
Citation: Tzruia, I.; Halperin, T.;

Sipper, M.; Elyasaf, A. Fitness

Approximation Through Machine

Learning with Dynamic Adaptation to

the Evolutionary State. Information

2024, 15, 744. https://doi.org/

10.3390/info15120744

Academic Editor: Aneta

Poniszewska-Maranda

Received: 22 September 2024

Revised: 10 November 2024

Accepted: 20 November 2024

Published: 21 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Fitness Approximation Through Machine Learning with
Dynamic Adaptation to the Evolutionary State
Itai Tzruia 1 , Tomer Halperin 1 , Moshe Sipper 1 and Achiya Elyasaf 2,∗

1 Department of Computer Science, Ben-Gurion University, Beer-Sheva 8410501, Israel;
itaitz@post.bgu.ac.il (I.T.); tomerhal@post.bgu.ac.il (T.H.); sipper@bgu.ac.il (M.S.)

2 Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev,
Beer-Sheva 8410501, Israel

* Correspondence: achiya@bgu.ac.il

Abstract: We present a novel approach to performing fitness approximation in genetic algorithms (GAs)
using machine learning (ML) models, focusing on dynamic adaptation to the evolutionary state. We
compare different methods for (1) switching between actual and approximate fitness, (2) sampling the
population, and (3) weighting the samples. Experimental findings demonstrate significant improvement
in evolutionary runtimes, with fitness scores that are either identical or slightly lower than those of the
fully run GA—depending on the ratio of approximate-to-actual-fitness computation. Although we focus
on evolutionary agents in Gymnasium (game) simulators—where fitness computation is costly—our
approach is generic and can be easily applied to many different domains.

Keywords: genetic algorithm; machine learning; fitness approximation; surrogate-assisted evolutionary
algorithm; regression; agent simulation

1. Introduction

Genetic algorithms (GAs) are population-based metaheuristic optimization algorithms
that operate on a population of candidate solutions, referred to as individuals, iteratively
improving the quality of solutions over generations. GAs employ selection, crossover,
and mutation operators to generate new individuals based on their fitness values, computed
using a fitness function [1].

GAs have been widely used for solving optimization problems in various domains,
such as telecommunication systems [2], energy systems [3], and medicine [4]. Further, GAs
can be used to evolve agents in game simulators. For example, García-Sánchez et al. [5]
employed a GA to enhance agent strategies in Hearthstone, a popular collectible card game,
and Elyasaf et al. [6] evolved high-level solvers for the game of FreeCell.

Algorithm 1 outlines the pseudocode of a canonical GA, highlighting the main fitness–
selection–crossover–mutation loop. An accurate evaluation of a fitness function is often
computationally expensive, particularly in complex and high-dimensional domains, such
as games. In fact, a GA spends most of its time in line 3 of Algorithm 1, computing fitness.

Algorithm 1 Canonical Genetic Algorithm.

Input:
problem to solve

1: generate initial population of candidate solutions to problem
2: while termination condition not satisfied do
3: compute fitness value of each individual in population
4: perform parent selection
5: perform crossover between parents
6: perform mutation on resultant offspring

Information 2024, 15, 744. https://doi.org/10.3390/info15120744 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info15120744
https://doi.org/10.3390/info15120744
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0009-0004-5019-017X
https://orcid.org/0009-0009-9050-8118
https://orcid.org/0000-0003-1811-472X
https://orcid.org/0000-0002-4009-5353
https://doi.org/10.3390/info15120744
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info15120744?type=check_update&version=1

Information 2024, 15, 744 2 of 22

To mitigate this cost, fitness approximation techniques have been proposed to estimate
the fitness values of individuals based on a set of features or characteristics. Specifically,
the field of surrogate-assisted evolutionary algorithms (SAEAs) focuses on approximating
fitness evaluations in evolutionary algorithms using surrogate models. While there are
various types of evolutionary algorithms beyond genetic algorithms (GAs), the vector-based
representation of individuals in GAs makes them particularly well suited for surrogate models.

Relying only on approximate fitness scores might cause the GA to converge to a false
optimum. To address this, the evolutionary process can be controlled by combining ap-
proximate and actual fitness evaluations. This process is referred to as evolution control [7].
Most surrogate-assisted methods tackle this issue through sampling the population, com-
puting the true fitness scores of the sampled individuals, and retraining the model on these
scores [8]. This approach might not be enough, as the static sampling may be insufficient
for the model. As a result, our method incorporates a dynamic transition between true and
approximate fitness evaluations to better adapt to the current state of evolution.

We analyze several options for (1) switch conditions between using the actual fitness
function and the approximate one, (2) sampling the search space for creating the dataset,
and (3) weighting the samples in the dataset.

We present a test case to our method using ridge and lasso machine learning models
to evaluate the quality of evolutionary agents on three games implemented by Gymna-
sium (formerly OpenAI Gym), a framework designed for the development and compar-
ison of reinforcement learning (RL) algorithms. We only use Gymnasium’s game imple-
mentations, called environments, for evaluating fitness—we do not use the framework’s
learning algorithms.

Our method is not limited to the field of game simulations, and can be applied to any
other domain that can incorporate fitness approximation, including robot simulations [9],
hyperparameter tuning [10], neural architecture search [11,12], and others.

These are the main innovations of our proposed method, which are further detailed
in Section 5:

• The use of a switch condition (Section 5.2) favors high flexibility in the experimen-
tal setting:

– Different switch conditions can be used according to the domain and complexity
of the problem being solved.

– The predefined switch threshold hyperparameter controls the desired amount of
trade-off between result quality and computational time.

• A monotonically increasing sample weights function (Section 5.4), which places more
emphasis on newer individuals in the learning process.

• The method is generic and can be easily modified, extended, and applied to other
domains. Other choices of ML model, switch condition, or sampling strategy can be
readily made.

Abbreviations used in this paper are summarized in Table 1. Notations are summa-
rized in Table 2.

The next section surveys the relevant literature on fitness approximation. Section 3
provides brief backgrounds on linear ML models and Gymnasium. Section 4 introduces the
problems being solved herein: Blackjack, Frozen Lake, and Monster Cliff Walking. Section 5
describes the proposed framework in detail, followed by experimental results in Section 6.
Section 7 presents two extensions to our method, involving novelty search and hidden
fitness scores. We end with concluding remarks and future work in Section 8.

Table 1. Abbreviations and their meanings.

Abbreviation Meaning

GA Genetic Algorithm

ML Machine Learning

Information 2024, 15, 744 3 of 22

Table 1. Cont.

Abbreviation Meaning

SAEA Surrogate-Assited Evolutionary Algorithm

FI Fitness Inheritance

Avg-FI Average Fitness Inheritance

Prop-FI Proportional Fitness Inheritance

ELM Extreme Learning Machine

HEA/FA Hybrid Evolutionary Algorithm with Fitness Approximation

MLP Multi-Layer Perceptron

MOGA Multi-Objective Genetic Algorithm

LLM Large Language Model

KAN Kolmogorov–Arnold Network

RL Reinforcement Learning

ERL Evolutionary Reinforcement Learning

PeVFA Policy-extended Value Function Approximation

ApproxML Our proposed method

Table 2. Notations and their meanings.

Notation Meaning

L1 Lasso regularization

L2 Ridge regularization

X Feature matrix

y Target variable

w Coefficient vector

α Regularization parameter

fweight Sample weight function

ytrain Target-value vector in ML model training

ypred Vector of predictions returned by the ML model

ftrue True fitness scores sent to the ML model

fapprox Approximate fitness scores sent to the GA

2. Fitness Approximation: Previous Work

Fitness approximation is a technique used to estimate the fitness values of individuals
without performing the computationally expensive fitness evaluation for each individual.
This method allows for an efficient exploration of the search space.

Fitness Inheritance. Smith et al. [13] suggested the use of fitness inheritance, where
only part of the population has its fitness evaluated—and the rest inherit the fitness values
from their parents. This approach allows for a significant reduction in computational costs
by minimizing the need for fitness evaluations across the entire population, thus facilitating
faster convergence in evolving populations. Their work proposed two fitness inheritance
methods: (1) averaged inheritance, wherein the fitness score of an offspring is the average
of its parents; and (2) proportional inheritance, wherein the fitness score of an offspring
is a weighted average of its parents, based on the similarity of the offspring to each of
its parents. Their work was tested on the one-max GA problem and an aircraft routing
real-life problem. This approach laid the groundwork for later studies that were built on
the principles of fitness inheritance.

Information 2024, 15, 744 4 of 22

Liaw and Ting [14] utilized proportional fitness inheritance and linear regression to
efficiently solve evolutionary multitasking problems. In the context of GAs, multitasking
can lead to better exploration of the solution space, enabling the simultaneous optimization
of multiple objectives, which is essential in real-world applications where multiple criteria
must be balanced.

Le et al. [15] used fitness inheritance and clustering to reduce the computational cost
of undersampling in classification tasks with unbalanced data. Their method was tested on
44 imbalanced datasets, achieving a runtime reduction of up to 83% without significantly
compromising classifier performance.

Gallotta et al. [16] used a neural network and a novel variation of fitness inheritance,
termed ‘acquirement’, to predict the fitness of feasible children from infeasible parents in
the context of procedural content generation, creating spaceship objects for the game Space
Engineers. Acquirement not only considers the fitness of the parents but also incorporates
the fitness values of the parents’ previous offspring, enhancing the prediction accuracy.

Kalia et al. [17] incorporated fitness inheritance into multi-objective genetic algorithms
(MOGAs) to assess the quality of fuzzy rule-based classifiers. The paper addresses the
trade-off between classification accuracy and interpretability, which is critical in fuzzy
rule-based systems. Their MOGA simultaneously optimizes the accuracy of rule sets and
their complexity, the latter being measured in terms of interpretability. The experimental
results demonstrate that fitness inheritance can significantly reduce computational costs
without compromising the quality of the classifier, achieving competitive results in terms
of both accuracy and interpretability.

Although our method does not use fitness inheritance, it does consider solution
similarity. As we shall see in Section 6, our method outperforms fitness inheritance in the
context of the problems that we tackle.

The surrogate-assisted evolutionary algorithm (SAEA) is the process of using ML
models to perform fitness approximation. SAEAs have been an ongoing research topic over
the past few years.

Jin [18] discussed various fitness approximation methods involving ML models with
offline and online learning, both of which are included in our approach. This compre-
hensive review served as a baseline for many research papers in the field of ML-based
fitness approximation.

Dias et al. [19] used neural networks as surrogate models to solve a beam angle
optimization problem for cancer treatments. Their results were superior to an existing
treatment type. They concluded that integrating surrogate models with genetic algorithms
is an interesting research direction.

Guo et al. [20] proposed a hybrid GA with an extreme learning machine (ELM) fit-
ness approximation to solve the two-stage capacitated facility location problem. The
ELM is a fast, non-gradient-based, feed-forward neural network that contains one hidden
layer, with random constant hidden-layer weights and analytically computed output-layer
weights. The hybrid algorithm included offline learning for the initial population and
online learning through sampling a portion of the population in each generation. Our
approach is similar to the one suggested in this paper, but it is capable of dynamically
transitioning between approximate and true fitness scores.

Yu and Kim [21] examined the use of support vector regression, deep neural networks,
and linear regression models trained offline on sampled individuals to approximate fitness
scores in GAs. Specifically, the use of linear regression achieved adequate results for
one-max and deceptive problems.

Livne et al. [22] compared two heuristic methods for fitness approximation in context-
aware recommender systems to avoid the computational burden of 50,000 deep contextual
model training processes, each requiring about one minute. The first approach involved
training a multi-layer perceptron (MLP) sub-network, taking about five seconds per individ-
ual. The second, more efficient method involved a pre-processing step where a robust single

Information 2024, 15, 744 5 of 22

model was trained and individuals were evaluated in just 60 milliseconds by predicting
the output of this pre-trained model.

Zhang et al. [23] used a deep surrogate neural network with online training to reduce
the computational cost of the MAP-Elites (Multi-dimensional Archive of Phenotypic Elites)
algorithm for constructing a diverse set of high-quality card decks in Hearthstone. Their
work achieved state-of-the-art results.

Li et al. [24] addressed agent simulations using evolutionary reinforcement learning
(ERL), employing policy-extended value function approximation (PeVFA) as a surrogate
for the fitness function. Similarly to our method, their study focused on the domain of
agent simulation within the Gym(nasium) environment (see Section 3). However, PeVFA
relies on the experience of the RL agent throughout the simulations, and therefore can only
be used in the context of RL, unlike our more generic method.

Recent popular ML models were also used in the context of SAEA: Hao et al. [25,26]
used Kolmogorov–Arnold networks (KANs) and multiple large language models (LLMs)
as surrogate models. Their approach was tested on the Ellipsoid, Rosenbrock, Ackley,
and Griewank functions.

Although deep neural networks have proven to be extremely useful for many tasks
in different domains, they require GPU hardware to converge in reasonable time, and are
generally considered slower compared to other ML algorithms. Our framework focuses on
linear regression, which is commonly used in fitness approximation [27].

We chose this simple model because it is fast and—as we shall see—allows for retrain-
ing at will, with virtually zero cost.

Table 3 summarizes the previous work.

Table 3. Summary of literature review for fitness approximation in evolutionary algorithms

Reference Method of Solution Benchmark Problems

Smith et al. [13] Averaged and proportional fitness inheritance using
parent fitness to approximate offspring fitness. One-max, aircraft routing.

Liaw and Ting [14] Proportional fitness inheritance and linear regression
to improve efficiency in evolutionary multitasking. Many-tasking benchmark problems.

Le et al. [15]
Fitness inheritance and clustering to reduce

computational cost in undersampling for
classification tasks.

A set of 44 imbalanced classification datasets.

Gallotta et al. [16]
A novel fitness inheritance variation using a neural
network to predict fitness of feasible children from

infeasible parents.
Procedural content generation (Space Engineers).

Kalia et al. [17]
Fitness inheritance in conjunction with

multi-objective genetic algorithms to evaluate
classifier quality.

Multi-objective optimization in fuzzy
rule-based classifiers.

Jin [18] Review of various fitness approximation methods,
including offline and online learning.

Structural design optimization, aerodynamic design
optimization, protein structure prediction, and more.

Dias et al. [19] Used neural networks as surrogate models
integrating them with genetic algorithms. Beam angle optimization in cancer treatments.

Guo et al. [20]
A hybrid GA with an ELM network for fitness

approximation, combining offline and
online learning.

Two-stage capacitated facility location problem.

Yu and Kim [21]
Used support vector regression, deep neural

networks, and linear regression for fitness
approximation in an offline training manner.

One-max, Royal Road, deceptive, NK-landscape.

Livne et al. [22]
Improving the performance of context-aware
recommender systems with GA-based feature

selection and fitness approximation.
Context-aware recommender system datasets.

Information 2024, 15, 744 6 of 22

Table 3. Cont.

Reference Method of Solution Benchmark Problems

Zhang et al. [23] Deep surrogate neural network for fitness
approximation in the MAP-Elites algorithm. Optimization in card game design (Hearthstone).

Li et al. [24] Policy-extended value function approximation
(PeVFA) as a fitness surrogate for agent simulations.

Gym environments: Swimmer, HalfCheetah, Hopper,
Walker2d, Ant.

Hao et al. [25,26] KANs and LLMs as surrogates, demonstrating
efficiency in optimization problems.

Function optimization: Ellipsoid, Rosenbrock, Ackley,
Griewank

3. Preliminaries

Linear ML models are a class of algorithms that learn a linear relationship between the
input features and the target variable(s). We focus on two specific linear models, namely
ridge regression (also called Tikhonov) [28] and lasso regression (least absolute shrinkage
and selection operator) [29]. These two models strike a balance between complexity and
accuracy, enabling efficient estimation of fitness values for individuals in the GA population.

Ridge and lasso are linear regression algorithms with an added regularization term to
prevent overfitting. Their loss functions are given by

L1 : ||y − Xw||22 + α ∗ ||w||1 ,

L2 : ∥y − Xw∥2
2 + α ∗ ∥w∥2

2 ,

where L1 is for lasso, L2 is for ridge, X represents the feature matrix, y represents the target
variable, w represents the coefficient vector, and α represents the regularization parameter.

Regression is commonly used as a surrogate model for fitness evaluations [27]. A major
advantage of linear models with respect to our framework is that they are very fast, enabling
us to treat model-training time as virtually zero (with respect to fitness computation time
in the simulator). Thus, we could retrain a model as often as we choose. As recently noted
by James et al. [30], “Historically, most methods for estimating f have taken a linear form.
In some situations, such an assumption is reasonable or even desirable.”

It is worth mentioning that our generic method can easily be integrated with other
types of ML models.

Gymnasium (formerly OpenAI Gym) [31] is a framework designed for the devel-
opment and comparison of reinforcement learning (RL) algorithms. It offers a variety of
simulated environments that can be utilized to evaluate the performance of AI agents.
Gymnasium offers a plethora of simulators, called environments (https://gymnasium.fara
ma.org/api/env/, (accessed on 10 November 2024)), from different domains, including
robotics, games, cars, and more. Each environment defines state representations, available
actions, observations, and how to obtain rewards during gameplay.

A Gymnasium simulator can be used for training an RL agent or as a standalone
simulator. Herein, we take the latter approach, using these simulators to test our novel
fitness approximation method for an evolutionary agent system.

4. Problems

This section provides details on the three problems from Gymnasium that we will
tackle: Blackjack, Frozen Lake, and Monster Cliff Walking (Figure 1).

We specifically sought out simulation problems—where fitness computation is very
costly—this required some lengthy behind-the-scenes exploration, testing, and coding,
as such simulators are usually not written with GAs in mind.

Blackjack is a popular single-player card game played between a player and a dealer.
The objective is to obtain a hand value closer to 21 than the dealer’s hand value—without
exceeding 21 (going bust). We follow the game rules defined by Sutton and Barto [32]. Each
face card counts as 10, and an ace can be counted as either 1 or 11. The Blackjack environ-

https://gymnasium.farama.org/api/env/
https://gymnasium.farama.org/api/env/

Information 2024, 15, 744 7 of 22

ment (https://gymnasium.farama.org/environments/toy_text/blackjack/, (accessed on
10 November 2024)), of Gymnasium represents a state based on three factors: (1) the sum
of the player’s card values, (2) the value of the dealer’s face-up card, and (3) whether the
player holds a usable ace. An ace is usable if it can count as 11 points without going bust.
Each state allows two possible actions: stand (refrain from drawing another card) or hit
(draw a card).

(a) Blackjack (b) Frozen Lake

(c) Monster Cliff Walking

Figure 1. Gymnasium environments (or custom modifications of them) that we use for actual
fitness-score evaluation.

We represent an individual as a binary vector, where each cell corresponds to a game
state from which an action can be taken; the cell value indicates the action taken when in
that state. As explained by Sutton and Barto [32], there are 200 such states; therefore, the
size of the search space is 2200.

The actual fitness score of an individual is computed by running 100,000 games
in the simulator (the same number of games as in the Gymnasium Blackjack Tutorial
(https://gymnasium.farama.org/tutorials/training_agents/blackjack_tutorial/ (accessed
on 10 November 2024))), and then calculating the difference between the number of wins
and losses. We normalize fitness by dividing this difference by the total number of games.
The ML models and the GA receive the normalized results (i.e., scores ∈ [−1, 1]), but we
will display the non-normalized fitness scores for easier readability. Given the inherent
advantage of the dealer in the game, it is expected that the fitness scores will mostly
be negative.

Frozen Lake. In this game, a player starts at the top-left corner of a square board and
must reach the bottom-right corner. Some board tiles are holes. Falling into a hole leads to
a loss, and reaching the goal leads to a win. Each tile that is not a hole is referred to as a
frozen tile.

Due to the slippery characteristics exhibited by the frozen lake, the agent might move
in a perpendicular direction to the intended direction. For instance, suppose that the agent
attempts to move right, after which the agent has an equal probability of 1

3 to move either
right, up, or down. This adds a stochastic element to the environment and introduces a
dynamic element to the agent’s navigation.

For consistency and comparison, all simulations will run on the 8 × 8 map presented
in Figure 1. In this map, the Frozen Lake environment (https://gymnasium.farama.org/e
nvironments/toy_text/frozen_lake/, (accessed on 10 November 2024)), represents a state
as a number between 0 and 63. There are four possible actions in each state: move left,
move right, move up, or move down. Our GA thus represents a Frozen Lake agent as an
integer vector with a cell for each frozen tile on the map, except for the end-goal state (since

https://gymnasium.farama.org/environments/toy_text/blackjack/
https://gymnasium.farama.org/tutorials/training_agents/blackjack_tutorial/
https://gymnasium.farama.org/environments/toy_text/frozen_lake/
https://gymnasium.farama.org/environments/toy_text/frozen_lake/

Information 2024, 15, 744 8 of 22

no action can be taken from that state). Similarly to Blackjack, each cell dictates the action
being taken when in that state. Since there are 53 frozen tiles excluding the end goal, the size
of the search space is 453 = 2106. The fitness function is defined as the percentage of wins
out of 2000 simulated games (the same number of games as in the Gymnasium Frozen Lake
Tutorial (https://gymnasium.farama.org/tutorials/training_agents/FrozenLake_tuto/,
(accessed on 10 November 2024)). Again, we will list non-normalized fitness scores.

Monster Cliff Walking. In Cliff Walking (https://gymnasium.farama.org/environ
ments/toy_text/cliff_walking/, (accessed on 10 November 2024)). the player starts at the
bottom-left corner of a 4 × 12 board and must reach the bottom-right corner. All the tiles in
the bottom row that are not the starting position or goal are considered cliffs. The player
must reach the goal without falling into the cliff.

Since this game can be solved quickly by a GA, we tested a stochastic, more complex
version of the game, called Monster Cliff Walking https://github.com/Sebastian-Gries
bach/MonsterCliffWalking, (accessed on 10 November 2024). In this version, a monster
spawns in a random location and moves randomly among the top three rows of the board.
Encountering the monster leads to an immediate loss.

The player performs actions by moving either up, right, left, or down. A state in this
environment is composed both of the player’s location and the monster’s location.

There are 37 tiles where an action can be taken by the player (excluding the cliff and
end goal) and 36 possible locations for the monster. Therefore, there are 1332 different states
in the game. Similarly to Frozen Lake, an agent in Monster Cliff Walking is represented as
an integer vector whose size is equal to the number of the states in the game. The size of
the search space is 41332 = 22664, significantly larger than the search spaces of the previous
two problems.

Due to stochasticity, each simulation runs for 1000 episodes. An episode ends when
one of the following happens: (1) the player reaches the end-goal state; (2) the player
encounters the monster; (3) the player performs 1000 steps (we limited the number of steps
to avoid infinitely cyclic player routes). Falling into a cliff does not end the episode but
only restarts the player’s position.

The fitness function is defined as the average score of all episodes. When an episode
ends, the score for the episode is computed as the total rewards obtained during the
episode. A penalty of −1 is obtained per step, −100 is added every time the agent falls
into a cliff, and −50 is added if the player has encountered the monster (−1000 in the
original environment, but we used reward shaping to allow for easier exploration of the
search space).

Given the variety of the fitness-function values, the ML model is trained on the natural
logarithm of fitness scores, and its predictions are raised to an exponent. More formally,

ytrain = log(− ftrue),

fapprox = −eypred ,

where ytrain is the regression target-value vector in the ML model training, ftrue is the vector
of true fitness scores sent to the model, fapprox is the approximate fitness scores vector sent
to the evolutionary algorithm, and ypred is a vector of predictions returned by the model.

5. Proposed Method

This section presents our proposed method for fitness approximation in GAs using ML
models. We outline the steps involved in integrating ridge and lasso regressors into the GA
framework, and end with a discussion of advantages and limitations of the new method.

5.1. Population Dataset

Our approach combines both offline and online learning, as depicted in Figure 2.
The algorithm begins in evolution mode, functioning as a regular GA, where a popula-

tion evolves over successive generations. However, each time a fitness score is computed

https://gymnasium.farama.org/tutorials/training_agents/FrozenLake_tuto/
https://gymnasium.farama.org/environments/toy_text/cliff_walking/
https://gymnasium.farama.org/environments/toy_text/cliff_walking/
https://github.com/Sebastian-Griesbach/MonsterCliffWalking
https://github.com/Sebastian-Griesbach/MonsterCliffWalking

Information 2024, 15, 744 9 of 22

for an individual, we update a dataset whose features are the encoding vector of the indi-
vidual and whose target value is the respective fitness score. An illustration of the dataset
is presented in Table 4. The initial population will always be evaluated using the simulator
since the population dataset is empty at this stage of the run.

GA mode

get entire population

sample from population

compute actual fitness
scores via simulator

update
population
database

ML

check
switch

condition
prediction

ev
olu

tio
n

retrain model
for next generation

send approximate
fitness scoressend chosen fitness values according to mode

send actual
fitness scores

Figure 2. Flowchart of proposed method. In evolution mode, the algorithm functions as a regular GA.
When the switch condition is met, the algorithm shifts to prediction mode: actual (in-simulator) fitness
values are calculated only for a sampled subset of the population, while the rest are assigned approxi-
mate fitnesses from the ML model. This latter is retrained before moving to the next generation.

Table 4. An example of a dataset created during a GA run of the Frozen Lake environment. An
individual is a vector of 53 attributes. A total of m fitness computations have been carried out so far.

Index a1a1a1 a2a2a2 . . . a53a53a53 Fitness

1 0 3 . . . 1 0.003

2 0 1 . . . 3 0.001

.

m 3 1 . . . 1 0.545

After a predefined switch condition is met, the algorithm transitions from evolution mode
to prediction mode. In prediction mode, actual (in-simulator) fitness scores are computed
only for a sampled subset of the population. For the rest of the population, the GA assigns
approximate fitness values using a learned ML model that was trained on the existing
population dataset. In prediction mode, a sample of the population receives true fitness
scores per generation, and the rest of the generation’s individuals receive approximate
fitness scores. This method is referred to as individual-based controlled evolution [7].
The algorithm can switch back and forth between evolution mode and prediction mode,
enabling dynamic adaptation to the evolutionary state.

Witness the interplay between the dynamic switch condition and the static (pre-determined)
sample rate—a hyperparameter denoting the percentage of the population being sampled.
In cases where lower runtimes are preferred, using a relatively lenient switch condition is
better, resulting in a higher fitness approximation rate coupled with reduced runtime—at
some cost to fitness quality. On the contrary, in cases where accurate fitness scores are pre-
ferred, the use of a strict switch condition is advisable to allow for ML fitness approximation
only when model confidence is high.

Note that the number of actual, in-simulator fitness computations performed is ulti-
mately determined dynamically by the coaction of the switch condition and sample rate.

In stochastic domains such as ours, the same individual may receive different (actual)
fitness scores for every evaluation, and thus appear in the population dataset multiple

Information 2024, 15, 744 10 of 22

times—with different target values. This can be prevented by keeping a single copy of
each individual in the dataset or by computing an average fitness score of all evaluations
of the same individual (or possibly some other aggregate measure). However, since these
solutions greatly interfere with the sample weighting mechanism (described in Section 5.4),
we decided to remove identical duplicate rows only (i.e., with both equal representations
and fitness scores) while keeping individuals with equal representation and different fitness
scores in the dataset.

5.2. Switch Condition

Many surrogate-assisted methods, as discussed in Section 2, rely on retraining the
model using true fitness scores of sampled individuals to maintain an up-to-date represen-
tation of the evolving population [8]. However, we claim that sampling a fixed number of
individuals at each generation fails to account for the dynamic nature of the evolutionary
process. Evolutionary changes caused by genetic operators can produce entirely distinct
populations across generations. In such cases, the surrogate model may struggle to adapt to
these abrupt shifts. To address this limitation, we introduce a fallback mechanism, reverting
to the use of exact fitness evaluations to recalibrate the search when necessary.

As discussed in Section 5.1, the entire population receives true fitness evaluation
during evolution mode. This strategy allows the model to train on a relatively large amount
of data at each generation. However, maintaining the evolution mode for the remainder of
the process is undesirable due to the substantial computational cost associated with full
fitness evaluations. Consequently, once the model shows high confidence in its predictions
for the population, the algorithm transitions back to prediction mode, where only a subset
of the population is sampled for true fitness evaluations at each generation. This balance
optimizes computational efficiency while retaining model accuracy.

The switch condition plays a crucial role in determining when the algorithm transitions
from evolution mode to prediction mode (and vice-versa). Our approach defines the switch
condition based on a predefined criterion. The switch condition can be defined in various
ways depending on the specific problem and requirements. It may involve measuring the
accuracy of the model’s predictions, considering a predefined threshold, or other criteria
related to the state of the population and the model. In situations where the model’s
accuracy falls below the desired threshold, the algorithm can revert back to evolution mode
until the condition for switching to prediction mode is met once again.

Determining an appropriate switch condition is crucial for balancing the trade-off be-
tween the accuracy of fitness approximation and the computational efficiency of the algorithm.
It requires tuning to find the optimal configuration for a given problem domain. Overall,
the switch condition serves as a pivotal component in our approach, enabling a smooth
transition between evolution mode and prediction mode based on a predefined criterion.

We defined and tested several different switch conditions, each having a hyperparam-
eter called switch_threshold:

1. Dataset size. The simplest solution entailed performing regular evolution until the
dataset reaches a certain size threshold, and then transitioning to prediction mode
indefinitely. Although simple, this switch condition is less likely to adapt to the
evolutionary state due to its inability to switch back to evolution mode.

2. Plateau. Wait for the best fitness score to stabilize before transitioning to prediction
mode. We consider the best fitness score as stable if it has not changed much (below
a given threshold) over the last P generations, for a given P. This method posed a
problem, as the model tended to maintain the evolutionary state without significant
improvement throughout the run.

3. CV error. Evaluate the model’s error using cross-validation on the dataset. We switch
to predict mode when the error falls below a predetermined threshold, and vice versa.
We will demonstrate the use of this switch condition in the Frozen Lake scenario.

4. Cosine similarity. Cosine similarity is a metric commonly used in natural language
processing to compare different vectors representing distinct words [33]. We use this

Information 2024, 15, 744 11 of 22

metric to compare the vectors in the GA population with those in the ML dataset.
The underlying idea is that the model will yield accurate predictions if the current pop-
ulation closely resembles the previous populations encountered by the model, up to a
predefined threshold. Our method utilizes this switch condition in the Blackjack and
Monster Cliff Walking scenarios.

Note that there are also two trivial cases of switch conditions (i.e., with no thresh-
old): (1) Permanent Evolution Mode: with this switch condition, the algorithm acts as
a traditional GA, ignoring the ML model. (2) Permanent Prediction Mode: in this case,
the algorithm uses the ML model to approximate fitness scores, similarly to papers covered
in Section 2.

The switch condition is a key component of our method. This section presented the
switch conditions tested during our research, yet our method can easily be enhanced with
other domain-specific switch conditions.

5.3. Sampling Strategy

Training the ML model on the initial population only is insufficient for performing
high-quality approximations: the model needs to be updated throughout the evolutionary
process. This can be performed by selecting sample individuals and computing their true
fitness score during different stages of the evolutionary run [7,8].

As mentioned in Section 5.1, during prediction mode, a subset of the population is
sampled in each generation. The proportion of sampled individuals is defined by the
sample_rate hyperparameter. There are several sampling strategies, and choosing the right
strategy can greatly impact the quality of the population dataset. We focus on three
strategies that we tested within our method:

1. Random sampling. Randomly pick a subset of the population and compute their
actual fitness scores while approximating the fitness scores for the rest of the popula-
tion. Despite its simplicity, this strategy does not leverage any information about the
dataset, the population, or the domain.

2. Best strategy. Sample the individuals with the best approximated fitness score [7,20].
3. Similarity sampling. Choose the individuals least similar to the population dataset.

We assume that this method will improve the diversity of the dataset and hence
improve the ability of the model to generalize better to a wider volume of the search
space. This strategy is useful for domains where individuals with similar representa-
tions receive similar fitness scores, such as our domain. The similarity metric that we
chose is the cosine similarity, discussed above.

Our genetic method allows for the seamless integration of additional strategies, such
as Latin hypercube sampling [8], clustering-based sampling [34], and others [35].

5.4. Sample Weights

In this section, ‘sample’ refers to a row in the dataset (as is customary in ML)—not to
be confused with ‘sampling’ in ‘sampling strategy’, introduced in the previous section.

During the training of the ML model on the dataset, each individual typically con-
tributes equally. However, we preferred the model to pay more attention to recent gen-
erations, since recently added individuals are more relevant to the current state of the
evolutionary process compared to the individuals at the beginning. To account for this,
we tracked the generation in which each individual is added to the dataset and assign
weights accordingly.

A similar route was taken by Jin et al. [36], except that their approach preferred
individuals in the direction of evolution rather than the whole generation. Note that
individuals from earlier generations are not ignored by the model and are not removed
from the dataset—they only have a smaller impact on the learning process of the model.

In order to pick the most suitable weight function, we performed k-fold cross-validation
on the ML models, with different weight functions. The models were trained on datasets

Information 2024, 15, 744 12 of 22

of true fitness scores extracted from evolutionary runs. Table 5 compares several weight
functions in a dataset of over 16,000 rows, extracted from a Blackjack experiment. We estab-
lished a square-root relationship between the generation number and its corresponding
weight: fweight =

√
gen. We note that the algorithms that we used do not require the weights

to sum to one.

Table 5. Example of sample weight function comparison for Blackjack.

Function Name Function Expression Mean Squared Error

Linear fweight = gen 2.04 × 10−5

Square root fweight =
√gen 1.64 × 10−5

Square fweight = gen2 2.74 × 10−5

Cube fweight = gen3 2.84 × 10−5

Exponent fweight = egen 0.0013

We conclude that the weighting function should avoid excessive steepness (e.g., an ex-
ponential function) to ensure that earlier individuals remain relevant. This allows the algo-
rithm to prioritize innovation without greatly discarding insights from prior generations.

5.5. Advantages and Limitations

Our proposed method offers several advantages. It can potentially reduce the com-
putational cost associated with evaluating fitness scores in a significant manner. Rather
than computing each individual’s fitness every generation, the population receives an
approximation from the ML model at a negligible cost.

The use of models like ridge and lasso helps to avoid overfitting by incorporating regu-
larization. This improves the generalization capability of the fitness approximation model.

Additionally, our approach allows for continuous learning by updating the dataset
and retraining the model during prediction mode. The continual retraining is possible
because the ML algorithms are extremely rapid and the dataset is fairly small.

There are some limitations to consider. Linear models assume a linear relationship
between the input features and the target variable. Therefore, if the fitness landscape
exhibits non-linear behavior, the model may not capture it accurately. In such cases,
alternative models capable of capturing non-linear relationships may be more appropriate;
we plan to consider such models in the future.

Our approach assumes that the individuals are represented by vectors, which are
later batched into matrices for training of the machine learning algorithms. Although we
employed genetic algorithms (GAs) in our test case, this framework is adaptable to other
population-based metaheuristics as long as individuals are represented as vectors. Notable
alternatives include differential evolution [37], evolutionary strategies [38], and particle
swarm optimization [39].

Beginning generally, our method does not rely on domain-specific knowledge, such
as in [24]. However, it can be adapted to incorporate such knowledge through a domain-
specific switch condition, sampling strategy, etc.

Further, the performance of the fitness approximation model heavily relies on the
quality and representativeness of the training dataset. If the dataset does not cover the
entire search space adequately, the model’s predictions may be less accurate. Careful
consideration should be given to dataset construction and sampling strategies to mitigate
this limitation. We took this into account when choosing the appropriate switch conditions
and sampling strategy, discussed above.

An additional limitation is the choice of the best individual to be returned at the
end of the run. Since a portion of the fitness values is approximate, the algorithm might
return an individual with a good predicted fitness score, but with a bad actual fitness score.

Information 2024, 15, 744 13 of 22

To address this issue, we return the individual with the best fitness from the population
dataset (which always holds actual fitness values).

6. Experiments and Results
6.1. Experimental Setup

To assess the efficacy of the proposed approach, we carried out a comprehensive set of
experiments aimed at solving the three problems outlined in Section 4. Our objective was
to compare the performance of our method against a “full” GA (computing all fitnesses),
considering solution quality and computational efficiency as evaluation criteria.

Experiments were conducted using the EC-KitY software [40] on a cluster of 96 nodes
and 5408 CPUs (the most powerful processors are AMD EPYC 7702P 64-core, although most
have lesser specs). A total of 10 CPUs and 3 GB RAM were allocated for each run. Since
the nodes in the cluster vary in their computational power, we measured computational
cost as the number of actual (in-simulator) fitness computations performed. We excluded
the initial-population fitness computation for cleaner percentages (there were 200 initial
computations in HEA/FA and 100 computations in the rest of the methods). The average
duration of a single fitness computation was 21 s for Blackjack, 6 s for Frozen Lake, and 9 s
for Monster Cliff Walking. The source code for our method and experiments can be found
at https://github.com/itaitzruia4/ApproxML, (accessed on 10 November 2024).

Both fitness approximation runs and full GA runs included the same genetic oper-
ators with the same probabilities: tournament selection [41], two-point crossover [42],
bit-flip mutation for Blackjack, and uniform mutation for Frozen Lake and Monster Cliff
Walking [43].

6.2. Hyperparameter Setting

The specific linear models utilized in the experiments and their hyperparameters are
detailed in Table 6. The values of the approximation-related hyperparameters (switch_condition,
switch_threshold, and sample_strategy) were obtained by running full experiments with our
approach and comparing them to the traditional GA. As mentioned in Section 5.2, careful
consideration and tuning were carried out for the switch threshold in order to find a desired
balance between computational cost and solution quality.

The values of the ML hyperparameters (model, alpha, max_iter, and f_weight) were
obtained by extracting datasets from traditional GA runs (such as the one described in
Table 4) and using k-fold cross-validation in an offline manner, similarly to what was
carried out by Yu and Kim [21]. Since the fitness computations were performed beforehand,
and due to the chosen ML models having a fast train and inference time, this approach
enables extensive exploration of the ML hyperparameters. We used the linear models
provided by scikit-learn [44]. Hyperparameter tuning was performed using Optuna [45].

The values of the GA hyperparameters (population_size, p_crossover, p_mutation, gen-
erations, tournament_size, crossover_points, and p_mutation_cell) were taken from EC-KitY
tutorials (https://eckity.org, (accessed on 10 November 2024)).

We find that the approximation hyperparameters have a notable impact on the experi-
mental outcomes. This is expected, given that the switch condition and sampling strategy
are central elements of our approach, shaping its overall effectiveness and adaptability.

Note the difference between the hyperparameter generations, which designates the
number of GA generations, and max_iter, which designates the number of iterations in the
ML model training. The latter is relatively negligible in terms of runtime differences due to
the short training time of the linear ML models.

Table 6. Hyperparameters.

Hyperparameter Explanation Blackjack Frozen Lake Monster Cliff Walking

switch_condition see Section 5.2 Cosine CV Error Cosine

switch_threshold see Section 5.2 0.9 0.02 0.96

https://github.com/itaitzruia4/ApproxML
https://eckity.org

Information 2024, 15, 744 14 of 22

Table 6. Cont.

Hyperparameter Explanation Blackjack Frozen Lake Monster Cliff Walking

sample_strategy see Section 5.3 Similarity Similarity Similarity

population_size
number of
individuals

in population
100 100 100

p_crossover
crossover rate

between
two individuals

0.7 0.7 0.7

p_mutation
mutation

probability per
individual

0.3 0.3 0.3

generations number of
generations 200 50 100

tournament_size for tournament
selection 4 4 4

crossover_points
number of

crossover points for
K-point crossover

2 2 2

p_mutation_cell

probability of
mutating each cell
in the individual

vector

0.1 0.1 0.1

model
type of model that

predicts fitness
scores

ridge lasso ridge

alpha
model

regularization
parameter

0.3 0.65 0.6

max_iter
maximum

iterations for ML
training algorithm

3000 1000 2000

f_weight
weighting function,

discussed in
Section 5.4

Square root Square root Square root

6.3. Results

We performed 20 replicates per sample rate, and assessed statistical significance by
running a 10,000-round permutation test, comparing the mean scores between our proposed
method and the full GA (with full fitness computation). The results are shown in Table 7.

Examining the results reveals an observable rise in fitness scores, along with an
increase in the number of fitness computations as the sample rate increases. This is in line
with the inherent trade-off within our method, wherein the quality of the results and the
runtime of the algorithm are interconnected. Further, there is a strong correlation between
the sample rate and the relative number of fitness computations. Notably, as the relative
fitness score computation approaches the sample rate, the frequency of individuals with
approximate fitness scores increases.

In the Blackjack scenario, fitness–computation ratios closely approximate the sample
rates, indicating a strong dominance of the prediction mode. In contrast, computation
ratios for Frozen Lake are relatively close to 100%, with the exception of the 20% sample
rate, signifying a prevalence of evolution mode in the majority of generations. In Monster
Cliff Walking, there is a strong dominance of the prediction mode, except for the 20%
sample rate.

Information 2024, 15, 744 15 of 22

Table 7. Results. Each row summarizes 20 replicate runs. The last row represents the full GA.
Sample rate is the proportion of fitness values computed in prediction mode (Section 5.3). Absolute
fitness represents the mean best-of-run fitness values of all replicates. Relative fitness represents the
percentage of absolute fitness compared to GA. Absolute computations represents mean number
of actual fitness computations performed in simulator across all replicates. Relative computations
represents the percentage of absolute computations compared to GA. p-value: result of permutation
test. Boldfaced results are those that are statistically identical (meaning statistical insignificance) in
performance to full GA, i.e., p-value > 0.05.

(a) Blackjack

Sample Rate Absolute
Fitness

Relative
Fitness

Absolute
Computa-

tions

Relative
Computa-

tions
p-value

20% −4517.45 84.92% 4196 20.98% 1 × 10−4

40% −4018.9 95.46% 8075 40.38% 4.5 × 10−3

60% −3904.65 98.25% 12,022 60.11% 0.13

80% −3803.55 100.86% 16,006 80.03% 0.46

GA −3836.4 100% 20,000 100%

(b) Frozen Lake

Sample Rate Absolute
Fitness

Relative
Fitness

Absolute
Computa-

tions

Relative
Computa-

tions
p-value

20% 1064.6 84.91% 2512 50.24% 1 × 10−4

40% 1223.2 97.56% 4325 86.5% 0.11

60% 1248.9 99.61% 4730 94.6% 0.8

80% 1262.95 100.73% 4892 97.84% 0.58

GA 1253.75 100% 5000 100%

(c) Monster Cliff Walking

Sample Rate Absolute
Fitness

Relative
Fitness

Absolute
Computa-

tions

Relative
Computa-

tions
p-value

20% −130.51 82.39% 4228 42.28% 1 × 10−4

40% −127.61 84.26% 4735 47.35% 1 × 10−4

60% −115.55 93.06% 6336 63.36% 0.02

80% −110.41 97.39% 8170 81.7% 0.24

GA −107.53 100% 10,000 100%

These observations shed light on the impact of the switch condition and its predefined
threshold hyperparameters on the behavior of the algorithm in approximating fitness scores.

Boldfaced results in Table 7 are those that are statistically identical (meaning statistical
insignificance) in performance to the full GA, i.e., p-value > 0.05.

We observe that results indistinguishable from the full GA can be obtained with a significant
reduction in fitness computation.

6.4. Comparison with Previous Work

Tables 8–10 show the performance on our three benchmark problems of the four
methods discussed in Section 2: KANs pre-selection algorithm (KAN-SPS) [25], hybrid
evolutionary algorithm with fitness approximation (HEA/FA) [20], averaged fitness in-
heritance (Avg-FI) [13], and proportional fitness inheritance (Prop-FI) [13]. The first two

Information 2024, 15, 744 16 of 22

methods perform model-based fitness approximation with a KAN and ELM as a surro-
gate model and the other two perform similarity-based fitness approximation. We also
tested the performance of an ELM as the ML model using our genetic operators, random
sampling, and no sample weights, referred to as ELM. Note that these four methods do
not use a dynamic switch condition, instead utilizing fitness approximation for the entire
GA run. Our method is denoted as ApproxML. Again, boldfaced results are those that are
statistically identical (meaning statistical insignificance) in performance to the full GA (last
row), i.e., p-value > 0.05.

Table 8. Comparison with previous work: Blackjack.

Method Sample
Rate

Absolute
Fitness

Relative
Fitness

Absolute
Computa-

tions

Relative
Computa-

tions
p-Value

KAN-SPS - −15,617.75 24.56% 4000 20% 1 × 10−4

KAN-SPS - −12,571.9 30.52% 8000 40% 1 × 10−4

KAN-SPS - −11,111.2 34.53% 12,000 60% 1 × 10−4

KAN-SPS - −10,626.85 36.1% 16,000 80% 1 × 10−4

HEA/FA 20% −11,330.8 33.86% 6111.05 30.56% 1 × 10−4

HEA/FA 40% −10,423.58 36.81% 10,203.26 51.02% 1 × 10−4

HEA/FA 60% −9409.45 40.77% 14,277.65 71.39% 1 × 10−4

HEA/FA 80% −9250.42 41.47% 18,364.11 91.82% 1 × 10−4

Avg-FI 20% −8523.8 45.01% 4000 20% 1 × 10−4

Avg-FI 40% −7508.95 51.09% 8000 40% 1 × 10−4

Avg-FI 60% −5601.5 68.49% 12,000 60% 1 × 10−4

Avg-FI 80% −4031.05 95.17% 16,000 80% 2 × 10−4

Prop-FI 20% −9093.45 42.19% 4000 20% 1 × 10−4

Prop-FI 40% −7206.45 53.24% 8000 40% 1 × 10−4

Prop-FI 60% −5738.75 66.85% 12,000 60% 1 × 10−4

Prop-FI 80% −4023.7 95.35% 16,000 80% 9 × 10−4

ELM 20% −8111.4 47.3% 4000 20% 1 × 10−4

ELM 40% −6795.55 56.45% 8000 40% 1 × 10−4

ELM 60% −5601.55 68.49% 12,000 60% 1 × 10−4

ELM 80% −4431.65 86.57% 16,000 80% 1 × 10−4

ApproxML 60% −3904.65 98.25% 12,022 60.11% 0.13
ApproxML 80% −3803.55 100.86% 16,006 80.03% 0.46

GA −3836.4 100% 20,000 100%

Of the model-based approximation methods presented in Section 2, HEA/FA was the
most-similar method to ours. The fitness inheritance methods use our genetic operators
(discussed above), while KAN-SPS and HEA/FA use different genetic operators, delineated
by Hao et al. [25] and Guo et al. [20], respectively. For faster training, the KAN was trained
on 5 steps in each iteration, as opposed to 50 steps in the original paper. Due to memory
issues encountered while running KAN-SPS with Monster Cliff Walking, it was tested only
on Blackjack and Frozen Lake.

A key distinction of KAN-SPS is its termination criterion, which is defined by a
fixed number of fitness evaluations rather than a fixed number of generations, as seen in
other methods. Additionally, unlike other approaches, KAN-SPS does not incorporate a
sampling mechanism. To afford fair comparisons, we simulated a sampling rate by setting
the termination criterion as the product of the sampling rate and the number of evaluations
typically used in the full GA.

KAN-SPS was executed using the pymoo library [46], as per the original implementa-
tion, whereas all other methods were implemented using EC-KitY [40].

Information 2024, 15, 744 17 of 22

Choosing the appropriate competitors for evaluation proved difficult: some papers
included only a pseudocode that is complicated to implement (e.g., [19]), and some papers
contained code examples that included major differences in runtime environments—such
as GPU usage, different programming languages, and complex simulator integrations
(e.g., [22,23,47]). In papers that did not include code implementation, we contacted the
authors for the implementation of the papers (unfortunately, they are not available on
GitHub) but received no reply, so we implemented the methods ourselves.

KAN-SPS provided poor results. The performance can be improved by altering
the genetic operators used or by tuning the model (we used the same operators and
hyperparameters as in the original paper).

The HEA/FA algorithm produced unsatisfactory results. We assume that this is due
to possible differences between our implementation and the original one, such as the
algorithm implementation, the genetic operators, or the hidden-layer size and activation
function (these were not given in the paper, and we set them to 100 and ReLU, respectively).

The ELM produced better results, particularly in Frozen Lake, but it did not achieve
statistical insignificance for any problem. Although our approach uses a different ML
model, this emphasizes the importance of dynamic fitness approximation, as implemented
in our architecture.

Prop-FI and Avg-FI performed relatively well, especially in Frozen Lake and Monster
Cliff Walking. They achieved statistical insignificance at an 80% sample rate, with a lower
computational cost compared to our approach. However, statistical insignificance (i.e., same
as the full GA) was only attained at an 80% sample rate in Frozen Lake and Monster Cliff
Walking (and not at all in Blackjack), whereas our method achieved statistical insignificance
for all problems, and partially for lower sample rates as well, as seen in Table 7.

In summary, compare the boldfaced lines (or lack thereof) of Table 7 with Table 8/
Table 9/Table 10.

Table 9. Comparison with previous work: Frozen Lake.

Method Sample
Rate

Absolute
Fitness

Relative
Fitness

Absolute
Computa-

tions

Relative
Computa-

tions
p-Value

KAN-SPS - 312.3 24.91% 1000 20% 1 × 10−4

KAN-SPS - 498.05 39.72% 2000 40% 1 × 10−4

KAN-SPS - 611.15 48.75% 3000 60% 1 × 10−4

KAN-SPS - 784.5 62.57% 4000 80% 1 × 10−4

HEA/FA 20% 458.9 36.6% 1456.95 29.14% 1 × 10−4

HEA/FA 40% 600.35 47.88% 2432.6 48.65% 1 × 10−4

HEA/FA 60% 680.4 54.27% 3445.35 68.91% 1 × 10−4

HEA/FA 80% 813 64.85% 4404.9 88.1% 1 × 10−4

Avg-FI 20% 1005.35 80.19% 1000 20% 1 × 10−4

Avg-FI 40% 1103.8 88.04% 2000 40% 1 × 10−4

Avg-FI 60% 1187.65 94.73% 3000 60% 4.7 × 10−3

Avg-FI 80% 1238.55 98.79% 4000 80% 0.39

Prop-FI 20% 938.3 74.84% 1000 20% 1 × 10−4

Prop-FI 40% 1077.2 85.92% 2000 40% 1 × 10−4

Prop-FI 60% 1171.7 93.46% 3000 60% 1 × 10−3

Prop-FI 80% 1218.4 97.18% 4000 80% 0.07

ELM 20% 856.8 68.34% 1000 20% 1 × 10−4

ELM 40% 1052.5 83.95% 2000 40% 1 × 10−4

ELM 60% 1174.4 93.67% 3000 60% 1 × 10−4

ELM 80% 1191.9 95.07% 4000 80% 0.007

Information 2024, 15, 744 18 of 22

Table 9. Cont.

Method Sample
Rate

Absolute
Fitness

Relative
Fitness

Absolute
Computa-

tions

Relative
Computa-

tions
p-Value

ApproxML 60% 1248.9 99.61% 4730 94.6% 0.8
ApproxML 80% 1262.95 100.73% 4892 97.84% 0.58

GA 1253.75 100% 5000 100%

Table 10. Comparison with previous work: Monster Cliff Walking.

Method Sample
Rate

Absolute
Fitness

Relative
Fitness

Absolute
Computa-

tions

Relative
Computa-

tions
p-Value

HEA/FA 20% −283.43 37.94% 2523.6 25.24% 1 × 10−4

HEA/FA 40% −258.61 41.58% 4872.8 48.73% 1 × 10−4

HEA/FA 60% −223.3 48.15% 6977.15 69.77% 1 × 10−4

HEA/FA 80% −219.47 48.99% 9097.85 90.98% 1 × 10−4

Avg-FI 20% −217.27 49.49% 2000 20% 1 × 10−4

Avg-FI 40% −163.40 65.81% 4000 40% 1 × 10−4

Avg-FI 60% −131.62 81.69% 6000 60% 1 × 10−4

Avg-FI 80% −107.34 100.17% 8000 80% 0.94

Prop-FI 20% −210.50 51.08% 2000 20% 1 × 10−4

Prop-FI 40% −163.79 65.65% 4000 40% 1 × 10−4

Prop-FI 60% −129.08 83.3% 6000 60% 1 × 10−4

Prop-FI 80% −105.01 102.4% 8000 80% 0.33

ELM 20% −329.23 32.66% 2000 20% 1 × 10−4

ELM 40% −243.25 44.20% 4000 40% 1 × 10−4

ELM 60% −166.76 64.48% 6000 60% 1 × 10−4

ELM 80% −116.43 92.36% 8000 80% 0.005

ApproxML 60% −115.55 93.06% 6336 63.36% 0.02
ApproxML 80% −110.41 97.39% 8170 81.7% 0.24

GA −107.53 100% 10,000 100%

7. Extensions
7.1. Novelty Search

As mentioned in Section 5.5, the model should cover a large volume of the search
space to generalize well to new individuals created by the genetic operators throughout
the evolutionary run. We tested an alternative method to initialize the initial population.
Instead of randomly generating the initial population, we performed novelty search [48].

In novelty search, fitness is abandoned in favor of finding distinct genomes, the idea
being to keep vectors that are most distant from their n nearest neighbors in the population
(we used n = 20). This causes the individuals to be relatively far from each other at the end
of novelty search, and thus cover a larger volume of the search space.

After this new initialization procedure, the algorithm behaves exactly as in Section 5.
The results, shown in Table 11, indicate a minimal difference in fitness scores (cf.

Table 7) when using this approach, except for statistical insignificance at the 60% sample
rate for Monster Cliff Walking, unlike with random initialization (Table 7). However,
this initialization may be useful in other domains, possibly with larger search spaces.
Alternatively, other exploration methods can be attempted within this context, e.g., quality
diversity [49].

Information 2024, 15, 744 19 of 22

Table 11. Initialization through novelty search: results.

(a) Blackjack

Sample Rate Absolute
Fitness

Relative
Fitness

Absolute
Computa-

tions

Relative
Computa-

tions
p-value

20% −4495.55 85.38% 4192 20.96% 1 × 10−4

40% −4009.95 95.68% 8066 40.33% 9e-4

60% −3877.7 98.93% 12,026 60.13% 0.35

80% −3848.75 99.67% 16,013 80.07% 0.81

GA −3836.4 100% 20,000 100%

(b) Frozen Lake

Sample Rate Absolute
Fitness

Relative
Fitness

Absolute
Computa-

tions

Relative
Computa-

tions
p-value

20% 1159 92.44% 2836 56.72% 3 × 10−4

40% 1254.65 100% 4295 85.9% 0.97

60% 1241.95 99.06% 4700 94% 0.6

80% 1231.4 98.22% 4882 97.64% 0.26

GA 1253.75 100% 5000 100%

(c) Monster Cliff Walking

Sample Rate Absolute
Fitness

Relative
Fitness

Absolute
Computa-

tions

Relative
Computa-

tions
p-value

20% −129.04 83.33% 4180 41.8% 1 × 10−4

40% −130.31 82.52% 4738 47.38% 1 × 10−4

60% −112.67 95.43% 6340 63.4% 0.12

80% −109.59 98.12% 8165 81.65% 0.47

GA −107.53 100% 10,000 100%

7.2. Hidden Actual Fitness Scores in Prediction Mode

In existing fitness approximation methods, as discussed in Section 2, some individuals
in the population have their fitness values approximated, while the rest receive actual
fitness scores. Our preliminary investigation, which employed this scheme, suggested that
individuals with actual fitness scores might “hijack” the evolutionary process. In cases
of pessimistic approximations, the individuals with actual fitness scores are likely to
be selected, to then repeatedly reproduce, thus restricting the exploration of the search
space [18].

In the evolution mode of our baseline method, the actual fitness scores are both given
to the GA and added to the ML dataset. Another approach is to hide actual fitness scores
from the GA in prediction mode, only adding them to the ML dataset. The sampled
individuals still receive approximate fitness scores, even though their actual fitness scores
are computed.

This latter approach harms the accuracy of the fitness scores since the approximate
fitness scores are usually less accurate than the actual fitness scores. On the other hand,
this approach prevents the potential problem described above. In contrast to the baseline
method, the calculation of the actual fitness scores and model training in prediction mode is
independent of the evolutionary process when true fitness scores are hidden from the GA.
As a result, fitness computation and model training can be executed in a separate process

Information 2024, 15, 744 20 of 22

in parallel to the evolution, significantly reducing runtime. We plan to perform concrete
experiments on this approach in the future.

8. Concluding Remarks and Future Work

This paper presented a generic method for integrating machine learning models
in fitness approximation. Our approach is useful for domains wherein the fitness score
calculation is computationally expensive, such as running a simulator. We used Gymnasium
simulators for evaluating actual fitness scores, and ridge and lasso models for learning the
fitness approximation models.

Our analysis includes a rigorous comparison between different methods for (1) switch-
ing between actual and approximate fitness, (2) sampling the population, and (3) weighting
the samples.

Our results show a significant reduction in GA runtime, with a small price in fitness for low
sample rates, and no price for high sample rates.

Further enhancements can be incorporated into our method by employing more
complex ML models, such as random forest, XGBoost, or deep networks. While these
models have the potential to improve fitness approximation, it is worth noting that they
are typically computationally intensive and may not be suitable for domains with limited
fitness computation time.

Additionally, our method can be refined by leveraging domain-specific knowledge
or additional data science concepts (under-sampling, over-sampling, feature engineering,
etc.) to improve the generality of the population dataset and, consequently, the accuracy
of the model. These approaches have the potential to enhance the overall performance of
our solution.

Author Contributions: Conceptualization, I.T., T.H., M.S. and A.E.; methodology, I.T., T.H., M.S.
and A.E.; software, I.T. and T.H.; validation, I.T.; formal analysis, I.T., T.H. and A.E.; investigation,
I.T., T.H., M.S. and A.E.; resources, I.T. and T.H.; data curation, I.T. and T.H.; writing—original draft
preparation, I.T., M.S. and A.E.; writing—review and editing, I.T., M.S. and A.E.; visualization, I.T.;
supervision, M.S. and A.E.; project administration, A.E.; funding acquisition, A.E. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was partially supported by the following grants: grant #2714/19 from the
Israeli Science Foundation; Israeli Smart Transportation Research Center (ISTRC); Israeli Council
for Higher Education (CHE) via the Data Science Research Center, Ben-Gurion University of the
Negev, Israel.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data was obtained through the public sources whose URLs are given
in the text.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Holland, J.H. Genetic Algorithms. Sci. Am. 1992, 267, 66–73. [CrossRef]
2. Jha, S.K.; Eyong, E.M. An energy optimization in wireless sensor networks by using genetic algorithm. Telecommun. Syst. 2018,

67, 113–121. [CrossRef]
3. Mayer, M.J.; Szilágyi, A.; Gróf, G. Environmental and economic multi-objective optimization of a household level hybrid

renewable energy system by genetic algorithm. Appl. Energy 2020, 269, 115058. [CrossRef]
4. Hemanth, D.J.; Anitha, J. Modified genetic algorithm approaches for classification of abnormal magnetic resonance brain tumour

images. Appl. Soft Comput. 2019, 75, 21–28. [CrossRef]
5. García-Sánchez, P.; Tonda, A.; Fernández-Leiva, A.J.; Cotta, C. Optimizing Hearthstone agents using an evolutionary algorithm.

Knowl.-Based Syst. 2020, 188, 105032. [CrossRef]
6. Elyasaf, A.; Hauptman, A.; Sipper, M. Evolutionary Design of Freecell Solvers. IEEE Trans. Comput. Intell. AI Games 2012,

4, 270–281. [CrossRef]

http://doi.org/10.1038/scientificamerican0792-66
http://dx.doi.org/10.1007/s11235-017-0324-1
http://dx.doi.org/10.1016/j.apenergy.2020.115058
http://dx.doi.org/10.1016/j.asoc.2018.10.054
http://dx.doi.org/10.1016/j.knosys.2019.105032
http://dx.doi.org/10.1109/TCIAIG.2012.2210423

Information 2024, 15, 744 21 of 22

7. Jin, Y.; Olhofer, M.; Sendhoff, B. On Evolutionary Optimization with Approximate Fitness Functions. In Proceedings of the Gecco,
Las Vegas, NV, USA, 8–12 July 2000; pp. 786–793.

8. He, C.; Zhang, Y.; Gong, D.; Ji, X. A review of surrogate-assisted evolutionary algorithms for expensive optimization problems.
Expert Syst. Appl. 2023, 217, 119495. [CrossRef]

9. Hsiao, J.; Shivam, K.; Chou, C.; Kam, T. Shape design optimization of a robot arm using a surrogate-based evolutionary approach.
Appl. Sci. 2020, 10, 2223. [CrossRef]

10. Zhang, M.; Li, H.; Pan, S.; Lyu, J.; Ling, S.; Su, S. Convolutional neural networks-based lung nodule classification: A surrogate-
assisted evolutionary algorithm for hyperparameter optimization. IEEE Trans. Evol. Comput. 2021, 25, 869–882. [CrossRef]

11. Calisto, M.B.; Lai-Yuen, S.K. EMONAS-Net: Efficient multiobjective neural architecture search using surrogate-assisted evolu-
tionary algorithm for 3D medical image segmentation. Artif. Intell. Med. 2021, 119, 102154. [CrossRef]

12. Fan, L.; Wang, H. Surrogate-assisted evolutionary neural architecture search with network embedding. Complex Intell. Syst. 2023,
9, 3313–3331. [CrossRef]

13. Smith, R.E.; Dike, B.A.; Stegmann, S. Fitness inheritance in genetic algorithms. In Proceedings of the 1995 ACM Symposium on
Applied Computing, Nashville, TN, USA, 26–28 February 1995; pp. 345–350.

14. Liaw, R.T.; Ting, C.K. Evolution of biocoenosis through symbiosis with fitness approximation for many-tasking optimization.
Memetic Comput. 2020, 12, 399–417. [CrossRef]

15. Le, H.L.; Landa-Silva, D.; Galar, M.; Garcia, S.; Triguero, I. EUSC: A clustering-based surrogate model to accelerate evolutionary
undersampling in imbalanced classification. Appl. Soft Comput. 2021, 101, 107033. [CrossRef]

16. Gallotta, R.; Arulkumaran, K.; Soros, L.B. Surrogate Infeasible Fitness Acquirement FI-2Pop for Procedural Content Generation.
In Proceedings of the 2022 IEEE Conference on Games (CoG), Beijing, China, 21–24 August 2022; pp. 500–503.

17. Kalia, H.; Dehuri, S.; Ghosh, A. Fitness inheritance in multi-objective genetic algorithms: A case study on fuzzy classification rule
mining. Int. J. Adv. Intell. Paradig. 2022, 23, 89–112. [CrossRef]

18. Jin, Y. A comprehensive survey of fitness approximation in evolutionary computation. Soft Comput. 2005, 9, 3–12. [CrossRef]
19. Dias, J.; Rocha, H.; Ferreira, B.; Lopes, M.d.C. A genetic algorithm with neural network fitness function evaluation for IMRT

beam angle optimization. Cent. Eur. J. Oper. Res. 2014, 22, 431–455. [CrossRef]
20. Guo, P.; Cheng, W.; Wang, Y. Hybrid evolutionary algorithm with extreme machine learning fitness function evaluation for

two-stage capacitated facility location problems. Expert Syst. Appl. 2017, 71, 57–68. [CrossRef]
21. Yu, D.P.; Kim, Y.H. Is it worth to approximate fitness by machine learning? investigation on the extensibility according to problem

size. In Proceedings of the 2018 Genetic and Evolutionary Computation Conference Companion, Kyoto, Japan, 15–19 July 2018;
pp. 77–78.

22. Livne, A.; Tov, E.S.; Solomon, A.; Elyasaf, A.; Shapira, B.; Rokach, L. Evolving context-aware recommender systems with users in
mind. Expert Syst. Appl. 2022, 189, 116042. [CrossRef]

23. Zhang, Y.; Fontaine, M.C.; Hoover, A.K.; Nikolaidis, S. Deep surrogate assisted map-elites for automated hearthstone deckbuilding.
In Proceedings of the Genetic and Evolutionary Computation Conference, Boston, MA, USA, 9–13 July 2022; pp. 158–167.

24. Li, P.; Tang, H.; Hao, J.; Zheng, Y.; Fu, X.; Meng, Z. ERL-Re2: Efficient Evolutionary Reinforcement Learning with Shared State
Representation and Individual Policy Representation. In Proceedings of the International Conference on Learning Representations,
Kigali, Rwanda, 1–5 May 2023.

25. Hao, H.; Zhang, X.; Li, B.; Zhou, A. A First Look at Kolmogorov-Arnold Networks in Surrogate-assisted Evolutionary Algorithms.
arXiv 2024, arXiv:2405.16494.

26. Hao, H.; Zhang, X.; Zhou, A. Large Language Models as Surrogate Models in Evolutionary Algorithms: A Preliminary Study.
arXiv 2024, arXiv:2406.10675. [CrossRef]

27. Tong, H.; Huang, C.; Minku, L.L.; Yao, X. Surrogate models in evolutionary single-objective optimization: A new taxonomy and
experimental study. Inf. Sci. 2021, 562, 414–437. [CrossRef]

28. Hoerl, A.E.; Kennard, R.W. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 1970, 12, 55–67.
[CrossRef]

29. Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B Stat. Methodol. 1996, 58, 267–288. [CrossRef]
30. James, G.; Witten, D.; Hastie, T.; Tibshirani, R.; Taylor, J. An Introduction to Statistical Learning with Applications in Python; Springer

Texts in Statistics; Springer: Cham, Switzerland, 2023.
31. Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.; Schulman, J.; Tang, J.; Zaremba, W. OpenAI gym. arXiv 2016,

arXiv:1606.01540.
32. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018.
33. Salton, G.; Wong, A.; Yang, C.S. A vector space model for automatic indexing. Commun. ACM 1975, 18, 613–620. [CrossRef]
34. Bai, F.; Zou, D.; Wei, Y. A surrogate-assisted evolutionary algorithm with clustering-based sampling for high-dimensional

expensive blackbox optimization. J. Glob. Optim. 2024, 89, 93–115. [CrossRef]
35. Wang, X.; Wang, G.G.; Song, B.; Wang, P.; Wang, Y. A novel evolutionary sampling assisted optimization method for high-

dimensional expensive problems. IEEE Trans. Evol. Comput. 2019, 23, 815–827. [CrossRef]
36. Jin, Y.; Olhofer, M.; Sendhoff, B. Managing approximate models in evolutionary aerodynamic design optimization. In Proceedings

of the 2001 Congress on Evolutionary Computation (IEEE Cat. No. 01TH8546), Seoul, Republic of Korea, 27–30 May 2001;
Volume 1, pp. 592–599.

http://dx.doi.org/10.1016/j.eswa.2022.119495
http://dx.doi.org/10.3390/app10072223
http://dx.doi.org/10.1109/TEVC.2021.3060833
http://dx.doi.org/10.1016/j.artmed.2021.102154
http://dx.doi.org/10.1007/s40747-022-00929-w
http://dx.doi.org/10.1007/s12293-020-00317-2
http://dx.doi.org/10.1016/j.asoc.2020.107033
http://dx.doi.org/10.1504/IJAIP.2022.125235
http://dx.doi.org/10.1007/s00500-003-0328-5
http://dx.doi.org/10.1007/s10100-013-0289-4
http://dx.doi.org/10.1016/j.eswa.2016.11.025
http://dx.doi.org/10.1016/j.eswa.2021.116042
http://dx.doi.org/10.1016/j.swevo.2024.101741
http://dx.doi.org/10.1016/j.ins.2021.03.002
http://dx.doi.org/10.1080/00401706.1970.10488634
http://dx.doi.org/10.1111/j.2517-6161.1996.tb02080.x
http://dx.doi.org/10.1145/361219.361220
http://dx.doi.org/10.1007/s10898-023-01343-3
http://dx.doi.org/10.1109/TEVC.2019.2890818

Information 2024, 15, 744 22 of 22

37. Storn, R.; Price, K. Differential evolution: A simple and efficient heuristic for global optimization over continuous spaces. J. Glob.
Optim. 1997, 11, 341–359. [CrossRef]

38. Hansen, N.; Auger, B.; Ros, J.B.T.M.T.; Schoenauer, M. Evolution Strategies as a Machine Learning Tool. In Proceedings of the
2008 IEEE Congress on Evolutionary Computation, Hong Kong, China, 1–6 June 2008; pp. 1–8. [CrossRef]

39. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the 1995 IEEE International Conference on Neural
Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [CrossRef]

40. Sipper, M.; Halperin, T.; Tzruia, I.; Elyasaf, A. EC-KitY: Evolutionary computation tool kit in Python with seamless machine
learning integration. SoftwareX 2023, 22, 101381. [CrossRef]

41. Blickle, T. Tournament selection. Evol. Comput. 2000, 1, 181–186.
42. Spears, W.M.; Anand, V. A study of crossover operators in genetic programming. In Proceedings of the International Symposium

on Methodologies for Intelligent Systems, Berlin/Heidelberg, Germany, 16–19 October 1991; pp. 409–418.
43. Lim, S.M.; Sultan, A.B.M.; Sulaiman, M.N.; Mustapha, A.; Leong, K.Y. Crossover and mutation operators of genetic algorithms.

Int. J. Mach. Learn. Comput. 2017, 7, 9–12. [CrossRef]
44. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;

et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.
45. Akiba, T.; Sano, S.; Yanase, T.; Ohta, T.; Koyama, M. Optuna: A next-generation hyperparameter optimization framework. In

Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA,
4–8 August 2019; pp. 2623–2631.

46. Blank, J.; Deb, K. pymoo: Multi-Objective Optimization in Python. IEEE Access 2020, 8, 89497–89509. [CrossRef]
47. Jianye, H.; Li, P.; Tang, H.; Zheng, Y.; Fu, X.; Meng, Z. ERL-Re2: Efficient Evolutionary Reinforcement Learning with Shared

State Representation and Individual Policy Representation. In Proceedings of the Tenth International Conference on Learning
Representations, Virtual, 25–29 April 2022.

48. Lehman, J.; Stanley, K.O. Abandoning objectives: Evolution through the search for novelty alone. Evol. Comput. 2011, 19, 189–223.
[CrossRef] [PubMed]

49. Pugh, J.K.; Soros, L.B.; Stanley, K.O. Quality diversity: A new frontier for evolutionary computation. Front. Robot. AI 2016,
3, 202845. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1023/A:1008202821328
http://dx.doi.org/10.1109/CEC.2008.4631125
http://dx.doi.org/10.1109/ICNN.1995.488968
http://dx.doi.org/10.1016/j.softx.2023.101381
http://dx.doi.org/10.18178/ijmlc.2017.7.1.611
http://dx.doi.org/10.1109/ACCESS.2020.2990567
http://dx.doi.org/10.1162/EVCO_a_00025
http://www.ncbi.nlm.nih.gov/pubmed/20868264
http://dx.doi.org/10.3389/frobt.2016.00040

	Introduction
	Fitness Approximation: Previous Work
	Preliminaries
	Problems
	Proposed Method
	Population Dataset
	Switch Condition
	Sampling Strategy
	Sample Weights
	Advantages and Limitations

	Experiments and Results
	Experimental Setup
	Hyperparameter Setting
	Results
	Comparison with Previous Work

	Extensions
	Novelty Search
	Hidden Actual Fitness Scores in Prediction Mode

	Concluding Remarks and Future Work
	References

