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Abstract: Copper electrolysis is a crucial process in copper smelting. The surface of cathodic copper
plates is often affected by various electrolytic process factors, resulting in the formation of nodule
defects that significantly impact surface quality and disrupt the downstream production process,
making the prompt detection of these defects essential. At present, the detection of cathode copper
plate nodules is performed by manual identification. In order to address the issues with manual
convex nodule identification on the surface of industrial cathode copper plates in terms of low
accuracy, high effort, and low efficiency in the manufacturing process, a lightweight YOLOv5 model
combined with the BiFormer attention mechanism is proposed in this paper. The model employs
MobileNetV3, a lightweight feature extraction network, as its backbone, reducing the parameter
count and computational complexity. Additionally, an attention mechanism is introduced to capture
multi-scale information, thereby enhancing the accuracy of nodule recognition. Meanwhile, the
F-EIOU loss function is employed to strengthen the model’s robustness and generalization ability,
effectively addressing noise and imbalance issues in the data. Experimental results demonstrate that
the improved YOLOv5 model achieves a precision of 92.71%, a recall of 91.24%, and a mean average
precision (mAP) of 92.69%. Moreover, a single-frame detection time of 4.61 ms is achieved by the
model, which has a size of 2.91 MB. These metrics meet the requirements of practical production
and provide valuable insights for the detection of cathodic copper plate surface quality issues in the
copper electrolysis production process.

Keywords: electrolytic cathodic copper plate; YOLOvV5; attention mechanism; deep learning;
mobilenetv3; object detection

1. Introduction

In industrial production, high-purity copper cathodes are commonly produced through
electrolytic refining. However, during the process of purification, convex nodules and
particles appear on the surface of the cathode copper plate. These nodules grow continu-
ously and eventually make contact with the anode, resulting in a short circuit between the
cathode and anode, which ultimately leads to a significant decrease in current efficiency
and deterioration in the quality of the copper plate [1,2]. Current research indicates that
the formation of nodules on copper cathode plates is caused by a combination of multiple
factors. For instance, during the electrolysis process, the dissolution of the anode leads to
the production of solid particles, such as anode sludge, which adhere to the surface of the
cathode copper plates and induce nodule formation [3]. Improper use of additive compo-
nents and their ratios can cause roughening of the cathode copper plate surface, thereby
increasing the risk of nodule formation [4]. Additionally, uneven current distribution often
leads to nodule formation on the cathode copper plates. If the cathode is tilted, the current
increases significantly in the area closer to the anode, thereby raising the likelihood of
nodule formation [5]. However, in actual industrial production environments, the factors
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contributing to nodule formation on copper plates are highly complex and difficult to avoid
completely. The occurrence of nodulation on the surface of a copper cathode plate not
only deteriorates the quality of the copper plate but also impacts downstream production
processes, making the detection of nodulation defects essential. Currently, the detection of
nodule formation on the surface of cathode copper plates primarily relies on manual visual
inspection methods [6,7], as illustrated in Figure 1. This method is often influenced by sub-
jective human judgment, making it challenging to ensure detection accuracy. Additionally,
the manual identification method faces several challenges, including high labor costs, low
identification efficiency, and a lack of capability for continuous identification tasks. There-
fore, it is of great significance to develop an efficient and accurate algorithm for detecting
nodules on copper cathode plates. This algorithm aims to reduce labor costs in production,
improve industrial efficiency, and promote the advancement of intelligent manufacturing.

Manual Visual Inspection Methods

Figure 1. Schematic diagram of the copper electrolytic process.

Prior to the widespread use of deep learning technology, defect identification of
metal materials relied on conventional image processing methods and machine learning
approaches. Traditional image processing procedures consist of image acquisition and pre-
processing, feature extraction and selection, classification, and post-processing. Lee et al. [8]
used a combined surface normal Gabor filter (SNGF) to identify surface imperfections.
Firstly, the topological structure of the surface of the object was standardized, then the
surface normal vector was converted into a complex form, and the geometric features
of the defect were extracted, confirming the effectiveness and applicability of the SNGF
method. Cui et al. [9] proposed a detection method for strip steel surface defects based
on wavelet denoising and an improved Canny algorithm. This method enhances image
contrast and addresses uneven brightness issues through improved wavelet denoising
and homomorphic filtering. Additionally, the optimized Canny algorithm is utilized to
accurately detect defect edges on the strip steel, thereby significantly improving the detec-
tion accuracy of surface defects. Chen et al. [10] proposed an unsupervised edge detection
algorithm based on k-means (PK) principal component analysis for identifying surface
cracks on industrial metal components. The algorithm selects temperature features using a
particle swarm optimization method and optimizes the hyperparameters of support vector
machines and k-nearest neighbors using a Bayesian search approach. The method achieved
a crack detection rate of 82.9% and an accuracy rate of 86.2%. The results demonstrate that
traditional image processing and machine learning methods can effectively achieve defect
detection on metal surfaces.

With the rapid advancements in convolutional neural networks in the realm of object
recognition and the widespread adoption of deep learning in computer vision applications,
more and more researchers have begun to implement deep learning-driven surface defect
detection technologies across various industrial applications [11-17]. Jiang et al. [18] in-
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vestigated a surface defect detection method for metal mesh based on an improved Faster
R-CNN algorithm. The method replaces the original Visual Geometry Group network
(VGG16) with a deep residual network (ResNet50). Additionally, k-means and genetic algo-
rithms were introduced to design anchor box sizes better suited to the metal mesh dataset,
effectively addressing the issue of inaccurate defect localization. Li et al. [19] proposed
the YOLOv5s-STCD algorithm. This approach integrates the last C3 module of the back-
bone extraction network with the Swin Transformer structure, introduces the coordinate
attention (CA) mechanism, replaces the original detection head with a decoupled head,
and substitutes the CloU loss function with the SloU loss function. These improvements
enhance the model’s detection performance, making it suitable for defect detection in steel.

To detect and locate the nodule defects on a cathode copper plate, enhance detection
efficiency, and facilitate intelligent production, a lightweight YOLOv5 model combined
with the BiFormer attention mechanism is proposed. The main contributions of this article
can be summarized as follows:

1.  Asthe primary feature extraction network, the lightweight MobileNetV3 network is
presented, significantly decreasing the model’s computational demands and parame-
ter count while expediting the training process.

2. In the neck network, the model’s performance in detecting small targets is enhanced
by incorporating the BiFormer attention mechanism.

3. By combining the advantages of Efficient IoU loss and Focal loss, the initial CloU
loss function is replaced with the Focal-EloU loss function. This change addresses
the disadvantages of low resolution, significant noise interference, and low contrast
between nodules and the cathode copper plate images, ultimately improving detec-
tion accuracy.

4. Inorder to apply the detection model to industrial production, a detection system for
cathode copper plate surface nodules was built.

The subsequent parts of this paper are organized as follows: In Section 2, we review
current work on defect detection. Section 3 details the specific framework of YOLOv5
and the improvements made. In Section 4, we present the copper plate dataset and
experimental environment, and provide an analysis of the results. Finally, Section 5
summarizes the paper.

2. Related Work

With the advancement of convolutional neural networks, the performance of deep
learning-based object detection algorithms has significantly improved, leading to impor-
tant applications in product identification and defect detection. Currently, there are two
primary types of target detection algorithms. The first type is the two-stage object detection
algorithm, which relies on candidate regions and detects targets by extracting a series of
candidate regions from the image for classification. The second type is the one-stage object
detection algorithm based on regression, which identifies all locations in the image and
utilizes a regression algorithm to determine the position and dimensions of the target.

2.1. Two-Stage Object Detection Algorithm

Girshick et al. [20] proposed the object detection algorithm R-CNN, which combines
region proposals with CNNs based on the standard metrics of the PASCAL VOC dataset.
This algorithm performs region proposals from top to bottom through extensive convo-
lutions and applies supervised pre-training on limited data. The findings demonstrate
that the mean average precision (mAP) of the algorithm improves by over 30%. How-
ever, the operational speed decreases due to the redundant data generated during the
algorithm’s execution, making it unable to meet the high-efficiency demands of factory
application scenarios.

Wu et al. [21] improved the Faster R-CNN algorithm for steel strip defect detection,
achieving an mAP of 79.5%. Their approach integrates deformable convolutions and a
multi-scale detection module into the FPN backbone, and incorporates the CBAM attention
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mechanism in the RPN to optimize feature representation. However, despite its high
accuracy, the method requires considerable computational and memory resources, which
may limit its applicability on resource-constrained devices.

Yang et al. [22] improved the Mask R-CNN framework and proposed a new algorithm
for metal surface defect detection. The method adds bottom-up feature fusion paths to the
original FPN, and integrates the CBAM attention mechanism with deformable convolu-
tions to enhance the contextual awareness of ResNet. Additionally, the IOU and DIOU loss
functions are used to optimize the localization accuracy of the predicted bounding boxes.
Experimental results show that the algorithm achieved an mAP of 78.6% on a specialized
dataset, validating its effectiveness. However, due to the complex hyperparameter configu-
ration, the optimization process requires significant time and computational resources.

The two-stage algorithm offers significant insights into the processes and improvement
directions in object detection. It includes two fundamental phases: identifying potential
target areas and subsequently classifying and localizing the targets. Although the RPN
(Region Proposal Network) has been refined to enhance performance using various tech-
niques, like Libra R-CNN [23] and Cascade R-CNN [24], these improvements increase the
algorithm’s complexity and training difficulty. In light of the need to enhance algorithm ef-
ficiency, experts are increasingly turning to one-stage object detection algorithms to achieve
a better balance between training difficulty, detection accuracy, and speed.

2.2. One-Stage Object Detection Algorithm

Wang et al. [25] developed an enhanced algorithm based on YOLOv3 and YOLOv4 to
improve the precision and efficiency of metal surface defect detection by introducing the
concepts of focus structure and anchorless frames. Wang et al. [26] proposed the YOLO-Gear
method, which is based on the YOLOv5s network and achieves efficient end-face defect
detection of metal gears through enhancements in the adaptive convolutional attention
module and feature pyramid network. Yang et al. [27] introduced a method that utilizes
the coordinate attention mechanism alongside improvements at the input end, additive
module, and detection end of YOLOVS5 to effectively enhance the model’s generalization
capability and detection precision. Wang et al. [28] proposed the YOLOv5-GSE model,
which integrates Ghost convolution by replacing the traditional convolution operation
in the backbone network, significantly improving the efficiency and accuracy of metal
surface defect detection. Song et al. [29] proposed an improved YOLOVS algorithm that
replaces the convolution in the Bottleneck module with DCNvV2, enhances feature fusion
using BiFPN, introduces the BiFormer attention mechanism, and employs the WloUv3
loss function to improve the performance of steel surface defect detection. Xie et al. [30]
developed the LMS-YOLO model, which incorporates the lightweight C2f_LMSMC module
into the backbone network, introduces an efficient global attention mechanism, utilizes
three independent decoupled heads for regression and classification, and replaces CloU
with NWD as the regression loss to enhance the detection of small-scale defects.

In this article, we selected YOLOV5-S as the base model for several reasons: (1) YOLOv5
has been validated by extensive academic research and practical application, which demon-
strates its effectiveness and stability in target detection tasks, ensuring reliable performance
in various environments. Additionally, YOLOvV5 has a smaller parameter size, lower
computational complexity, and relatively lower resource requirements, making it more
adaptable in resource-limited scenarios. (2) YOLOV5 offers comprehensive development
documentation and numerous examples, enabling users to adopt and implement the model
quickly. Additionally, the active community support offers users access to a wealth of
resources, discussions, and solutions, greatly facilitating learning and technical exchanges
during the development process.
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3. Method
3.1. YOLOuv5

YOLO (You Only Look Once) is an end-to-end object detection algorithm designed
to meet the demands of real-time detection [31]. YOLOVS is the fifth generation of the
YOLO algorithm, subdivided into four models of varying scales: YOLOv5s, YOLOv5m,
YOLOVS], and YOLOv5x, with YOLOv5s being the most lightweight model in the series.
In this section, the YOLOv5s model will be used as an example to provide a detailed
explanation of the composition of the YOLOV5 architecture, which is primarily composed
of four components: input, backbone, neck, and prediction module. The main structure is
illustrated in Figure 2 below.
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Figure 2. Network structure of the YOLOv5s algorithm.
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Input: Mosaic data augmentation, adaptive anchor frame calculation, and adaptive
image zoom techniques are employed in the input stage of YOLOvb5s.

Backbone: The backbone is designed to extract relevant features from the input image
and convert them into a multi-layer feature map for subsequent object detection tasks. It
consists of the CBS (Conv BatchNorm SiLU) structure, Focus structure, CSP (Cross Stage
Partial) structure, and SPP (Spatial Pyramid Pooling) structure.

Neck: The neck network consists of a feature pyramid network (FPN) [32] with up-
sampling operations and a pyramid attention network (PAN) [33] with downsampling
operations, effectively integrating multiple levels of features. The design allows the network
to combine high-level features with low-level features, facilitating strong semantic informa-
tion transfer through the FPN and precise positioning information extraction through the
PAN, effectively capturing target information across different scales.

Prediction Module: The prediction module employs a convolutional layer to convert
feature maps into object detection outputs. It performs category prediction and annotation,
determines the position and bounding box, and resizes the feature map to match the
original image.

3.2. YOLOvb Algorithm Improvements
3.2.1. MobileNetV3 Backbone Network

To minimize the number of parameters and computations in the model, the feature
extraction network utilizes the lightweight MobileNetV3 [34], employing depthwise sepa-
rable convolution instead of traditional convolution, adding the SE attention mechanism
module, and introducing the nonlinear activation function, h-swish, which further en-
hances the model’s performance and generalization capability. Figure 3 illustrates the
structure of MobileNetV3.
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Figure 3. Basic network unit of MobileNetV3.

Depthwise separable convolution comprises two essential components: depthwise
convolution and pointwise convolution. In depthwise convolution, the unique characteris-
tics of each channel in the input feature matrix are effectively extracted by applying the
convolution kernel to each channel, resulting in an equivalent number of feature maps. This
approach reduces both the floating-point computations and the parameter count compared
to standard convolution. In pointwise convolution, the input features are convolved with
al x 1 convolution kernel. This process is repeated n times to increase the number of
channels to n layers. The processes of traditional convolution and depthwise separable
convolution are illustrated in Figure 4.

Convolution kernel
Input OutputDg;
[N .D,\i u,(i =
DcY Doy Doy

| DG

Dy
Dy

M

I

I

I

|

|

I

|

Input Output “ br M M :
= Dﬁ = o
o . I

II-DK = I\I/I- Pointwise Convolution Process |
|

|

I

|

|

I

|

|

I

|

I

Convolution kernel

N
Input | R Output Dg
1 [

Figure 4. (a) Traditional convolution process diagram; (b) Depthwise separable convolution pro-
cess diagram.

The total amount of operations during the convolution process can be decreased by
using depthwise separable convolution procedures, given that the size of the input data is
Dr x Dp x M, and the number of output channels is N. If the convolution is performed
with N convolution kernels of size Dg x Dk x M employing the traditional convolution
method, the total number of parameters required is Dx X Dg X M X N x D x Dr.

If the depthwise separable convolution operation is employed, the convolution is
performed using M convolution kernels with a size of Dg x Dk x 1 during the depthwise
convolution process. In pointwise convolution, the convolution operation is conducted
with N convolution kernels of size 1 x 1 x M to achieve the same convolution effect as
traditional convolution. The total number of required parameters is Dg x Dg x M x Df X
Dr 4+ M x N x Dr x Dr. Equation (1) illustrates the ratio of the number of parameters for
separable convolution to those for conventional convolution.

DK><DK><DX><DX><M+DK><DK><M><DX><DX><N_1 1

Dg X Dk X M X Dx x Dx X N ﬁ+ﬁ
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The cost of computing resources saved is proportional to the dimensions of the output
channels and the dimensions of the convolution kernel.

The inverted residual structure from MobileNetV2 [35] is incorporated into Mo-
bileNetV3, as shown in Figure 5a. The inverted residual algorithm proceeds as follows:
First, a 1 x 1 convolution is employed to map low-dimensional compressed features into
high-dimensional space. Then, depthwise separable convolution is utilized for feature
extraction. Finally, another 1 x 1 convolution is utilized to reduce dimensionality and map
the features back to a low-dimensional space.
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Figure 5. (a) Inverted residual structure of MobileNetV3; (b) Schematic diagram of SE network structure.

The SE (Squeeze-Excitation) [36] module, which consists of two parts—squeeze and
excitation—is incorporated into MobileNetV3, as illustrated in Figure 5b. In the figure,
W, H, and C represent the dimensions of the feature map—width, height, and number
of channels—while the size of the input feature map is W x H x C. The calculation
process is outlined as follows: First, the input feature map undergoes squeeze, which
performs global average pooling to compress it into a vector of size 1 x 1 x C. Second, the
excitation operation processes this vector through two fully connected layers. The final
step involves scaling, where the calculated weights for each channel are multiplied by the
corresponding two-dimensional matrix of the original feature map to yield the output. The
SE module is capable of adaptively learning the significance of each channel and modifying
its contributions in the feature map based on task requirements. This enables the network
to focus more on important feature channels, thereby enhancing the model’s performance.

3.2.2. BiFormer Attention Mechanism

Due to the presence of various irrelevant interferences on the copper cathode plate’s
surface, the extraction of features is affected. To address this, the attention mechanism [37]
guides the algorithm to concentrate on the critical areas by applying weights to the input
features. Thus, the BiFormer attention mechanism is incorporated to assist the model
in focusing on critical areas with potential defects on the copper plate’s surface, thereby
enhancing detection accuracy.

BiFormer [38] utilizes the Bi-Level Routing Attention (BRA) mechanism to enable
efficient computation distribution in a flexible and query-aware manner. Figure 5 illustrates
that the BRA structure diagram mainly comprises three steps. The first stage involves
segmenting the region into input mappings to efficiently process the data and enhance infor-
mation relevance by constructing a region-level affinity map. For a given two-dimensional
input feature map X € RHFXW*C segment it into S x S non-overlapping regions to en-
sure that each region contains HS—ZV collections of feature vectors, transform X into X" via
a reshape operation, and finally obtain Q, K, and V using a linear mapping function.
Equations (2)-(4) indicate the process.

Q=X"W1 )

K = X"Wk 3)
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V= XW° @)

The symbols W4, WK, and W represent the mapping matrix of query, key, and
value, respectively.

The second stage is to implement inter-region routing using a directed graph. To do
this, calculate the average value of Q and K for each region, and obtain the region-level
query Q" and key K’, and then perform matrix multiplication and softmax operations on
Q" and K" to obtain an inter-region adjacency matrix. This matrix is then pruned to obtain
I" by retaining only the first k connection, as illustrated in Equations (5) and (6).

AT = Q" (KT (5)
I" = topkIndex(A") (6)

where Q" represents the query matrix, K" represents the key matrix, A" represents the
attention matrix, and I" represents the computational index matrix.

The third stage focuses on fine-grained computation. The index matrix I” is utilized
to perform self-attention computation on fine-grained tokens in each region. The gather
function collects the key values, Q and K, followed by self-attention computation on Q3
and K38 within fine-grained regions. Equations (7)—(9) illustrate the process.

K& = gather(K,I") (7)
V8 = gather(V,I") 8)
O = attention(Q, K3, V&) + LCE(V) 9)

where the attention function is used to calculate the attention weights, K8 and V3 represent
the mapping of keys and values on coarse-grained granularity, and Q represents the
mapping of the query matrix. LCE(V) represents the enhancement of local context within
the specified region.

The network architecture of the BiFormer attention mechanism, which employs BRA as
a fundamental building block for constructing a four-stage pyramid structure, is illustrated
in Figure 6. The initial phase involves embedding overlapping patches. During the second
to fourth stages, patch merging modules are employed to reduce the spatial resolution of
the input while increasing the number of channels. Subsequently, N; consecutive BiFormer
blocks are applied to modify the features. Each BiFormer block initially encodes relative
position information by utilizing a 3 x 3 deep convolution. Subsequently, a two-layer
routing attention mechanism module and a two-layer MLP module, with an extension ratio
of e, are employed to model the cross-position relationships and the embedding positions.
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Figure 6. Network structure diagram of the BiFormer’s attention mechanism.

By introducing the two-layer routing mechanism of BRA, the BiFormer balances
the relationship between addressing long-distance dependencies and optimizing com-
putational efficiency while maintaining model flexibility, thereby effectively enhancing
computational efficiency.
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3.2.3. F-EIOU Loss Function

The effectiveness of the loss function in deep learning algorithms directly influences
the training results and the final performance of the model. In this model, the original
CIOU [39] loss function is replaced with the EIOU [40] loss function, which penalizes the
discrepancy between length and breadth and substitutes the portion of the CIOU loss
that tracks aspect ratio consistency. This modification more accurately reflects the true
differences between width and height, thus facilitating faster network convergence. The
calculation formula for EIOU is detailed below:

2(01) PN ()

Lerou = Liou + Lais + Lasp = 1 — 10U + P o2 2 + C2
@) i

(10)

where Cj, and Cy, represent the height and width of the minimum circumscribed rectangle
for both the predicted box and the actual box; W and W¢ t are the widths of the prediction
box and the real box; h and k&' are the lengths of the predicted box and the actual box; b is
the center point of the predicted box, and b8! represents the central coordinates of the actual
box; p(W, W8') = |W — Ws!|, p(h, h8") = |h — hs'|.

The EIOU divides the loss function into three components: the direction loss function
W) | ()

Losp = o o the overlap loss between the predicted box and the actual
w I
2 gt
box Lipy = 1 — IOU; and the distance loss function Ly;; = P q;b ) Figure 7 shows the

schematic diagram of the EIOU loss.

,
o
o
>
o
s
s
-

Figure 7. Schematic diagram of EIOU loss.

Poorly regressed samples significantly impact the regression loss. To enhance the
model’s performance and precision, the Focal concept is integrated into the EIOU loss
function to balance samples with varying regression quality. The final F-EIOU loss function
is derived by combining the EIOU loss function and the Focal loss [41] function, and its
expression is shown in Equation (11).

Lr_grou = IOU"Lgjou (11)

Among them, 7 is applied to fine-tune the loss function’s sensitivity to various IOU
regions, and IOU7 is used to adjust the effect of the intersection union ratio loss.

The F-EIOU bounding box loss function is designed to address the issue of sample
imbalance and to introduce consistency penalty terms and adaptability parameters. This
enhances the model’s robustness and contributes to improved training efficiency for the
network. The neural network’s predictions and expected values can be evaluated using
three types of loss functions. The closer the predictions align with the expected values,
the lower the value of the loss function. Figure 8 illustrates the variations in box_loss and
obj_loss for the F-EIOU loss function compared to the CIOU, DIOU, GIOU, and EIOU loss
functions after 500 training epochs. The results show that the obj_loss of the F-EIOU loss
function converges faster than that of the other loss functions. Additionally, for the same
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training epochs, the F-EIOU loss function demonstrates lower values for both obj_loss
and box_loss. This indicates that the enhanced model demonstrates superior convergence
speed and reliability, facilitating more accurate image sample recognition.

— CIoU
— DIOU
— GIOU
—— EIOU
F-EIOU

0.06 — CI0U
— DIOU
— GIOU
0.05 —— EIOU
F-EIOU

0.04

loss

10.03

obj.

0.02

0.00

Figure 8. Comparison of loss functions: (a) obj_loss comparison; (b) box_loss comparison.

4. Experiments
4.1. Dataset Preparation

The experimental dataset used in this study was collected from an electrolytic copper
cathode production line at a factory in Jiangxi Province, China. Images of the cathode
copper plates were captured using a Dahua color industrial camera (model: A3A10CGS),
ensuring precise capture of lump formation details. The data collection environment was a
standardized industrial setting designed to minimize external interference and maintain
consistent lighting conditions.

The dataset contains 2117 images, which are divided into training (1695 images), vali-
dation (211 images), and test (211 images) sets. Among these, 1906 images were annotated
using Labelme software (Version: 5.5.0), with a total of approximately 34,992 nodule forma-
tion labels. To prevent excessive label occlusion due to the large number of targets, labels
are represented by “0”. The annotations underwent multiple rounds of by a team of three
members to ensure quality and consistency. This dataset is highly representative, effectively
reflecting the challenges encountered in industrial lump detection, such as small-sized
targets and diverse shapes. An example of nodulation images is shown in Figure 9.

T R

Figure 9. Legend for nodule defects on cathode copper plates.

4.2. Experimental Environment

During the training process of the experiments, we carefully configured the training
parameters to ensure optimal model performance. The batch size was set to 16, and the
training duration was 500 epochs. The initial learning rate was set to 0.01, the momentum
was set to 0.937, and the weight_decay was set to 0.0005. The SGD optimization function
was used, and cosine annealing was applied to dynamically modify the learning rate.

In this paper, Windows 10 Professional is used as the operating system version on the
experimental computer, the CPU model is 16 vCPU Intel(R) Xeon(R) Platinum 8352V CPU
@ 2.10 GHz, the GPU used is RTX 4090 for computing, the video memory size is 24 GB, the
Pytorch 2.0 deep learning framework serves as the model’s foundation, and the Python
version is 3.10.13, and Cuda 11.8 is used for GPU acceleration.
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4.3. Evaluation Metrics

In this paper, precision, recall, mean average precision (mAP), params, GFLOPS,
SpeedGPU, and model size are selected as evaluation indicators. Precision is calculated by
dividing the number of samples predicted as positive by the number of correctly predicted
positive samples. Recall is the ratio of correctly predicted positive samples to the total
number of actual positive samples. SpeedGPU refers to the time required for the model
to detect an image, and the model size is the weight file size attained at the conclusion of
training. The specific calculation formula is as follows:

TP

Re=Tp1Fp (12)
TP
Rr = 7p +FN (13)
1
AP = / Rp(t)dt (14)
0
N
mAP = 72*:113 P(®) (15)

where TP measures how many samples the model correctly classifies as positive, FP repre-
sents the number of samples where the model incorrectly classifies negative examples as
positives, and FN represents the number of samples where the model incorrectly classifies
positive examples as negatives.

4.4. Experimental Results and Analysis
4.4.1. Ablation Experiments

The improved YOLOvV5 model was trained, and the graph generated during the
training is shown in Figure 10.

train/box_loss train/obj_loss train/cls_loss metrics/precision metrics/recall
0.014+
—e— result 0.04 1
0480 0.0124| -+ smooth : 0.8 0.81
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Figure 10. Graphs produced during training of the improved YOLOvVS5.

Considering the improvements made during the lightweighting of the network struc-
ture, this research conducts ablation experiments to assess the actual effects of each com-
ponent of YOLOVS on both model performance and efficiency, thus verifying the specific
impact of each improvement. The experimental results are shown in Table 1.
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Table 1. Ablation experiments result (,/ means we used this module).
Module Precision Recall mAP Params SpeedGPU  Weight
MobileNetV3 BiFormer EIOU (%) %) (%) (B) (ms) L
93.27 90.40 92.38 7,020,913 6.99 13.62
VA 87.34 85.93 86.23 1,509,487 4.57 2.87
v 94.71 92.06 93.01 7,020,913 7.14 13.75
v 93.45 91.03 92.74 7,088,241 6.87 13.62
VA v 92.13 89.42 91.67 1,531,951 4.69 291
v v 87.83 86.48 86.77 1,509,487 4.64 2.87
V4 V4 v 92.71 91.24 92.69 1,531,951 4.61 291

With Mobilenetv3 as the primary network for feature extraction, the number of pa-
rameters was reduced by 85% compared to the original model, resulting in a significant
compression of the model size and a 34.6% increase in detection speed under GPU ac-
celeration. This improvement is largely attributed to the use of depthwise separable
convolution (DSC), which is especially beneficial given the limited computing power of
mobile platforms. However, while the model is lightweight, its performance is slightly
reduced because the internal parameter calculation of Mobilenetv3 is not as effective as
that of CSPDarknet-53, resulting in a loss of key information during feature extraction
and a subsequent decrease in certain classification accuracies, thereby reducing overall
defect detection accuracy. Following the addition of the lightweight BiFormer attention
mechanism, precision, recall, and mean average precision increased by 5.4%, 4%, and 6.3%,
respectively, while the number of parameters only increased by 1.4%. This improvement is
due to BiFormer paying attention to a small part of the relevant markers in a query-adaptive
way, without diverting attention to unrelated markers, thereby enhancing the model’s fea-
ture extraction capability and enabling accurate target detection. The lightweight model’s
precision increased by 0.5%, and the mean average precision increased by 0.6% with the
addition of the F-EIOU loss function.

Although the improved YOLOv5 model exhibits slightly lower precision than the
original version, the recall and mean average precision values have increased by 1% and
0.4%, respectively. Additionally, the size of the weight file has been reduced by 78.6%, the
number of parameters has decreased by 78.1%, and the detection speed has increased by
34%. These enhancements fulfill the goal of achieving a lightweight model.

The visualization results of this model for identifying nodules on a copper cathode
plate surface are presented in Figure 11.

Figure 11. Model detection effect diagram: (a) The original image; (b) The image after model detection.
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4.4.2. Comparison of the Improved Model with Different Models

To evaluate the performance of different YOLO models in cathodic copper plate surface
nodule detection, a comparative analysis of various YOLO models was conducted to select
the most suitable model for this task. The results presented in Table 2 show the performance
comparison of these models in detecting nodules on cathodic copper plate surfaces.

Table 2. Comparison of different YOLO models.

Module Precision (%) Recall (%) mAP (%) Params (B) Weight (M)
YOLOv5s 93.27 90.40 92.38 7,020,913 13.62
YOLOv8s 91.39 86.49 92.29 11,166,544 22.6
YOLOv10s 92.47 87.16 93.32 8,067,126 16.6

Ours 92.71 91.24 92.69 1,531,951 291

As shown in Table 2, YOLOvV5 demonstrates outstanding performance in terms of
precision (93.27%) and recall (90.40%), particularly excelling in achieving a balance between
these two metrics. Although the mAP of YOLOv8 and YOLOvV10 is comparable to or
slightly higher than that of YOLOVS5, their recall rates are 86.49% and 87.16%, respectively,
which are significantly lower than YOLOv5's recall rate of 90.40%. A lower recall rate could
lead to the omission of critical targets, such as missing nodule regions in cathodic copper
plate surface nodule detection, thereby compromising the comprehensiveness and accuracy
of detection. Therefore, in applications such as nodule detection, which require a high
recall rate, YOLOv5 demonstrates a clear advantage.

In addition, the parameters of YOLOv8 and YOLOV10 are 11,166,544 B and 8,067,126 B,
respectively, exceeding that of YOLOV5 (7,020,913 B) by approximately 59.2% and 14.9%.
This increase may impose a higher computational burden in practical applications, particu-
larly in hardware-constrained scenarios, potentially leading to slower processing speeds or
memory overflows. In contrast, YOLOVS offers higher computational efficiency, making it
more suitable for resource-limited environments. For nodule detection on copper plates,
considering the hardware limitations, YOLOVS strikes a better balance between perfor-
mance and computational requirements, ensuring efficient and accurate detection even
under constrained resource conditions.

The improved YOLOvV5 model demonstrates higher mAP (92.69%) and recall (91.24%)
compared to the original YOLOVS5, while significantly reducing the number of parame-
ters (1,531,951 B). The weight file size is only 2.91 MB, greatly enhancing computational
efficiency. This allows the model to maintain high detection accuracy while reducing the
computational burden. Therefore, the improved YOLOvS5 model further optimizes both
performance and computational efficiency based on the advantages of YOLOvV5, making
it particularly suitable for resource-limited application scenarios. Figure 12 presents a
comparison of precision, recall, and mAP for each model.

Figure 12. Performance Comparison of YOLO Models: (a) Precision Comparison of YOLO Models;
(b) Recall Comparison of YOLO Models; (c) mAP Comparison of YOLO Models.

To further validate the enhanced lightweight YOLOv5 model’s detection performance,
experiments were conducted to compare it with the single-stage lightweight object detection
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algorithms YOLOv3-tiny and SSD, as well as the two-stage object detection algorithm Faster
RCNN. Evaluations were based on multiple indicators, such as mean average precision
and accuracy. Table 3 presents the results of the comparative experiments.

Table 3. Comparison of different models.

Module Precision (%) Recall (%) mAP (%) Weight (M)
Yolov3-tiny 79.72 75.13 73.72 17.5
SSD 86.25 75.72 89.75 94.34
Faster RCNN 79.31 70.68 68.51 108.29
Ours 92.71 91.24 92.69 291

The table clearly illustrates that the model proposed in this research performs notice-
ably better than alternative target recognition methods. With a size of just 2.91 M, the
trained model provides significant advantages for deployment on portable computers or
embedded systems while maintaining remarkable performance.

5. Industrial Application

To successfully apply the improved YOLOv5 model in real-world industrial produc-
tion, a real-time detection system based on the PyQt5 framework has been developed
specifically for identifying nodule defects on the surface of electrolytic cathode copper
plates. The system is capable of performing real-time online object detection, fully leverag-
ing the advantages of deep learning models to accurately identify nodules on the copper
plate surface. By adjusting the IOU (intersection over union) and confidence thresholds
within the system, the detection precision and recall can be flexibly tuned to meet the
requirements of different production environments.

Specifically, higher IOU and confidence thresholds ensure more accurate object local-
ization and classification, reducing false positives and false negatives. Conversely, lower
thresholds increase the number of detected nodules, thereby enhancing recall, which is
suitable for scenarios requiring high detection rates, such as identifying as many defects
as possible. This adaptive adjustment capability allows the system to optimize its perfor-
mance according to specific task requirements and application scenarios, ensuring accurate
detection results in diverse environments. This flexibility makes the system applicable
not only to defect detection in electrolytic copper plates but also to similar industrial
inspection tasks.

In addition to detecting the number of nodules, this study incorporates a quality
assessment of nodulations to provide a more comprehensive analysis of copper plate
quality. The specific evaluation criteria are as follows:

(1) When the number of nodules is less than or equal to 30, the quality is assessed as
“Good”, indicating that there are few surface defects and the overall quality is high.

(2) When the number of nodules is between 30 and 100, the quality is assessed as “Neu-
tral”, suggesting that there are a certain number of defects on the copper plate surface,
but they remain within an acceptable range.

(3) When the number of nodules exceeds 100, the quality is assessed as “Poor”, meaning
that the copper plate surface has significant defects that may impact the product’s
quality and subsequent use.

By combining both the quantity and quality assessment of nodules, the system pro-
vides more detailed defect information for the production line, helping production per-
sonnel take timely actions for quality control. The application of this real-time detection
system not only enhances production efficiency but also reduces the workload of man-
ual inspection.

Figure 13 demonstrates the application scenario of the real-time detection system
in the detection of nodules on electrolytic cathode copper plates. The system interface
is clear and user-friendly, providing a real-time display of detection results and quality
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assessments, allowing production personnel to promptly understand the quality status of
the copper plates.

(a) Good Product | (b) Neutral Product | (c) Bad Product

Figure 13. Nodule detection system.

6. Limitation and Future Work

Although this study has yielded relatively promising results, we believe there is
still room for further improvement and optimization. In real production environments,
the complexity of the data is far greater than in controlled laboratory settings, and may
involve more noise, occlusions, and other non-ideal conditions. Therefore, future research
should place greater emphasis on how to effectively deploy this model in actual production
lines to address the unforeseen challenges that arise during manufacturing. Moreover,
long-term operational validation is crucial. Only through a comprehensive evaluation
of the model’s performance over extended periods and large-scale operations can we
better ensure its stability and reliability, thereby achieving its intended effects in real-world
production environments.

In addition, with the continuous advancement of object detection technologies, we
plan to explore other lightweight object detection models in future work, alongside further
optimization of the existing models. These lightweight models typically require fewer
computational resources and offer higher operational efficiency, making them more suitable
for resource-constrained industrial environments. Through comparative studies, we aim
to evaluate the performance of these lightweight models versus the approach proposed
in this study across different industrial scenarios, considering factors such as detection
accuracy, computational efficiency, and hardware resource requirements. This will not only
help enhance the applicability and practicality of copper nodular detection technologies
but could also provide valuable insights for optimizing other deep learning applications in
industrial settings.

7. Conclusions

To address the issues related to the manual identification of nodulation on the surface
of copper cathode plates, characterized by low efficiency, high workload, and inaccuracy,
this study presents a lightweight YOLOv5 model integrated with the BiFormer attention
mechanism. The MobileNetV3 module significantly reduces the network parameters,
achieving a lightweight design. The BiFormer attention mechanism introduced in the
neck network significantly enhances the model’s feature extraction capability and target
localization accuracy. Additionally, the F-EIOU loss function has replaced the CIOU
loss function, significantly improving the bounding box regression performance through
its unique focal mechanism and the integration of various geometric information. The
experimental results indicate that, although the improved YOLOv5 model exhibits slightly
lower precision than the original YOLOv5 model, the recall and mean average precision
values have improved by 1% and 0.4%, respectively. In addition, compared to the original
YOLOV5 model, the improved model’s weight file size has been reduced by 78.6%, the
number of parameters has decreased by 78.1%, and the detection speed has improved by
34%, demonstrating outstanding detection performance. The overall performance of this
model exceeds that of the original YOLOv5 model, achieving a balance between lightweight
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design and accuracy, thereby providing valuable references for model deployment. To
verify the performance of the proposed model in actual industrial production, a cathode
copper plate surface nodule defect detection system was developed using PyQt5. This
system features real-time detection capabilities, flexibly meeting the needs of nodule defect
detection in production environments and confirming the industrial application value of
the proposed model.
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