature
extraction—significant advancements are needed to preserve their image quality. Classical
methods remain superior for high-fidelity image processing, and the future likely lies in
developing sophisticated hybrid quantum-classical–classical systems that can optimally
balance speed, quality, and copyright detection based on specific application needs.

6. Conclusions

This study examined the integration of quantum computing, classical methods, and
deep learning techniques to enhance image processing in dynamic 6G networks. Our
findings indicate that quantum methods are effective for rapid edge detection and feature
extraction, though they struggle to maintain image quality compared to classical techniques.
In contrast, classical methods provide superior image fidelity but often cannot meet the
real-time processing requirements crucial for 6G applications. Deep learning approaches,
particularly convolutional neural networks (CNNs), show significant potential for complex
image analysis tasks, yet they demand considerable computational resources. To address
the ethical considerations surrounding AI-generated content, we proposed robust copyright
detection mechanisms that employ advanced algorithms to identify potential infringements.
This integration not only supports compliance with intellectual property rights but also
fosters the responsible use of image processing technologies. We suggest that the future of
image processing in 6G networks will rely on hybrid systems that effectively utilize the
strengths of each method while incorporating strong copyright detection capabilities. These
insights are vital for developing efficient, high-performance image processing systems
in next-generation networks, highlighting the promise of combined quantum-classical–
classical deep learning architectures within 6G environments.
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