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Abstract: The integration of systems for Adaptive Business Intelligence (ABI) in the healthcare in-

dustry has the potential to revolutionize and reform the way organizations approach data analysis 

and decision-making. By providing real-time actionable insights and enabling organizations to 

continuously adapt and evolve, ABI has the potential to drive better outcomes, reduce costs, and 

improve the overall quality of patient care. The ABI Interoperability System was designed to facili-

tate the usage and integration of ABI systems in healthcare environments through interoperability 

resources like Health Level 7 (HL7) or Fast Healthcare Interoperability Resources (FHIR). The pre-

sent article briefly describes both versions of this software, learning about their differences and 

improvements, and how they affect the solution. The changes introduced in the new version of the 

system will tackle code quality with automated tests, development workflow, and developer expe-

rience, with the introduction of Continuous Integration and Delivery pipelines in the development 

workflow, new support for the FHIR pattern, and address a few security concerns about the archi-

tecture. The second revision of the system features a more refined, modern, and secure architec-

ture and has proven to be more performant and efficient than its predecessor. As it stands, the In-

teroperability System poses a significant step forward toward interoperability and ease of integra-

tion in the healthcare ecosystem. 
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1. Introduction 

The integration of Adaptive Business Intelligence (ABI) systems [1] in healthcare is 

a widely discussed topic, not only due to their ability to manage the vast amounts of 

data generated daily, but also because of the anticipated benefits of integrating an evolv-

ing intelligent system into enhancing societal care. Furthermore, these systems also sup-

port and help hospital administrators make strategic decisions that are integral to 

healthcare organization operations [2,3]. 

To expedite the path to transparency and interoperability of these solutions, the sci-

entific community is conducting numerous studies that aim to ensure the development 

of technological architectures that are adequately equipped to meet these requirements 

[4,5] while focusing on widespread implementation and high precision [6]. A critical 

aspect of adopting this type of technology is its interoperability with other systems. The 

ability of ABI systems to interoperate with other separate systems within the healthcare 

ecosystem enables two-way communication, further enhancing their efficiency and ef-

fectiveness. 
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ABI systems, despite being highly effective and promising, can be very hard to in-

tegrate and a very frustrating roadblock, resulting in creating more complexity and re-

ducing efficiency in their target organization. 

There are a few key factors that can make these systems harder to work with and 

adopt, which are born from the nature of the machine learning models themselves and 

the state of the ABI systems: 

• There are no well-defined guidelines or standards when it comes to ABI’s machine 

learning model’s availability and documentation. 

• The complex nature of machine learning models can make them very hard and brit-

tle when integrated into any environment, while maintaining data fidelity. 

• Current ABI implementation depends on the target’s environment systems, and 

technical incompatibilities are almost guaranteed, making this process very chal-

lenging and error-prone. 

• The integration of the individual models of an ABI system requires different and 

unique strategies that often depend uniquely on the developers of the model or sys-

tem. 

• ABI integration depends on its models and the target environment’s systems’ ability 

to communicate and interchange data. This leads to entirely new layers and logic 

being developed unnecessarily just to interface with different models. This respon-

sibility is usually up to the integration team, which often builds lots of different so-

lutions that increase the brittleness and complexity of the systems. 

One of the biggest pushes and focused developments toward this goal was an In-

teroperability System designed to be an enhancing layer for the ABI architecture. This 

new layer would leverage interoperability resources, such as HL7, to ensure seamless 

communication and integration of ABI systems in the healthcare ecosystem in a flexible 

and controllable fashion. However, as with any software, ongoing refinement is neces-

sary to address existing flaws and ensure relevance [7]. 

The system was redesigned and rebuilt with the goal of addressing the problems 

and inefficiencies of the first design into a second, more robust, and streamlined revi-

sion. 

This paper presents a comparative analysis between the original and revised ver-

sions of the ABI Interoperability system. The first iteration, while functional, revealed 

several inefficiencies that prompted the need for a more streamlined and robust design. 

The second version, completed recently, incorporates significant improvements, includ-

ing enhancements in code quality through automated testing, better development of 

workflows via CI/CD pipelines, and integration of the FHIR pattern. The revised system 

also addresses the security concerns raised by the earlier architecture, offering a more 

secure and stable solution. 

The aim of this paper is to examine these changes and their impact on the overall 

ABI development ecosystem. The key questions this analysis will address are: How do 

architectural refinements contribute to the system’s robustness? What role does the inte-

gration of the FHIR pattern play in improving interoperability? How do new security 

features mitigate the risks previously encountered in the system? Through this explora-

tion, the paper seeks to provide insights into the future of ABI system interoperability 

within the healthcare sector. 

2. Analysis and Comparison Methods 

This study follows a comparative design aimed at evaluating two iterations of the 

ABI Interoperability System [7]. Version 1 refers to the first design of the system, where-

as Version 2 represents a redesign to address the shortcomings of the first implementa-

tion. 

This study focuses on four key aspects: 

• System architecture and workflow improvements 
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• Interoperability improvements 

• Security improvements 

• System’s performance 

During this assessment, a combination of qualitative and quantitative metrics was 

used due to the nature of the available data. Both architectures were qualitatively ana-

lyzed, and workflow improvements were based on the literature on modern software 

development patterns and trends. The system’s performance was tested through load 

tests using the tool JMeter to perform tests in different scenarios simulating real-world 

traffic loads [8]. These tests also helped in testing the interoperability robustness of the 

solution using various interoperability datasets. The code security was measured via 

SaST [8] scanning with the Checkmarx SaST tool combined with manual result valida-

tion for False Positive reduction. 

3. Analyzing the First Revision of the Interoperability System 

The Interoperability System is a software solution that allows for seamless integra-

tion and usage of ABI systems through healthcare interoperability resources like HL7 or 

FHIR resources [7]. This system was developed as another layer for ABI architectures [1] 

that allows and facilitates communication with machine learning models or any other 

system through message queue services, such as RabbitMQ or ActiveMQ [7]. 

It was based on a microservices architecture and was developed as a modular solu-

tion in which all its components can be iterated separately, which promotes their inde-

pendence in both development and execution [7,9,10]. 

3.1. Software Architecture and Design 

Figure 1 illustrates the conceived technological architecture for the Interoperability 

System, which spans three distinct layers: technology, service, and presentation. 

 

Figure 1. Interoperability System Technological Architecture. 

The Technology layer consists of the backbone of the entire system and architecture, 

as it includes all software solutions that undergird or support it [7]. It is made up of a 

database for storing all the system’s data, Mirth Connect (and PosgreSQL) for the robust 

handling of HL7 resources [11], and a message queue solution for communication with 

the outside environment. 
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The service layer is where all the system’s business logic lies. The components in 

this layer are the ones that will carry out the core functionality of the system [7]. These 

services are responsible for and capable of interfacing with the technology layer to ac-

cess and manipulate data or trigger diverse system functions, as well as interacting with 

each other to execute complex operations. Designed to be modular and reusable, it pro-

motes efficiency and consistency throughout the system and is made up of three main 

services: the Mirth Connect service, interoperability service, and message queue service 

[6]. Each of these services is responsible for interfacing with a different component of the 

technology layer and contains all the secrets and logic to do so. It is also notable that 

every service in this layer is directly accessible to any component in the system. 

The presentation layer acts as a bridge between a complex system and its users [6]. 

It provides a user-friendly way of interacting with all services that make up the system. 

It is composed of a single web application that can communicate with the service layer 

to accomplish every action or function present in the system, not only abstracting its us-

ers of its complexity, but also providing a very convenient and easy way to do so. 

The division of responsibilities among the different layers allows for a high degree 

of adaptability and scalability since each component is a singular and independent piece 

of software that must collaborate with the other components to achieve the system’s ob-

jectives. This way, changes in one component can be implemented and will not cause 

disruption to the other layers. 

This layered architecture is a common pattern in software design, as it helps man-

age complexity by breaking the system down into smaller parts that can be inde-

pendently iterated on and tested, enhancing the system’s quality, stability, and maintain-

ability [7,9,10,12]. 

Although the service layer was developed to be able to support lots of different 

technological choices and solutions, the system currently only supports MySQL as the 

database, Mirth Connect for HL7 handling, and RabbitMQ for message queuing [6]. 

3.2. Solution Software Design Patterns 

At its core, the Interoperability System’s main functionality is to seamlessly inte-

grate and use healthcare interoperability resources such as HL7 or FHIR with an ABI 

system, more specifically its machine learning models, while the rest of its functionalities 

only exist to help support and fully fledge this goal [6]. 

As shown in Figure 2, the system’s main operation can take a raw input in the form 

of an unaltered interoperability resource and gradually transform it into a correct input 

for an ABI system’s machine learning model. This is accomplished via three well-defined 

and distinct processes that simulate the first crucial steps of the CRISP-DM methodology 

of data gathering/understanding and data cleanup/preparation [7,13]. These stages will 

work together with various user-defined moving parts to not only maximize customiza-

tion at runtime, but also to ensure that the machine learning models will be used accord-

ingly to their development. 

This logic and flow design follows and adapts the popular and well-known Pipeline 

design pattern [14]. This pattern works through a series of operators that work sequen-

tially, where the output of one operator serves as the input of the next, which results in a 

complete dependency between them. This means that if any operator fails, the flow will 

stop in a controlled manner as it is designed to do so [15]. 

As a direct response to the volatile and highly changeable nature of any machine 

learning model’s requirements, the operators needed to implement a mechanism that 

would allow for the dynamic execution of the same algorithm with different content and 

logic. Alluding to the relationship between a game console and a video game, this be-

havior can be described as the Strategy design pattern where a family of algorithms is 

defined and encapsulated in such a way as to become interchangeable [15]. This pattern 

allows the content of an algorithm to change according to the situation at runtime in-
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stead of the logic having to be present in the source code, making it a lot more flexible 

and reusable [15]. 

Referencing Figure 2 once more, the data flow will start with an interoperability re-

source from which the necessary data will be extracted, then validated to ensure data 

quality, and then processed to comply with how the models were developed, all accord-

ing to the specified machine learning model. 

 

Figure 2. Interoperability system main workflow design. 

3.3. System Structure 

The Interoperability System was developed following the MVC (Model, View, Con-

troller) pattern, which is one of the most known and used patterns in the industry and, 

as the name suggests, is composed of three logical components: Model, View, and Con-

troller, which help the complexity of software solutions [16]. 

The Model component is responsible for storing and managing all data of the solu-

tion, and thus, the interoperability service fills this role as it is capable of interfacing with 

the technology layer. 

The View component is responsible for presenting data to the final users, and it is 

accomplished by the web application in the presentation layer. 

The Controller component is responsible for handling and executing user interac-

tions or actions while updating the other layers accordingly. This function was assumed 

by all microservices in the service layer, as each one controls a different but integral part 

of the system. 

All service layers were developed via Node.js, and all microservices followed a 

well-defined template complete with Docker/Docker Compose support, organized file 

structure, and API documentation with Swagger. In this way, all microservices can be 

developed in a consistent fashion following the best practices of microservice develop-

ment. 

This standardization of the development of the system’s microservices will ensure 

their consistency and stability and will also allow it to take advantage of the containeri-

zation of its services at runtime [17]. 

The web application that makes up the presentation layer and is responsible for the 

View component of the system was developed using React.js and Ant Design and fol-

lows the best practices of front-end development, such as prioritizing reusable, readable, 

and documented code or the use of SVG files instead of PNG [18,19]. 

As it is, the system relies on MySQL for data storage, RabbitMQ for integration and 

communication with external services, and Mirth Connect as the core runtime for the so-

lution. This runtime would consist of a single Mirth Connect channel configured to in-
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terface with the rest of the system’s services to perform the different stages of data pro-

cessing until it was ready to be pushed via RabbitMQ. 

4. Analyzing the Second Revision of the Interoperability System 

The second revision of the Interoperability System consists of its most recent itera-

tion, which builds upon the robust foundation established by the first revision and 

brings forth a series of enhancements, optimizations, and fixes to both the software solu-

tion and its development workflow. The next topics will describe in more detail the ma-

jor and most important changes. 

4.1. HL7 FHIR Support 

Perhaps the most impactful change in the system’s feature range was the full sup-

port of the industry standard HL7 FHIR (Fast Healthcare Interoperability Resources) 

pattern, making the system capable of handling FHIR resources instead of only HL7 in 

both JSON and XML formats [20]. 

This change mainly impacted the data extraction aspect of the system and influ-

enced the entire solution because every aspect of the system needed to be redesigned to 

accommodate different types of interoperability resources. An entire custom engine 

must be developed to handle and query the FHIR specification guidelines and properly 

extract data from these resources [20,21]. 

The support for FHIR resources originated from the ever-growing popularity and 

degree of preference over traditional HL7 that FHIR has been seeing over recent years, 

becoming increasingly relevant with each passing day [20]. This can be observed in Fig-

ure 3. 

At the observed rate of growth, the support for the FHIR pattern became a sudden 

and highly important new requirement for the second iteration of the Interoperability 

System. 

 

Figure 3. Published studies on FHIR over time [20]. 

4.2. Secure Strategy for Data Preprocessing 

By far, the biggest flaw and security risk regarding the first revision of the Interop-

erability System was how it handled the dynamic execution of the models’ preproces-

sors. The system accomplishes this by having a preprocessor engine that can take a pre-

viously made preprocessor and run it against the target data, resulting in preprocessed 

data, as shown in Figure 4. 



Information 2024, 15, 745 7 of 22 
 

 

 

Figure 4. Preprocessing mechanism concept. 

This concept worked by storing pre-written scripts (written in JavaScript) in the da-

tabase to later fetch them as they were needed and executing them via JavaScript’s ex-

pression evaluation method of eval [22]. This dynamic code execution technique is dan-

gerous given its high permission privileges and potential for code injection, which can 

be disastrous for any software solution [23,24]. Furthermore, a technique like this im-

plemented directly on the server will always constitute a severe security vulnerability 

and an extremely irresponsible practice, and thus, one of the most widely used and well-

recognized mitigation strategies is to run the dynamic code off the server. 

Figure 5 shows the new approach to the preprocessing mechanism, which utilizes a 

sandboxed environment to execute all dynamic codes separately and in isolation from 

the server [25]. This will guarantee the safety and security of the resources and the sys-

tem itself from possible malicious code injections [25]. The preprocessor execution en-

gine itself was rewritten to accommodate this new sandbox technique and to properly 

capture all errors that may arise, making this feature much more robust. 

 

Figure 5. Preprocessing mechanism concept using sandboxing. 

Apart from the introduction of sandboxing, a whitelist strategy [26] was also im-

plemented to supplement and fortify the security of the preprocessing feature, because it 

only allows users to write preprocessors that contain specific and previously reviewed 

tokens, invalidating all others. This is much more efficient and secure than a blacklist be-

cause instead of having to ban certain terms and keywords from scripts, we must only 

allow for those that we are certain are not capable of being used for malicious purposes. 

This whitelist was implemented in a way that allows for constant iteration and update as 

it is not static. 

4.3. Business Logic Transition from Mirth to Node.js 

The first revision of the system only supported HL7 resources [27,28], and thus, the 

entire business logic for the dynamic extraction of data from them, validation, and pre-

processing could be developed using the Mirth Connect [11,29]. This was fine and 

worked well enough, but the FHIR support addition forced a big paradigm change that 

resulted in the rewriting of the entire business logic regarding the interoperability data 

flow in Node.js, while only using Mirth for small HL7 data extractions. For the most 
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part, the system’s functionality remained the same; it was the way it was executed and 

called that changed, providing a faster and much more realized runtime environment 

[30–32]. 

As Figure 6 illustrates, the Interoperability System’s architecture did not change 

drastically, as it was still composed of the same layers and technologies, but the whole 

paradigm of operations changed completely. The layer service is now centralized in the 

Interoperability microservice, which consists of the main point of contact with the sys-

tem. All interactions with any of the system’s functions occur through this interoperabil-

ity service, as it controls all incoming traffic. The main workflow was moved from Mirth 

Connect to Interoperability microservice, which serves only as an HL7 parser. FHIR was 

supported in this version; therefore, the interoperability service makes use of the FHIR 

schema to perform all FHIR operations. The HL7 schema was also constructed locally 

and all HL7 V2 operations passed through it. 

 

Figure 6. Interoperability System Revision 2 Technological Architecture. 

4.4. Version Control 

The first revision of the system was developed with the help of a version control 

system (Git), but it did not benefit much from it besides having some rudimentary 

commit history and safe storage in a Git repository manager (Github) [33]. For single 

and slow development, this strategy was not a problem, but for managing different ver-

sions and introducing collaboration to the various repositories, it needed to be im-

proved. 

The first step toward this improvement would be the establishment of a well-

defined branching strategy that could ensure the consistency and quality of all the work 

being performed and delivered [34,35]. 

The flow represented in Figure 7 demonstrates the branching strategy adopted to 

handle all future developments for all separate repositories that make up the system. 

There are two long-term branches, dev and master, for testing changes and hosting the 

final version of the code, respectively, as well as short-term branches for the develop-

ment of new features and introduction of changes. 
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Figure 7. Interoperability system repository branching strategy. 

This branching strategy includes the following three tiers of branches: 

• Master Branch—This branch includes the production code, which consists of the 

most recent stable version of the project. It is only iterated via pull requests from the 

tested changes in the development branch. Usually, changes to this branch result in 

an increase in product version. 

• Dev Branch—Contains all testing code and features that still need to be verified. It 

is expected that a large part of the features in this branch are unstable and, there-

fore, not yet ready to move on to the master branch. 

• Feature Branches—The iteration-based development of the repositories relies on the 

creation of these feature branches, which are very short-term and highly focused 

versions of the product that are meant to develop new features or fix problems. 

Once the changes are completed, they are merged into the development branch for 

testing, and the feature branch must be deleted. 

These branches were then correctly configured to ensure that the long-term branch-

es could not be directly updated only through pull requests, and these required code re-

view from the code owners before being merged with the target branches. 

As expected, the master branch will include many iterations during its lifecycle, 

which can become very confusing due to the uncertainty of the number of changes be-

tween each version. This uncertainty typically results in software breaking or failure due 

to version conflicts [36,37]. This problem introduces the second step toward improving 

the development of the system, which is standardizing the different versions of the pro-

duction code that have been released. Semantic Versioning (SemVer) was the standard 

adopted to this end, as it provides a way to communicate instantly what kinds of chang-

es a new version holds [36,37]. 

It is composed of three significant numbers separated by dots, with increments in 

the first number representing the introduction of breaking changes, the second repre-

senting the introduction of new features, and the last representing the correction of pre-

vious problems. 
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The same concept was applied to the commit messages in the repositories, as they 

can also become very confusing and meaningless. The pattern of Conventional Commits 

was applied and allowed for a clear understanding of the changes being made, but also 

for some level of automation [38]. It structures commit messages with a type, optional 

scope, and description. Types include ‘fix’, ‘feat’, and others, each correlating with a 

change type in Semantic Versioning. The ‘BREAKING CHANGE’ type indicates a major 

change. This structure aids in creating an explicit commit history and facilitates auto-

mated tooling. 

4.5. Continuous Integration and Deployment 

Automation is the heart of the modern software development ecosystem as it can 

ensure that tests are performed, quality standards are met, repetitive work is always 

conducted consistently, and it frees developers and engineers so that they can focus on 

more important tasks [39]. 

The automation strategy implemented in the Interoperability System’s repositories 

had the following goals: 

• Automatic test execution to ensure consistency. 

• Automatic deployment in a test environment so that the entire system can be tested. 

• Automatic release of tagged versions and their well-documented changes. 

These goals were accomplished via GitHub Actions, which allow for automation 

based on repository changes [40,41]. 

The implemented CI/CD strategy is shown in Figure 8, which shows that it relies on 

the creation of feature branches to introduce changes in the code. These changes must be 

merged into the development branch, but only after being approved by the code owners 

and the success of the automatic unit tests. 

 

Figure 8. CI/CD Automation Strategy. 

Once the changes are merged with the development branch, they are automatically 

deployed in a testing environment hosted on a separate Linux virtual machine via an ac-

tions runner so that the changes can be tested in a production-like environment with 

end-to-end testing. This testing environment will feature all the necessary system com-

ponents, only updating the immediate changes in a specific component. 

After end-to-end tests are performed, either manually or automatically, the changes 

must be merged from the development branch to the master branch, which also needs 

approval by the code owners to run automatic unit tests. 

When the changes enter the master branch, their documentation is automatically 

generated based on the structured commit messages, a new version tag is created ac-
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cording to SemVer, and a new image of the software is created and published to the 

GitHub Container Registry [42]. 

4.6. Unit Testing 

Unit testing is a critical part of software development, as it ensures that the individ-

ual units of code, such as functions or modules, are working as expected and are not 

broken from iteration to iteration [43,44]. 

Regarding the microservices, unit tests were performed with the help of the JavaS-

cript testing framework Jest, as it is very popular and simple to use [45]. Jest features 

were used to write simple tests for each relevant function concisely and mock the system 

database in CRUD-related tests (Create, Read, Update, and Delete). 

For the web application, Cypress was used to test each React component individu-

ally using its very powerful API to not only traverse the entirety of the volume of com-

ponents but also to mock the requests made to the server. 

These test workflows were developed and implemented in the CI/CD automation 

workflow to ensure that no changes could break the features or components currently 

being tested. 

4.7. End-to-End Testing 

End-to-end testing is a methodology based on the concept of black box testing, in 

which the flow of an application or system is tested from start to finish, simulating the 

product’s usage in production [46]. 

In systems like the Interoperability System, which is composed of many moving 

parts and components, these kinds of tests are essential to guarantee their stability and 

functionality. For this reason, end-to-end tests were created and are a very important 

part of the current CI/CD strategy, as they run on the development environment to en-

sure that changes in the dev branch will not break functionality [46]. 

Once again, the tool of choice was Cypress, given its versatility, power, and ease of 

use, and it was seamlessly integrated into the CI/CD process via GitHub Actions to en-

sure the correct behavior of the entire system from the final user’s perspective [46]. To 

this end, 12 distinct end-to-end tests were conducted to validate all the system’s func-

tionalities. 

5. Comparing Both Revisions of the Interoperability System 

Both versions of the Interoperability System were individually analyzed via the re-

spective source code and documentation, and they show distinct differences in architec-

ture, features, and overall performance. While the first revision is focused on laying the 

foundation for the interoperability workflow and a functional system, the changes made 

for the second revision are much more focused on improving the design and develop-

ment workflow while mitigating the flaws found. 

5.1. System Architecture and Workflow 

The first revision of the system was designed based on a microservice architecture 

[9,10] and distributed different functions and responsibilities between singular and iso-

lated services, with the different components separated into well-defined layers. In this 

way, each technology component would have a dedicated service to interface with, and 

these services would be free to communicate with each other or be called via their re-

spective APIs [30]. This approach relied heavily on Mirth Connect as an entry point for 

the processing workflow, as a single channel would receive a request and pass it along to 

the rest of the services via their APIs until, eventually, the processed result would reach 

the RabbitMQ queues where it would be ready to be consumed by the rest of the ABI 

system. 
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For the second revision, this architecture largely remained the same when it came to 

the distribution of layers and responsibility, but the paradigm of communication be-

tween the services shifted toward an API Gateway pattern [10], meaning that all traffic 

would flow through an entry service and then be propagated to all components in the 

system. The interoperability microservice became the API Gateway of the system and 

would interface with the rest of the services via their respective API, whereas the com-

munication channels for these services were restricted only to the gateway service. The 

business logic was also moved to this microservice rather than running in a difficult-to-

manage Mirth Channel. This meant that Mirth Connect would only be used as an HL7 

parser instead of being the core of data processing. 

The support for the interoperability resources HL7 and FHIR was improved by lo-

calizing all schema lookups to locally defined schemas rather than querying public re-

sources, mitigating another possible point of failure. 

The rest of the changes were made to the development workflow of the Interopera-

bility System in the following form: 

• Implementation of a branching strategy based on long-term branches with strict 

guidelines on merging iterations from short-term branches [34,35] 

• Integration of Semantic Versioning on software releases for all components follow-

ing the SemVer pattern [36,37] 

• Enforcing Conventional Commits pattern for commit structure [38] 

• Continuous integration and deployment for automated linting, testing, and version 

release [39] 

• Automated unit tests for code quality and reliability using Jest [47,48] 

• End-to-end testing in dedicated development server and deployment [46] 

• Software virtualization streamlined with Docker [49,50] 

These changes contribute to code quality, maintainability, and reliability as the 

components become more stable and documented [36,37], thanks to all the testing poli-

cies imposed on development. The branching strategy allowed for well-structured pro-

jects and iterations while promoting collaboration between multiple sources [34,35]. The 

changes in documentation culture and versioning allow for better observability and ease 

of use following the common practices of software release. Lastly, the automated stream-

lining of the services’ releases as virtualized images improves the consistency of the so-

lution and simplifies the process of integration. 

5.2. Interoperability Support 

The first revision completely focused on HL7 V2 [51], as it used Mirth Connect as 

the core for all logic regarding data processing. This limited the system to Mirth’s func-

tionality and capability of HL7 handling. This meant that the system’s interoperability 

functionality could only evolve at the same rate as the Mirth Connect. Thus, the first re-

vision could only process and handle HL7 resources. The second revision changed this 

by radically changing the core of the system to a dedicated service that could route re-

quests to Mirth if they regarded HL7 V2 or elsewhere if they required any other interop-

erability engine. The main focus of the second revision was to support FHIR resources 

[20]. To achieve this, an entirely custom engine was built from scratch that, similar to 

Mirth, could parse FHIR messages and extract any necessary data. The engine was built 

using the FHIR R5 and R4B specifications, but the support was implemented in a way 

that allowed for the future support of more versions. 

5.3. Security and Performance 

Security was a major concern regarding the first revision of the Interoperability Sys-

tem, given that it was not its focus. The system was still designed to minimize risks, but 

further security analysis is necessary to properly assess and mitigate them [7]. One of the 

most problematic security flaws in the system was the dynamic code execution regard-
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ing the controllers [7,22,52] since any code present in the controllers would be executed 

“no questions asked” in the preprocessing stage. This was properly mitigated using a 

combination of sandboxing and token whitelisting techniques [23,25]. This ensured that 

the dynamic code that was going to be executed did so in an isolated Node.js instance, 

and only a few selected tokens were allowed to be present in the executed expressions. 

The localization of the interoperability resource schemas also contributed to the iso-

lation of the services, which no longer required them to access the Internet for queries re-

lated to them. 

The restriction and proper configuration of the request origin [53] between the ser-

vices also reduced the communication to critical services, like the Message Queue and 

Mirth Connect, to the bare minimum. In this context, the only reachable service for ex-

ternal communication was the interoperability service, which was the system’s gateway. 

6. Comparative Tests Results 

While the features and architectural changes can be compared and analyzed quali-

tatively as better or worse, the system’s performance and security can be measured 

quantitatively by executing the system, performing load tests [8], and security scans. In 

this fashion, quantitative comparative tests relied on Apache JMeter for load testing [54], 

Docker statistics for hardware usage, and the Checkmarx SaST tool for static vulnerabil-

ity analysis [55]. As expected, the second revision yielded better results for all the met-

rics measured. A more detailed report on the tests performed can be found in the follow-

ing subsections. 

6.1. Load Testing 

Load testing was conducted to evaluate and assess the system performance under 

simulated real-world conditions and loads [8]. This test measured how well the two sys-

tems handled large volumes of data and traffic, simulating the loads expected in the 

healthcare field. 

To perform this test, both versions of the system were deployed on two different 

Linux virtual machines running the same configuration and hosted by the same system. 

This was performed to make sure that any differences in the results were a direct result 

of the improvements made. Only HL7 resource datasets were used during the load tests 

because it is the only message type supported by both systems. 

Similar to the performance tests performed on a Healthcare Hub Server [56], the 

load test used Apache JMeter [54] and spanned three different load scenarios simulating 

100.000 requests distributed by 200, 1000, and 2000 concurrent users over five minutes. 

This test yielded results representing low, normal, and high levels of traffic to assess 

which revision was better able to handle, in general, the loads expected in real-world 

scenarios. 

As Figure 9 indicates, there is an expected trend of increasing average response 

times as the number of concurrent requests increases. This was expected because of the 

load increase, but it is also apparent that the second revision is, on average, faster than 

the first revision. This is surely because of the business logic transition from Mirth Con-

nect to Node.js and the optimization of the service’s communication. This means that if 

the services were to be migrated to a more performant runtime, such as golang [57], the 

average response time would be able to go even lower. The lowest all-time response time 

was 50 ms, with 200 concurrent requests per second. The highest response time was 

from the first revision, with 2000 concurrent requests. Analyzing the results, we can as-

sess that the second revision is ~72%, 50%, and 20% faster than the first revision in all 

scenarios. This trend shows that as the load increases, the gap between both systems 

shortens. 
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Figure 9. Average Response Time Performance Test. 

Looking at the results of the throughput comparison in Figure 10, we can verify that 

at lower loads, both versions can process the requests and respond successfully; howev-

er, as loads intensify, the number of requests that can be processed decreases significant-

ly. In other words, as the average time increased, the throughput decreased. This is to be 

expected from these tests [56], but comparatively, the second revision of the system is 

better at handling higher loads while keeping a higher throughput rate of ~20%, ~36%, 

and 31% higher in low, normal, and high loads, respectively. Another aspect to note is 

that, similar to the average response time, as loads increase, the gap first jumps very 

high and then seems to become shorter, indicating that there will be a load level where 

the performance might be about the same. 

 

Figure 10. Throughput Performance Test. 

Using the statistics features bundled with Docker; it was possible to record the us-

age of resources over time [58], of which the CPU and Memory percentages were the 

metrics of interest. Only the peak values for these metrics were considered for compari-

son. 

As shown in Figure 11, both systems reached maximum CPU usage and were close 

to maximum Memory usage. This indicates that the performance of resource usage is not 

significantly different between the two revisions at high loads. However, for lower and 

more manageable loads, there is a clear difference between the two revisions, where the 

second revision is much more efficient while processing all requests. This is the case be-

cause the Mirth Connect can be very resource intensive, while Node.js is a much smaller 

and lighter runtime. The API Gateway pattern also reduced the number of internal re-

quests and API calls, and thus reduced resource usage. This reduction in resource usage 
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was expected, reaching an all-time high of ~56% more CPU efficient and ~20% more 

memory efficient. 

Both systems eventually reach the maximum resource usage, and this might hap-

pen because of the relatively low resources given to both VMs and/or because there is 

still a lot of room for optimization. 

 

Figure 11. CPU/Memory Usage by load. 

6.2. Security Testing 

To assess the security of the solution, an SaST [55] scan and evaluation was con-

ducted using Checkmarx SaST. This type of scan breaks the source code into tokens, and 

then, using known vulnerabilities, checks the flow of data to search for patterns and be-

haviors known to cause dangerous software vulnerabilities. By nature, these scans tend 

to be quite heavy regarding False Positive results, and thus, analyzing each one is neces-

sary to maximize the insight taken from that scan. 

In this fashion, the Interoperability service source code was chosen to be scanned 

because it is the most crucial service in the system, resulting in 343 vulnerabilities for the 

first revision and 290 for the second one. These results are assumed to be quite exagger-

ated by False Positives, so a manual analysis of the results was necessary, resulting in on-

ly 116 actual exploitable results for the first revision and 77 for the second. 

Checkmarx SaST considers four types of vulnerabilities and separates them by in-

creasing levels of severity as Information, Low, Medium, and High, with Information 

and Low, indicating the least concerning results and High indicating the most concern-

ing. Figure 12 illustrates the differences in the frequency of True Positive results found in 

both source codes for each revision. It also indicates that between the first and second 

revisions, there was a large decrease in High results and small decreases in Low and 

Medium results. It is also notable that there were no increases in the results, so no new 

vulnerabilities were introduced. 
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Figure 12. True Positive vulnerabilities by severity. 

Detailing a little more about what vulnerabilities are present in the source codes of 

both revisions, Figure 13 shows the frequency by vulnerability. 

 

Figure 13. Frequency by vulnerability. 

As Figure 13 indicates, most of the vulnerabilities remain between both revisions, 

but there are a few that were reduced or completely removed, as represented in Figure 

12. These vulnerabilities were mostly High severity, and their existence posed a big risk 

to the security of the solution. Simple fixes, such as preventing CSRF and HSTS or CSP 

headers, were also implemented due to their nature as an insecure configuration or 

missing request header [59,60]. 

The elimination of code injection vulnerabilities [59] is by far the most important 

improvement. This was likely because of the dynamic execution of the code implement-

ed for preprocessing. This was mitigated by the combination of a sandbox and whitelist 

strategy [23,25,61], as previously mentioned. The reflected XSS vulnerability also de-

creased by a large margin owing to slight improvements in the validation of the user in-

put. 

The second revision reflected a big improvement in the number of exploitable high 

severity vulnerabilities present in the system, but there are still quite a few that need 

mitigation. As for Medium and Low, their numbers did not change significantly. 
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6.3. Interoperability Testing 

One of the main features of the second revision of the Interoperability System is the 

support of the FHIR schema, which allows the processing of FHIR resources. Because it 

is a separate engine, it will not be conditioned by Mirth Connect, and it is potentially 

faster since it is much smaller. The same load tests were performed only with the second 

revision with FHIR resources, and the results are represented in both Figures 14 and 15. 

 

Figure 14. Average Response Time Performance Test with FHIR. 

 

Figure 15. Throughput Measurement Test with FHIR. 

The average response times seem to be much lower with FHIR resources in all test-

ing scenarios, although it also ramps up with 2000 concurrent requests. This is largely 

due to the FHIR engine being written entirely from scratch and being relatively simpler 

and lightweight compared to Mirth Connect. The results seem to indicate that Mirth 

constitutes a bottleneck when it comes to the speed of processing. The throughput also 

becomes much healthier and only starts to decrease with 2000 concurrent requests. 

7. Discussion 

The second revision of the ABI Interoperability System represents a significant im-

provement over the previous version in terms of performance, security, design, and in-

teroperability. Redesigning the system around the transition of business logic from Mirth 

Connect to a dedicated service allowed for a much more focused, refined, and secure ar-

chitecture. This also allowed following the API Gateway microservice design pattern 

[10]. 

The various improvements to the development workflow contributed to a cleaner, 

organized, and well-documented code base, which was reflected in the significant de-

crease in vulnerabilities found during security vulnerability scans. 

The core of the system now runs on a dedicated Node.js microservice, which allows 

for significantly shorter processing times, higher throughput, and lower resource usage. 

This indicated that the system became more efficient because of the runtime change, 
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which means that it could become even more efficient if the services were to be rewritten 

in a more performant language, such as golang or rust [57]. 

The support for FHIR resources was a very important addition, as it aligned the sys-

tem with current healthcare data standards, addressing the interoperability limitations 

present in the first revision [20]. This is consistent with the growing demand for FHIR-

based systems in the modern healthcare environment [20,21]. 

In comparison to the processing of HL7 resources, the processing of FHIR resources 

through the system yielded much better results in terms of performance, which might 

indicate a possible bottleneck in the current Mirth Connect implementation. This might 

constitute the grounds for building a similar engine for parsing HL7 messages. 

The most impactful security improvement was the implementation of sandboxing 

[25] and whitelisting of the preprocessors’ dynamic execution in order to prevent the 

code injection vulnerability [59]. This mitigation was confirmed, along with other small-

er vulnerabilities, using the Checkmarx SaST tool [8]. Taking a closer look at the vulner-

abilities pointed out by the SaST tool, 77 other vulnerabilities are confirmed to still be 

present, of which 52 are somewhat concerning as they represent High to Medium severi-

ty vulnerabilities. 

8. Limitations 

While the second revision of the Interoperability System introduces very significant 

improvements over the first one, this study is subject to several limitations that should 

be acknowledged. The load tests and performance metrics demonstrated were obtained 

from simulated healthcare environments using standard datasets. These components 

were designed to replicate real-world scenarios; however, they cannot fully account for 

the variability, complexity, and unpredictability of actual healthcare ecosystems. Other 

factors not present in this document can account for the decrease in the performance and 

reliability of the system. Further testing, preferably in live environments, would provide 

a much more accurate assessment of the system’s scalability and reliability. 

Another limitation is the system’s current focus on HL7 and FHIR. This support co-

vers the most widely adopted interoperability standards in healthcare [20,51] but does 

not offer any alternative for environments that rely on other or proprietary standards. 

Regarding the performance assessment, this study only took into consideration the 

average response time of the system and request throughput. Other metrics, such as 

long-term scalability, could prove problematic in future studies, as the system’s capabil-

ity to operate with a long-term and full database was not tested. In addition, the stress of 

long sessions with high loads was not tested. Systems that are designed to handle vast 

amounts of data need to be able to operate under sustained high loads over long periods 

of time without performance degradation. These tests are essential for validating the sys-

tem’s resilience over time. 

SaST tools like Checkmarx SaST are great tools for continuous and automatic code 

security testing, but they are quite limited and should not be used as a unique solution 

for security assessments due to their natural limitations [55]. These tools can identify 

dangerous patterns by parsing and tokenizing the source code, and they are prone to er-

roneous reports without vigilance. Mitigating False Positives is fairly simple, but False 

Negatives are harder because an SaST tool will never return results for which it does not 

have support. Human eyes are always necessary in conjunction with these tools, and 

dedicated security assessments and breakdowns are needed to properly assess the secu-

rity of the system. 

This study has primarily focused on the theoretical improvements, simulations, and 

internal testing of the Interoperability System. Further and broader validation in live en-

vironments, using real patient data, and in collaboration with healthcare IT teams is nec-

essary to paint a real-world picture of the system’s behavior and capabilities. These ac-

tivities would provide valuable feedback on user experience, ease of integration, and 

unexpected challenges that may arise. 
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9. Conclusions 

The second revision of the ABI Interoperability System consists of a major im-

provement over the previous version and the advancement of interoperability in the 

healthcare ecosystem. A substantial improvement toward this goal is the system’s ability 

to process both HL7 and FHIR resource data formats and schemas, further aligning itself 

with current healthcare data exchange protocols and patterns [7,20,21,51]. The transition 

of core business logic to an isolated Node.js service led to faster processing times, higher 

throughput, and enhanced scalability. This change in paradigm allowed for a more 

modern API Gateway pattern of microservice architecture [9,10]. 

The introduction of secure coding practices, particularly through sandboxing [25] 

and the whitelist strategy for handling dynamic code execution, has addressed the criti-

cal vulnerabilities identified in the first revision. This improvement not only makes the 

system more secure but also reduces the risks associated with code injection, which is a 

major concern in healthcare systems that handle sensitive data [59]. 

The system’s maintainability and stability have been greatly improved through the 

implementation of CI/CD pipelines [39] that enable continuous integration, testing, and 

delivery. These practices ensure that the system can be updated efficiently and safely 

while enabling and promoting collaboration without introducing complexity. The prac-

tices introduced in the development workflow help guarantee code quality from multi-

ple sources through linting, stability through testing [46], documentation through con-

ventional commit messages, and availability through Semantic Versioning [36,37]. 

Despite these improvements, certain areas still require attention and future itera-

tions. The system supports FHIR and HL7, but offers no other alternative for environ-

ments incompatible with them. It is necessary to perform real-world tests to confirm the 

long-term scalability of the system and identify possible bottlenecks that might be hard-

er to spot. There might be a possible bottleneck in the Mirth Connect implementation, 

which could justify the development of an “in-house” parser for HL7. Runtimes and 

technologies other than Node.js, MySQL, and RabbitMQ should be explored and tested, 

as they might provide better performance and stability. Lastly, SaST scanning does not 

provide an in-depth security assessment; further dedicated studies need to be conducted 

to confirm all possible security risks. 

In summary, the second revision of the Interoperability System offers a much more 

robust, secure, scalable, modern, and functional solution than its predecessor. While 

there are still areas that warrant further testing and investigation, this revision lays a 

strong foundation for future development and classifies this system as a useful addition 

to the ABI ecosystem regarding interoperability in healthcare. The findings of this study 

might possibly fuel the next iterations of the system by analyzing all the changes made, 

performing comparative testing, and reporting the results in the form of possible im-

provements. 
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