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Abstract: Convolutional Neural Networks (CNNs) are the prevalent technology in computer vision
and have become increasingly popular for medical imaging data classification and analysis. In this
field, due to the scarcity of medical data, pretrained ResNets on ImageNet can be considered a suitable
first approach. This paper examines the medical imaging classification accuracy of conventional basic
custom CNNs compared to ImageNet pretrained ResNets on various medical datasets in an effort to
give more information about the importance of medical data and its preprocessing techniques for
disease studies. Microscope-extracted cytological images were examined along with chest X-rays,
MRI brain scans, and melanoma photographs. The medical images were examined in various sets,
class combinations, and resolutions. Augmented image datasets and asymmetrical training and
validation splits among the classes were also examined. Models were developed after they were
tested and fine-tuned with respect to their network size, parameter values and network methods,
image resolution, size of dataset, multitude, and genre of class. Overfitting was also examined, and
comparative studies regarding the computational cost of different models were performed. The
models achieved high accuracy in image classification that varies depending on the dataset and
can be easily incorporated in future over-the-internet medical decision-supporting (telemedicine)
environments. In addition, it appeared that conventional basic custom CNN overperformed ImageNet
pretrained ResNets. The obtained results indicate the importance of utilizing medical image data as a
testbed for improvements in CNN classification performance and the possibility of using CNNs and
data preprocessing techniques for disease studies.

Keywords: medical image classification; CNN; pretrained ResNet

1. Introduction

Medical imaging data are crucial for identifying health issues and monitoring therapy
progress. Radiologists, cytologists, and other medical professionals are responsible for
interpreting these images. However, time constraints and inherent human limitations [1,2]
present significant challenges. To address these issues, the emerging field of deep learning
in computer vision is developing models for medical image classification and segmenta-
tion [3–6].

Previous research has demonstrated the effectiveness of deep learning in this area,
with one study using ResNet50 on histopathology images for breast cancer classification,
achieving a high accuracy of 99.24% [7]. Similarly, another study reported a high accuracy
of 99.17% using ResNet50 trained on chest X-rays for COVID-19 classification [8]. This
paper also investigates the accuracy performance of various data types using basic custom
CNNs, comparing their performance with that of pretrained ResNet models (with fixed
weights). Specifically, we evaluate a straight-structure residual network (ResNet50), an
inverted residual structure (MobileNetV2), and conventional custom CNNs.
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An emerging question is how the different categories of medical images affect the
classification accuracy of CNNs and ImageNet pretrained ResNets. Also, the number of
images and variety of classes are examined. Different optimizers and learning rates are
also tested, along with various layer configurations and pooling methods. Additionally, we
evaluate data preprocessing techniques to assess their impact on the model’s classification
performance and, more importantly, to uncover insights into the nature of the disease as
depicted in medical images. Finally, we analyze the computational costs associated with
using two different processors: CPU and GPU.

2. Materials and Methods
2.1. Materials

To compare the different methods, data from four medical image categories are ex-
amined: microscope-extracted cytological images, chest X-rays (adult and pediatric), MRI
brain scans, and melanoma photographs (Table 1).

2.1.1. Cytological Images

The cytological images that were used to train the models were low-resolution
(100 × 120 p) images extracted from pap smear tests [9]. Each of the images contains
a single cell from the following five categories:

Koilocytotic cells indicate an HPV infection and can be found alone or in small groups.
They have big and empty perinuclear space and dense basophilic or eosinophilic cytoplasm.
The nucleus is double or triple the size of the ordinary nucleus.

Dyskeratotic cells have undergone an abnormal process of keratinization. They are
small cells with irregular shapes and big irregular nuclei.

Metaplastic cells are round and polygonic cells with dense double-color cytoplasm
and round-centered nucleus.

Parabasal are the smallest epithelial cells in a test pap. They are round, and they
have a big nucleus-to-cytoplasm ratio (N:C ratio). Cytoplasm is dense, and the nucleus is
wave-like with thin, granular chromatin.

Intermediate cells are two to three times bigger than Parabasal cells but with nuclei
of the same size. Small intermediate cells are almost cyclical with big nuclei. Large
intermediate cells or superficial intermediate cells have a polygonic shape and a small
nucleus-to-cytoplasm ratio (N:C ratio). Superficial (dead cells) are the largest cells in a pap
smear test. They have a polygonic shape and a small dark nucleus or no nucleus at all.
Cytoplasm can have vacuoles as the cell ages [10].

Trained cytologists can classify the classes with very high accuracy, but the process is
laborious and time-consuming. The basic custom CNN model that was developed can clas-
sify these five classes with high accuracy (~94%) and with a very fast speed (~5 ms/image).
Also, the model seems to perform well on the unseen data we tested, like the ones in
Figure 1, classifying the images correctly with high certainty (>95%).
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Figure 1. Pap smear test: (a) koilocytotic cells (original size); (b) koilocytotic cells (zoomed and 
cropped). Images from Axioscope 5 microscope camera Axiocam 208 Color. 

2.1.2. Chest X-Rays 
Pneumonia is a general term used to describe an infection that inflames the air sacs 

of the lungs. It is usually caused by the fluid or purulent material that fills the air sacs. 
Bacterial pneumonia is a type of serious pneumonia caused by the development of bacte-
ria in the lungs. The most common are Streptococcus pneumoniae, Haemophilus influen-
zae, and Staphylococcus aureus. These infections often happen after a cold or the flu when 
the immune system is weakened. Viruses that infect the respiratory system are influenza 
A, B, rhinoviruses, and the respiratory syncytial virus RSV [11,12]. 

On X-rays, dark areas represent areas full of air, and gray areas suggest subcutaneous 
tissue or fat. Light gray represents soft tissues like the heart and the blood vessels. The 
white areas show bones, and the bright white areas suggest metallic objects like pacemak-
ers or defibrillators.  

Viral pneumonias show seasonal distribution and occur mostly in the winter and 
spring. In most cases, chest X-rays, as interpreted by medical experts, cannot classify viral 
to bacterial pneumonia with absolute certainty [13]. 

An example that shows the difficulty (even for the trained professionals) of classifi-
cation between viral and bacterial pneumonia is given in Figure 2. 

To many professionals, these chest X-rays indicate viral infections, but the top center 
and bottom left X-rays are, in fact, from adults that have bacterial pneumonia. In this case, 
the developed custom CNN models can correctly capture the difference. 

To test the model on X-rays, four different datasets were used. Two datasets with 768 
× 1024 p image resolution and two classes (pneumonia and healthy), one with adult X-
rays [14], one with pediatric X-rays [15], and two with three (bacterial pneumonia, viral 
pneumonia, healthy) and four classes (bacterial pneumonia, viral pneumonia, COVID19, 
healthy) of low to medium resolution (300 × 400 p) [16]. 

Figure 1. Pap smear test: (a) koilocytotic cells (original size); (b) koilocytotic cells (zoomed and
cropped). Images from Axioscope 5 microscope camera Axiocam 208 Color.

2.1.2. Chest X-Rays

Pneumonia is a general term used to describe an infection that inflames the air sacs
of the lungs. It is usually caused by the fluid or purulent material that fills the air sacs.
Bacterial pneumonia is a type of serious pneumonia caused by the development of bacteria
in the lungs. The most common are Streptococcus pneumoniae, Haemophilus influenzae,
and Staphylococcus aureus. These infections often happen after a cold or the flu when the
immune system is weakened. Viruses that infect the respiratory system are influenza A, B,
rhinoviruses, and the respiratory syncytial virus RSV [11,12].

On X-rays, dark areas represent areas full of air, and gray areas suggest subcutaneous
tissue or fat. Light gray represents soft tissues like the heart and the blood vessels. The
white areas show bones, and the bright white areas suggest metallic objects like pacemakers
or defibrillators.

Viral pneumonias show seasonal distribution and occur mostly in the winter and
spring. In most cases, chest X-rays, as interpreted by medical experts, cannot classify viral
to bacterial pneumonia with absolute certainty [13].

An example that shows the difficulty (even for the trained professionals) of classifica-
tion between viral and bacterial pneumonia is given in Figure 2.

To many professionals, these chest X-rays indicate viral infections, but the top center
and bottom left X-rays are, in fact, from adults that have bacterial pneumonia. In this case,
the developed custom CNN models can correctly capture the difference.

To test the model on X-rays, four different datasets were used. Two datasets with
768 × 1024 p image resolution and two classes (pneumonia and healthy), one with adult
X-rays [14], one with pediatric X-rays [15], and two with three (bacterial pneumonia, viral
pneumonia, healthy) and four classes (bacterial pneumonia, viral pneumonia, COVID19,
healthy) of low to medium resolution (300 × 400 p) [16].
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Figure 2. Adult chest X-rays. From top to bottom and left to right: 1,3.5 viral pneumonia; 2,4 bacterial 
pneumonia. Images from the adult chest X-ray dataset that was used to train the models. 

2.1.3. MRI Brain Scans 
Magnetic Resonance Imaging (MRI) is used to examine almost any part of the body 

like the brain, the spinal cord, bones, breasts, internal organs, heart, and blood vessels. 
MRI provides better contrast in images of soft tissues, and for that reason, it is commonly 
used to scan the brain. MRI is a safe method for brain imaging, diagnosing tumors, aneu-
rysms, epilepsy, dementia, encephalitis, etc. [17]. 

The pituitary tumor occurs in the anterior body of the pituitary gland [18]. 
Meningioma is a tumor of leptomeningeal origin that develops on the brain’s menin-

ges, the three layers of membrane that cover the brain and spinal cord [19]. 
Gliomas (Figure 3) are tumors out of various types of glial cells and form in the cen-

tral nervous system (brain or spinal cord) and peripheral nervous system [20]. 
To test the MRI scans, the dataset of medium resolution (300 × 300 p) images [21] was 

tested in 4-class (‘Normal’, ‘glioma_tumor’, ‘meningioma_tumor’, ‘pituitary_tumor’) and 
2-class (‘Tumor’, ‘Normal’) combinations. 

The augmentation technique was also tested with a pre-augmented dataset. The aug-
mented dataset of the 4-class MRI brain scans related to tumors (‘Normal’, ‘glioma_tu-
mor’, ‘meningioma_tumor’, ‘pituitary_tumor’) were created by the following techniques: 
(a) random noise insertion (salt and pepper noise) setting pixels to 0 or 255; (b) histogram 
equalization to enhance the contrast and image details; (c) clockwise and counterclock-
wise rotation on a certain angle; (d) brightness adjustment (adding or removing intensity 
from pixels); (e) horizontal and vertical flipping of the image. 

 

Figure 2. Adult chest X-rays. From top to bottom and left to right: 1,3.5 viral pneumonia; 2,4 bacterial
pneumonia. Images from the adult chest X-ray dataset that was used to train the models.

2.1.3. MRI Brain Scans

Magnetic Resonance Imaging (MRI) is used to examine almost any part of the body
like the brain, the spinal cord, bones, breasts, internal organs, heart, and blood vessels. MRI
provides better contrast in images of soft tissues, and for that reason, it is commonly used
to scan the brain. MRI is a safe method for brain imaging, diagnosing tumors, aneurysms,
epilepsy, dementia, encephalitis, etc. [17].

The pituitary tumor occurs in the anterior body of the pituitary gland [18].
Meningioma is a tumor of leptomeningeal origin that develops on the brain’s meninges,

the three layers of membrane that cover the brain and spinal cord [19].
Gliomas (Figure 3) are tumors out of various types of glial cells and form in the central

nervous system (brain or spinal cord) and peripheral nervous system [20].
To test the MRI scans, the dataset of medium resolution (300 × 300 p) images [21] was

tested in 4-class (‘Normal’, ‘glioma_tumor’, ‘meningioma_tumor’, ‘pituitary_tumor’) and
2-class (‘Tumor’, ‘Normal’) combinations.

The augmentation technique was also tested with a pre-augmented dataset. The aug-
mented dataset of the 4-class MRI brain scans related to tumors (‘Normal’, ‘glioma_tumor’,
‘meningioma_tumor’, ‘pituitary_tumor’) were created by the following techniques: (a) ran-
dom noise insertion (salt and pepper noise) setting pixels to 0 or 255; (b) histogram equaliza-
tion to enhance the contrast and image details; (c) clockwise and counterclockwise rotation
on a certain angle; (d) brightness adjustment (adding or removing intensity from pixels);
(e) horizontal and vertical flipping of the image.
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Figure 3. From top to bottom and left to right: original image; brighter; darker; horizontal flip; ro-
tated; vertical flip (Glioma). Glioma tumor image from the dataset used to train the models. 
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defined borders. 
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melanomas are typically one color. 

Diameter: Malignant melanoma growths are mostly larger than 6 mm in diameter. 
Evolving: Malignant melanoma tends to change over time in size, shape, or color.  
The fact that melanoma data (Figure 4) can be extracted by simpler means drove re-

searchers recently to examine them for telemedicine applications [24]. Telemedicine is be-
ing used in health centers and medical offices in small towns, villages, and rural areas as 
a means for people to have access to more specialized healthcare when visiting these pri-
mary care units. Also, some clinics use telemedicine to monitor patients via virtual visits. 
During the COVID-19 pandemic, telemedicine saw a significant rise, and many people 
still use it [25]. Telemedicine is expected to be more popular as more people become fa-
miliar with new technologies and as the hardware becomes better. Internet of Things de-
vices and wearable devices nowadays can automatically record and send data, such as 
blood pressure, blood sugar and oxygen levels, heart rate, physical activity, or sleep. 

Figure 3. From top to bottom and left to right: original image; brighter; darker; horizontal flip;
rotated; vertical flip (Glioma). Glioma tumor image from the dataset used to train the models.

2.1.4. Melanoma Photographs

Melanoma (malignant melanoma) is a kind of skin cancer that starts in the melanocytes.
Melanoma’s early symptoms are usually a change in the mole or the development of an
unusual pigment with irregular shapes and different colors. The melanoma features that
medical professionals look for when diagnosing and classifying melanomas are known as
ABCDE [22,23]. ABCDE stands for asymmetry, border, color, diameter, and evolving:

Asymmetry: Refers to the uniformity of its shape. Benign melanomas (moles) are
typically uniform and symmetrical.

Border: Refers to the irregularity of its borders. Benign melanomas usually have
well-defined borders.

Color: Malignant melanoma lesions are often more than one color or shade. Benign
melanomas are typically one color.

Diameter: Malignant melanoma growths are mostly larger than 6 mm in diameter.
Evolving: Malignant melanoma tends to change over time in size, shape, or color.
The fact that melanoma data (Figure 4) can be extracted by simpler means drove

researchers recently to examine them for telemedicine applications [24]. Telemedicine is
being used in health centers and medical offices in small towns, villages, and rural areas
as a means for people to have access to more specialized healthcare when visiting these
primary care units. Also, some clinics use telemedicine to monitor patients via virtual visits.
During the COVID-19 pandemic, telemedicine saw a significant rise, and many people still
use it [25]. Telemedicine is expected to be more popular as more people become familiar
with new technologies and as the hardware becomes better. Internet of Things devices
and wearable devices nowadays can automatically record and send data, such as blood
pressure, blood sugar and oxygen levels, heart rate, physical activity, or sleep.
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Figure 4. (a) Malignant melanoma; (b) benign melanoma. Melanoma photographs from the dataset
used to train the models.

To train the melanoma model, a set of 2 classes (Benign and Malignant) of low resolu-
tion (224 × 224 p) was used [26].

Datasets are summarized in the following table:

Table 1. Datasets.

Dataset Modalities Number of
Images

Number of
Classes Image Resolution

Melanoma Photographs 13,869 2 224 × 224

Pap smear test
Microscope

Photographs 1652 2 100 × 120

4039 5 100 × 120

Pneumonia

5850 2 768 × 1024, 500 × 700
Chest
X-rays 5847 2 768 × 1024, 500 × 700

9203 4 300 × 400
7924 3 300 × 400

Brain tumors
MRI

Brain scans 7019 4 300 × 300

7019 2 300 × 300

2.2. Methods
2.2.1. Custom CNN

Digital images usually have 8-bit depth on each channel (color/RGB). That means
the pixels range between 0 (no light) and 255 (maximum brightness) on each channel. For
example, (0,0,0) is black, (255,255,255) is white, (255,0,0) is red, (0,255,0) is green, (0,0,255)
is blue, (255,255,0) is yellow, and so on. Another important factor is image resolution,
which is the number of pixels in each dimension. This parameter is usually changed by
downsizing/downscaling the image. Another preprocessing technique is applying a filter,
for example, a Gaussian filter that removes noise [27].

Basic CNN architecture (15 to 19 total layers)
The basic architecture was developed on the tensorflow platform as a keras sequential

model that groups a linear stack of layers into a model. On input, the 8-bit depth images
were rescaled by dividing by 255 so that numbers fall between 0 and 1, which is more
‘natural’ for the neural networks. After the rescaling layer, 5 to 7 convolutional layers
were added with a number of size-3 × 3 filters ranging progressively from 16 to 128 to
extract the features. The padding technique was applied to retain the image size. After
filtering, a ReLU activation function was applied to the feature map. Each convolutional
layer was followed by a corresponding pooling layer that reduces the dimensionality of the
feature maps. The pooling layers used the max pooling method, except for the last pooling
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layer, which used average pooling. After the average pooling layer, a dropout layer, which
randomly sets inputs to 0, was added to reduce the overfitting phenomenon, and then a
flattened layer was added to spread the data in one dimension. One-dimensional data were
connected to the fully connected (dense) layer of 128 nodes, followed by a dense layer with
as many nodes as the number of classes.

Loss functions calculate how far the predicted class is from the actual class.

Loss =
∣∣∣Ypredicted −Yactual

∣∣∣
The model was then improved by calculating and trying to minimize that loss. The

validation–loss curve, along with the validation accuracy, provided information about the
performance of the model.

The two most important loss functions and the ones we tested are as follows:
Binary Cross Entropy
Binary Cross Entropy is used for two-class data and is mathematically expressed with

the following equation:

hp(q) = −
1
N

N

∑
i=1

yi log(p(yi)) + (1− yi) log(1− p(yi)) (1)

where y is the class (1 or 0), p(yi) is the possibility that the data belong in class 1, (1 −
p(yi)) is the possibility of class 0. The possibilities of the two classes always add to 1.

Binary Cross Entropy has a natural synergy with the sigmoid activation function. This
happens because the sigmoid gives the output values strictly between 0 and 1.

(Sparse) Categorical Cross entropy
Categorical Cross entropy (or Softmax loss) is a Softmax function along with the cross

entropy loss function and is used for multiclass models.
Cross entropy is expressed as follows:

Cross Entropy = −
C

∑
i=1

ti log(si) (2)

Using this loss function, we can obtain a vector that contains possibilities for all the
classes. These possibilities do not add to 1 like in Binary Cross Entropy.

Sparse categorical cross entropy is the same as categorical cross entropy, with the only
difference being the way that class labels are expressed. For example, on categorical cross
entropy, we have (for three classes) labels [1,0,0], [0,1,0], [0,0,1], while on sparse categorical
cross entropy, we have [1–3].

If the network makes a wrong prediction with high certainty, sigmoid (or Softmax)
gives a number close to 0 (or to 1), and thus Cross entropy becomes high.

Optimizers are algorithms for calculating and updating network parameters like
weights and the learning rate, with the purpose of reducing the cost.

Two often used optimizers, which are also the ones we tested, are as follows:
Adam and AdamW
Adam (Adaptive Momentum) [28] (see Appendix A) combines ideas from RMSProp

and Gradient Descent with Momentum algorithms.
Adam converges fast and works well with big datasets and noisy data but needs more

parameter tuning than other algorithms [28]. AdamW is a variant of Adam that uses a
method for decaying weights that decouples the weight decaying from the learning rate to
increase the generality of the models [29].

The models were compiled with Adam (and its variant AdamW) optimizer with
learning rates ranging between 8 × 10−5 and 3 × 10−4. The loss function for the multiclass
models was sparse categorical cross entropy, and the final activation function was Softmax.
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For the two-class models, Binary Cross Entropy with Sigmoid was also tested. The metric
used to evaluate the models was accuracy. Accuracy is expressed as follows:

Accuracy =
TP + TN

TP + TN + FP + FN

where TP = true positives; TN = true negatives; FP = false positives; FN = false negatives,
e.g., for the melanoma:

Melanoma Predicted Value

Actual Value Malignant Benign

Malignant TP FN

Benign FP TN

An example of a basic custom CNN with 19 layers (total) is the following:
CNN19
model = tf.keras.Sequential([

tf.keras.layers.Rescaling(1./255),
tf.keras.layers.Conv2D(16, 3, activation = ‘relu’, padding=‘same’),
tf.keras.layers.MaxPooling2D(),
tf.keras.layers.Conv2D(32, 3, activation = ‘relu’, padding=‘same’),
tf.keras.layers.MaxPooling2D(),
tf.keras.layers.Conv2D(32, 3, activation = ‘relu’, padding=‘same’),
tf.keras.layers.MaxPooling2D(),
tf.keras.layers.Conv2D(32, 3, activation = ‘relu’, padding=‘same’),
tf.keras.layers.MaxPooling2D(),
tf.keras.layers.Conv2D(64, 3, activation = ‘relu’, padding=‘same’),
tf.keras.layers.MaxPooling2D(),
tf.keras.layers.Conv2D(64, 3, activation = ‘relu’, padding=‘same’),
tf.keras.layers.MaxPooling2D(),
tf.keras.layers.Conv2D(64, 3, activation = ‘relu’, padding=‘same’),
tf.keras.layers.AveragePooling2D(),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(128, activation=‘relu’),
tf.keras.layers.Dense(num_classes)

])

2.2.2. Pretrained ResNets

Other researchers have previously shown the potential of ResNet50 in medical imag-
ing [7,8,30–33]. Behar et al. reached 99.24% on a 2-class breast cancer model. However,
their model was a fully retrained ResNet50 and had unbalanced classes of histopathological
images (2480 benign and 5429 malignant). Hossain et al. also reached 99.17% accuracy with
retrained ResNet50 on chest X-rays for COVID-19 classification.

In this paper, the ImageNet pretrained ResNets had their layers frozen (fixed weights),
and a new dense layer was added as a classifier and trained on the new medical imaging
data. This is the basic strategy of transfer learning. They were also tested with pre-
augmented data produced by a random horizontal flip rotation.

Computational costs were examined for each model on CPU (Windows 11) and GPU
(Ubuntu). The training speeds of the models were measured on a modern conventional
desktop computer (see Appendix B) in order to provide a benchmark for comparison.
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3. Results
3.1. Model and Data Setup

The models demonstrated high accuracy, achieving 94.3% on the 5-class classification,
even when tested with external data sourced from ultra-high-resolution images that were
subsequently downsized to a lower resolution. Specifically, we used test images of pap
plaques captured with a microscope camera at a resolution of 3840 × 2160. These plaques
consisted of two types: those with superficial intermediate cells and those with koilocytotic
cells. The images were then resized to 120 × 100 pixels, yet the CNN model classified them
correctly with high confidence. Notably, the model accurately identified koilocytotic cells
even when they were located in a small region of the image, demonstrating the strength of
CNNs in local detection.

For the high-resolution dataset of chest X-rays, the models achieved over 96% accuracy
in distinguishing between pneumonia and normal cases. Similar results were observed
in pediatric X-rays, which involved the conditions of Pediatric Pneumonia and Pediatric
Normal, also at a resolution of 768 × 1024 pixels. This indicates that variations in child
anatomy do not significantly impact performance, as the CNN models maintained high
validation accuracy across both datasets.

In the 4-class chest X-ray dataset (comprising COVID-19, bacterial pneumonia, viral
pneumonia, and normal), validation accuracy reached 86.6% at a resolution of 300 × 400
pixels. The same dataset was also tested using various 3-class combinations. The subset
consisting of bacterial pneumonia, viral pneumonia, and normal cases showed the same
validation accuracy as the original dataset, indicating that the models struggle more with
distinguishing between the two types of pneumonia. For the other 3-class combinations,
validation accuracy ranged from 96% to 98%. Finally, in the 2-class classification of COVID-
19 versus normal, the model achieved an impressive validation accuracy of 99.5%. To gain
deeper insight into the challenges associated with the two types of pneumonia, we further
divided the dataset into two sub-datasets:

A. Healthy and viral pneumonia, for which we achieved 97.24% validation accuracy;
B. Healthy and bacterial pneumonia, for which we achieved 97.99% validation accuracy.

We then preprocessed the images of both sub-datasets with the following two tech-
niques, which we imposed separately only on the training sets:

1. We imposed a random rotation on each training set with angles ranging from −40%
of 2*pi to 40% of 2*pi with equal chance. Accuracy dropped to 94.18% and 95.28%,
respectively.

2. We imposed a random—with a 50% chance—horizontal flip on each training set.
Accuracies dropped to 96.28% and 97.53%, respectively.

From these results, one can suggest the importance of the lungs and the patterns that
appear on them for these diseases (which, of course, is something to be expected). Also,
viral pneumonia images may possibly contain more “global” patterns. Another possible
indication is that viral pneumonia images contain more local inbetween/interlobal patterns,
which get lost when a horizontal flip is applied (bigger val_accuracy % loss on dataset A
after technique number 2) and/or bacterial pneumonia images contain more local lobal
patterns.

These are possible explanations because, by core design, CNNs with their convolu-
tional filters are decisive mainly because of local patterns. This characteristic has been
previously shown: “a CNN’s decision is based mainly on recognizing local-patterns without
taking into account their relative positions” [34] In order to evaluate these possibilities, fur-
ther research on more datasets is needed. In cases of specific diseases that are not fully
understood by humans from their medical images, CNN models and data preprocessing
techniques could be examined as a possible means for more insight into these diseases.

On the 4-class MRI brain scan data that are tumor-related, on a small to medium dataset
size with 300 × 300-pixel resolution, we obtained a 97.29% validation accuracy. On the
same dataset, after the (premade) augmentation preprocessing was applied, the same vali-
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dation accuracy was achieved in only 10 epochs and a lesser resolution of 224 × 224 pixels.
Padding on these images showed no significant effect on the validation accuracy of the
models.

Adam optimizer and its variant AdamW had the best validation accuracy and best
performance overall in all models.

On all CNN models, Adam and AdamW performed about the same, with AdamW
being a bit smoother on loss convergence while being a bit slower. The successful learning
rates were close to 10−4, and the total number of layers was close to 17, depending on
the dataset. Average pooling on the last convolutional layer gave better results than
maxpooling. Binary Cross Entropy with sigmoid function gave about the same results on
two-class classification with sparse categorical cross entropy/Softmax.

Fixed-weight pretrained ResNets performed very well overall but were slightly behind
the basic custom CNNs. Random horizontal flip did not have a significant effect on
the validation accuracy of these datasets. By reading the curves, the deeper residual
networks had better convergence, while the custom CNNs had to be stopped early to
reduce overfitting.

3.2. Model Architecture and Curve Results
3.2.1. Melanoma Classification Model

For melanoma classification, a basic model with 15 layers (total) was developed. Vari-
ous optimizers and learning rates were tested (Table 2). Adam, with a 3× 10−4 learning rate,
had the best results with 93.05% classification accuracy (Figure 5). Binary Cross Entropy
and sigmoid had roughly the same results as sparse categorical cross entropy/Softmax.

Table 2. Melanoma photographs: 15-layer conventional CNN model architecture (SparseCategorical-
CrossEntropy/no padding).

Layer (Type) Output Shape Parameters #

Rescaling (None, 224, 224, 3) 0
Conv2d (None, 222, 222, 16) 448

Max Pooling (None, 111, 111, 16) 0
Conv2d (None, 109, 109, 32) 4640

Max Pooling (None, 54, 54, 32) 0
Conv2d (None, 52, 52, 32) 9248

Max Pooling (None, 26, 26, 32) 0
Conv2d (None, 24, 24, 64) 18,496

Max Pooling (None, 12, 12, 64) 0
Conv2d (None, 10, 10, 64) 36,928

Average Pooling (None, 5, 5, 64) 0
Dropout (None, 5, 5, 64) 0
Flatten (None, 1600) 0
Dense (None, 128) 204,928
Dense (None, 2) 258

Total parameters 274,946 (1.05 MB)
Trainable parameters 274,946 (1.05 MB)

Non-trainable parameters 0 (0.00 B)

ResNets had worse results: 89.79% (ResNet50) and 86.39% (MobileNetV2). ResNets
converged faster than the custom CNN model.
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of the melanoma classification models: (a) 15-layer conventional CNN model trained on melanoma 
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model. 
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Figure 5. Validation (orange)/training accuracy (blue) and validation (orange)/training error (blue)
of the melanoma classification models: (a) 15-layer conventional CNN model trained on melanoma
photographs; (b) ResNet50 ImageNet pretrained model; (c) MobileNetV2 ImageNet pretrained model.

3.2.2. Adult X-Rays Pneumonia Model

For the adult X-ray classification, a basic model with 19 layers (total) was developed.
Various optimizers and learning rates were tested (Table 3). Adam, with an 8 × 10−5

learning rate, had the best results with 96.31% classification accuracy (Figure 6). Binary
Cross Entropy and sigmoid had roughly the same results as sparse categorical cross en-
tropy/Softmax.

Table 3. Adult chest X-rays: 19-layer conventional CNN model architecture (with zero padding).

Layer (Type) Output Shape Parameters #

Rescaling (None, 500, 700, 3) 0
Conv2d (None, 500, 700, 16) 448

Max Pooling (None, 250, 350, 16) 0
Conv2d (None, 250, 350, 32) 4640

Max Pooling (None, 125, 175, 32) 0
Conv2d (None, 125, 175, 32) 9248

Max Pooling (None, 62, 87, 32) 0
Conv2d (None, 62, 87, 32) 9248

Max Pooling (None, 31, 43, 32) 0
Conv2d (None, 31, 43, 64) 18,496

Max Pooling (None, 15, 21, 64) 0
Conv2d (None, 15, 21, 64) 36928

Max Pooling (None, 7, 10, 64) 0
Conv2d (None, 7, 10, 64) 36,928

Average Pooling (None, 3, 5, 64) 0
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Table 3. Cont.

Layer (Type) Output Shape Parameters #

Dropout (None, 3, 5, 64) 0
Flatten (None, 960) 0
Dense (None, 128) 123,008
Dense (None, 1) 129

Total parameters 239,073 (933.88 KB)
Trainable parameters 239,073 (933.88 KB)

Non-trainable parameters 0 (0.00 B)
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X-rays; (b) ResNet50 ImageNet pretrained model; (c) MobileNetV2 ImageNet pretrained model. 
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learning rate, had the best results with 97.18% classification accuracy (Figure 7). Binary 
Cross Entropy and sigmoid had roughly the same results as sparse categorical cross en-
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Figure 6. Validation (orange)/training accuracy (blue) and validation (orange)/training error (blue)
of the adult chest X-ray classification models: (a) 15-layer conventional CNN model trained on chest
X-rays; (b) ResNet50 ImageNet pretrained model; (c) MobileNetV2 ImageNet pretrained model.

ResNets had worse results: 93.04% (ResNet50) and 91.79% (MobileNetV2). ResNets
converged faster than the custom CNN model.

3.2.3. Pediatric X-Rays Pneumonia Model

For the pediatric X-ray classification, a basic model with 17 layers (total) was de-
veloped. Various optimizers and learning rates were tested (Table 4). Adam, with a
3 × 10−4 learning rate, had the best results with 97.18% classification accuracy (Figure 7).
Binary Cross Entropy and sigmoid had roughly the same results as sparse categorical cross
entropy/Softmax.

Table 4. Pediatric chest X-ray: 17-layer conventional CNN model architecture (with zero padding).

Layer (Type) Output Shape Parameters #

Rescaling (None, 768, 1024, 3) 0
Conv2d (None, 768, 1024, 16) 448

Max Pooling (None, 384, 512, 16) 0
Conv2d (None, 384, 512, 32) 4640

Max Pooling (None, 192, 256, 32) 0
Conv2d (None, 192, 256, 32) 9248

Max Pooling (None, 96, 128, 32) 0
Conv2d (None, 96, 128, 64) 18,496

Max Pooling (None, 48, 64, 64) 0
Conv2d (None, 48, 64, 64) 36,928

Max Pooling (None, 24, 32, 64) 0
Conv2d (None, 24, 32, 64) 36,928

Average Pooling (None, 12, 16, 64) 0
Dropout (None, 12, 16, 64) 0
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Table 4. Cont.

Layer (Type) Output Shape Parameters #

Flatten (None, 12,288) 0
Dense (None, 128) 1,572,992
Dense (None, 1) 129

Total parameters 1,679,809 (6.41 MB)
Trainable parameters 1,679,809 (6.41 MB)

Non-trainable parameters 0 (0.00 B)
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Figure 7. Validation (orange)/training accuracy (blue) and validation (orange)/training error (blue) 
of the pediatric X-ray classification models: (a) 17-layer conventional CNN model trained on pedi-
atric chest X-rays; (b) ResNet50 ImageNet pretrained model; (c) MobileNetV2 ImageNet pretrained 
model. 

3.2.4. MRI Brain Scan Tumor Classification Model 
For the MRI brain scan classification, a basic model with 19 layers (total) was devel-

oped. Various optimizers and learning rates were tested (Table 5). Adam, with 3 × 10−4 
learning rate, had the best results with 99.56% classification accuracy (Figure 8). Binary 
Cross Entropy and sigmoid had roughly the same results as sparse categorical cross en-
tropy/Softmax. 

ResNets had worse results: 97.60% (ResNet50) and 97.82% (MobileNetV2). ResNets 
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Figure 7. Validation (orange)/training accuracy (blue) and validation (orange)/training error (blue)
of the pediatric X-ray classification models: (a) 17-layer conventional CNN model trained on pediatric
chest X-rays; (b) ResNet50 ImageNet pretrained model; (c) MobileNetV2 ImageNet pretrained model.

ResNets had worse results: 93.69% (ResNet50) and 92.76% (MobileNetV2). ResNets
converged faster than the custom CNN model.

3.2.4. MRI Brain Scan Tumor Classification Model

For the MRI brain scan classification, a basic model with 19 layers (total) was devel-
oped. Various optimizers and learning rates were tested (Table 5). Adam, with 3 × 10−4

learning rate, had the best results with 99.56% classification accuracy (Figure 8). Binary
Cross Entropy and sigmoid had roughly the same results as sparse categorical cross en-
tropy/Softmax.

Table 5. MRI brain scans (tumors): 19-layer conventional CNN model architecture (with zero
padding).

Layer (Type) Output Shape Parameters #

Rescaling (None, 300, 300, 3) 0
Conv2d (None, 300, 300, 16) 448

Max Pooling (None, 150, 150, 16) 0
Conv2d (None, 150, 150, 32) 4640

Max Pooling (None, 75, 75, 32) 0
Conv2d (None, 75, 75, 32) 9248

Max Pooling (None, 37, 37, 32) 0
Conv2d (None, 37, 37, 32) 9248

Max Pooling (None, 18, 18, 32) 0
Conv2d (None, 18, 18, 64) 18,496

Max Pooling (None, 9, 9, 64) 0
Conv2d (None, 9, 9, 64) 36,928

Max Pooling (None, 4, 4, 64) 0
Conv2d (None, 4, 4, 64) 36,928
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Table 5. Cont.

Layer (Type) Output Shape Parameters #

Average Pooling (None, 2, 2, 64) 0
Dropout (None, 2, 2, 64) 0
Flatten (None, 256) 0
Dense (None, 128) 32,896
Dense (None, 1) 129

Total parameters 148,961 (581.88 KB)
Trainable parameters 148,961 (581.88 KB)

Non-trainable parameters 0 (0.00 B)

Information 2024, 15, x FOR PEER REVIEW 17 of 28 
 

 

Conv2d (None, 9, 9, 64) 36,928 
Max Pooling (None, 4, 4, 64) 0 

Conv2d (None, 4, 4, 64) 36,928 
Average Pooling (None, 2, 2, 64) 0 

Dropout (None, 2, 2, 64) 0 
Flatten (None, 256) 0 
Dense (None, 128) 32,896 
Dense (None, 1) 129 

Total parameters 148,961 (581.88 KB) 
 Trainable parameters 148,961 (581.88 KB) 

Non-trainable parameters 0 (0.00 B) 

 
(a) 

 
(b) 

Figure 8. Cont.



Information 2024, 15, 806 18 of 27Information 2024, 15, x FOR PEER REVIEW 18 of 28 
 

 

 

(c) 

Figure 8. Validation (orange)/training accuracy (blue) and validation (orange)/training error (blue) 
of the MRI brain scans classification models: (a) 19-layer conventional CNN model trained on MRI 
brain scans; (b) ResNet50 ImageNet pretrained model; (c) MobileNetV2 ImageNet pretrained 
model. 
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Figure 8. Validation (orange)/training accuracy (blue) and validation (orange)/training error (blue)
of the MRI brain scans classification models: (a) 19-layer conventional CNN model trained on MRI
brain scans; (b) ResNet50 ImageNet pretrained model; (c) MobileNetV2 ImageNet pretrained model.

ResNets had worse results: 97.60% (ResNet50) and 97.82% (MobileNetV2). ResNets
converged faster than the custom CNN model.

3.2.5. Pap Smear Test Model

For the pap smear test classification, a basic model with 17 layers (total) was developed.
Various optimizers and learning rates were tested (Table 6). Adam, with a 3× 10−4 learning
rate, had 96.78% classification accuracy (Figure 9). Binary Cross Entropy and sigmoid had
roughly the same results as sparse categorical cross entropy/Softmax.

Table 6. Pap smear test images 17-layer conventional CNN model architecture (Adam 3 × 10−4,
Binary Cross Entropy/sigmoid) (with zero padding).

Layer (Type) Output Shape Parameters #

Rescaling (None, 100, 120, 3) 0
Conv2d (None, 100, 120, 16) 448

Max Pooling (None, 50, 60, 16) 0
Conv2d (None, 50, 60, 32) 4640

Max Pooling (None, 25, 30, 32) 0
Conv2d (None, 25, 30, 32) 9248

Max Pooling (None, 12, 15, 32) 0
Conv2d (None, 12, 15, 32) 9248

Max Pooling (None, 6, 7, 64) 0
Conv2d (None, 6, 6, 64) 18,496

Max Pooling (None, 3, 3, 64) 0
Conv2d (None, 3, 3, 64) 36,928

Average Pooling (None, 1, 1, 64) 0
Dropout (None, 1, 1, 64) 0
Flatten (None, 64) 0
Dense (None, 128) 8320
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Table 6. Cont.

Layer (Type) Output Shape Parameters #

Dense (None, 1) 129

Total parameters 87,457 (341.63 KB)
Trainable parameters 87,457 (341.63 KB)

Non-trainable parameters 0 (0.00 B)
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Figure 9. Validation (orange)/training accuracy (blue) and validation (orange)/training (blue) error 
of the pap smear test classification models: (a) 17-layer conventional CNN model trained on pap 
smear tests; (b) ResNet50 ImageNet pretrained model; (c) MobileNetV2 ImageNet pretrained 
model. 

3.2.6. Fine-Tuning on the Adult Chest X-Rays Dataset 
For reference, we added a ResNet50 model that we fine-tuned for the 2-class adult 

chest X-rays dataset. Fine-tuning was applied with the following technique: 
The model was trained for 20 epochs with all the weights fixed (as they were trained 

on the ImageNet dataset). Then, after epoch 20, all the layers after layer 130 were unfrozen 
and were retrained on the adult chest X-rays dataset. At the same time, the learning rate 
was reduced to 1/10 of its previous value to avoid overfitting. (See Figure 10). 

The model started to improve and reached 97.83% validation accuracy, surpassing 
both the pretrained ResNets (93.04%) and the custom CNNs (96.31%). 

Figure 9. Validation (orange)/training accuracy (blue) and validation (orange)/training (blue) error
of the pap smear test classification models: (a) 17-layer conventional CNN model trained on pap
smear tests; (b) ResNet50 ImageNet pretrained model; (c) MobileNetV2 ImageNet pretrained model.

ResNets had better results: 99.28% (ResNet50) and 99.20% (MobileNetV2). ResNets
converged faster than the custom CNN model.

3.2.6. Fine-Tuning on the Adult Chest X-Rays Dataset

For reference, we added a ResNet50 model that we fine-tuned for the 2-class adult
chest X-rays dataset. Fine-tuning was applied with the following technique:

The model was trained for 20 epochs with all the weights fixed (as they were trained
on the ImageNet dataset). Then, after epoch 20, all the layers after layer 130 were unfrozen
and were retrained on the adult chest X-rays dataset. At the same time, the learning rate
was reduced to 1/10 of its previous value to avoid overfitting. (See Figure 10).

The model started to improve and reached 97.83% validation accuracy, surpassing
both the pretrained ResNets (93.04%) and the custom CNNs (96.31%).
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the standard architecture consistently achieved higher validation accuracy than the in-
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the data consisted of simple photographs with relatively low resolution. 

The classification models for pap smear tests demonstrated high accuracy in 2-class 
classification across all architectures and high accuracy in 5-class classification.  

Similarly, the 2-class X-ray models exhibited strong accuracy across all architectures, 
with comparable results for adult and pediatric data. However, further research is war-
ranted due to the significantly varied validation accuracy percentages among different 

Figure 10. Validation (orange)/training accuracy (blue) and validation (orange)/training (blue) error
of the fine-tuned ResNet50 ImageNet pretrained model for the adult Chest X-rays dataset. The green
line shows the point (epoch 20) when fine-tuning starts.

3.3. Model Perfomance

Overall, for most datasets, conventional CNNs outperformed pretrained residual
networks in terms of validation accuracy. Among the residual networks, ResNet50 with the
standard architecture consistently achieved higher validation accuracy than the inverted-
structure MobileNetV2. Notably, the fine-tuned ResNet50 for classifying pneumonia in
chest X-rays demonstrated particularly promising results, outperforming all other models.

The results for melanoma classification were promising, especially considering that
the data consisted of simple photographs with relatively low resolution.

The classification models for pap smear tests demonstrated high accuracy in 2-class
classification across all architectures and high accuracy in 5-class classification.

Similarly, the 2-class X-ray models exhibited strong accuracy across all architectures,
with comparable results for adult and pediatric data. However, further research is war-
ranted due to the significantly varied validation accuracy percentages among different
combinations of chest X-rays. While the models achieved high accuracy in distinguishing
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between normal, COVID-19, and pneumonia cases, they showed lower accuracy (86.6%)
when classifying normal, bacterial, and viral pneumonia. This result is still notable, given
the challenges that chest X-rays pose in allowing medical professionals to definitively
diagnose bacterial or viral pneumonia.

MRI brain scans demonstrated impressive classification power, particularly with
custom CNNs, especially in the 2-class models. The use of a premade augmentation
technique proved beneficial, and the pretrained models also performed exceptionally well.

Model performance for all datasets and all Neural Network architectures are summa-
rized in Table 7.

Table 7. Models’ performance (validation accuracy).

Dataset Conventional CNN Pretrained ResNet50 Pretrained
MobileNetV2

Melanoma 93.05% 89.79% 86.39

Chest X-rays 96.31% 93.04% (97.83 fine-tuned) 91.79%
Pediatric X-rays 97.18% 93.69% 92.76%

MRI brain scans 99.56% 97.60% 97.82%

Pap smear test 96.78% 99.28% 99.20%

3.4. Computational Needs

Low-resolution and medium-resolution models trained quickly, with each epoch
completed in just a matter of seconds. In contrast, training times for higher resolutions
(500 × 700 pixels and above) were significantly longer, and computational challenges began
to arise. Implementing autotuning with pre-fetch improved RAM utilization, resulting in a
5% to 10% increase in training speed.

Pretrained models were slower than basic CNN models, which is expected given their
more complex architecture. Training on a GPU was approximately 3 to 10 times faster than
on a CPU, depending on the dataset and model used. A summary of the models’ training
speeds can be found in Table 8.

Table 8. Models’ training speed (seconds/epoch).

Processor/OS Conventional CNN Pretrained ResNet50 Pretrained MobileNetV2

Ryzen 7 7700 32 GB
CPU/Windows

Pap smear 100 × 120 p:
1 s/epoch

Pap smear 100 × 120 p:
29 s/epoch

Pap smear 100 × 120 p:
10 s/epoch

MRI 300 × 300 p:
21 s/epoch

MRI 300 × 300 p:
190 s/epoch MRI 300 × 300 p: 51 s/epoch

Melanoma 224 × 224 p:
25 s/epoch

Melanoma 224 × 224 p:
200 s/epoch

Melanoma 224 × 224 p:
55 s/epoch

chest X-rays 500 × 700 p:
195 s/epoch

chest X-rays 500 × 700 p:
1050 s/epoch

chest X-rays 500 × 700 p:
368 s/epoch

RTX 4060TI 16 GB
GPU/Linux

Pap smear 100 × 120 p:
0.16 s/epoch

Pap smear 100 × 120 p:
2 s/epoch

Pap smear 100 × 120 p:
0.3 s/epoch

MRI 300 × 300 p:
5 s/epoch

MRI 300 × 300 p:
24 s/epoch MRI 300 × 300 p: 10 s/epoch

Melanoma 224 × 224 p:
6 s/epoch

Melanoma 224 × 224 p:
25 s/epoch

Melanoma 224 × 224 p:
11 s/epoch

chest X-rays 500 × 700 p:
18 s/epoch

chest X-rays 500 × 700 p:
75 s/epoch

chest X-rays 500 × 700 p:
35 s/epoch

4. Discussion

Conventional CNN models fully trained on medical data generally showed promising
results despite their relatively shallow architecture.
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The fine-tuned ResNet50 model achieved a very promising accuracy of 97.83% for
pneumonia classification, which approaches the 99.24% accuracy reported by Behar et al. [7]
for fully retrained ResNet50 model in breast cancer classification and the 99.17% accuracy
achieved by the ResNet50 model on COVID-19 chest X-rays [8]. The fine-tuned ResNet50
model appears promising and may be suitable for broader applications in medical imaging.

All CNN models showed strong performance on cytological data, suggesting that
further data collection in this area could be beneficial.

Data preprocessing for viral and bacterial pneumonia chest X-rays suggests that con-
volutional models, combined with data preprocessing techniques, may provide additional
insights into disease expression in medical images.

These results highlight the importance of accumulating medical imaging data to enable
further advancements in this field.

CNN models continue to demonstrate high performance, suggesting a future
possibility—once more extensive and higher-quality data are available—of internet applica-
tions that allow users to “self-test” for melanoma via webcams, keep records of their mole,
and receive guidance from medical professionals as needed.

A melanoma detection model, using an architecture similar to ours and trained on
high-resolution images, can capture simple photographs of moles and classify them with
high accuracy. This model could be integrated into an internet application that serves as a
preliminary telemedicine tool, eliminating the immediate need for a medical professional.
Both web and smartphone cameras can be used for mole screening and early melanoma
detection. Additionally, a web application could track the history of moles, detecting any
changes in prediction certainty, which may indicate malignancy and signal the need for a
dermatologist consultation.

Overall, these developed models can be compatible with internet-based applications,
making them suitable for inclusion in telemedicine environments that support medical
decision-making.

It is also essential to address the potential ethical implications of medical research in
the field. Medical data use is sensitive and must always ensure the preservation of data
anonymity. Another critical aspect of research in this area is data transparency, which helps
to avoid or account for low-quality data and ensures only accurate information is utilized.
Additionally, the “black box” issue inherent in neural networks poses a challenge since
their operations are not fully visible or interpretable to doctors or patients. In this paper, we
approached CNN models not merely as “black boxes” that outperform human classification
(e.g., distinguishing viral from bacterial pneumonia) but also as tools for deeper study of
disease characteristics.

In future work, we aim to fine-tune deep residual networks further to enhance clas-
sification performance and to develop more specialized, tailor-made preprocessing and
augmentation techniques for bacterial and viral pneumonia. This will allow for a more
detailed study of the distinct characteristics of these diseases as represented in medical
images.
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2024). For the 2Xray models, data used were extracted from (D. S. Kermany 2018) [14]: https://www.
kaggle.com/datasets/paultimothymooney/chest-xray-pneumonia?datasetId=17810 (accesed on 1
November 2024). For the 43Xrays and 4XRays models, data used were extracted from (Sait, et al.
2020): https://www.kaggle.com/datasets/unaissait/curated-chest-xray-image-dataset-for-covid19
(accesed on 1 November 2024). For the Pediatric_Xrays models, data used were extracted from (Ker-
many, Zhang and Goldbaum 2018) [15]: https://www.kaggle.com/datasets/andrewmvd/pediatric-
pneumonia-chest-xray/ (accesed on 1 November 2024). For the 4BrainAugmented models, data used
were extracted from (Hashemi 2023) [21], https://www.kaggle.com/datasets/mohammadhossein77/
brain-tumors-dataset (accesed on 1 November 2024). For the melanoma models, data used were ex-
tracted from https://www.kaggle.com/datasets/bhaveshmittal/melanoma-cancer-dataset (accesed
on 1 November 2024).

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A. Residual Network Model Architectures

Information 2024, 15, x FOR PEER REVIEW 24 of 28 
 

 

Institutional Review Board Statement: The study was conducted in accordance with the Declara-
tion of Helsinki, and approved by the Ethics Committee of Democritus University of Thrace, Greece, 
protocol code ΔΠΘ/ΕΗΔΕ/43087/302, Apr. 24, 2024. 

Data Availability Statement: For the Pap Test models, data used were extracted from (Marina E. 
Plissiti 7–10 October 2018) [9]: https://www.kaggle.com/datasets/mohaliy2016/papsinglecell (ac-
cesed on 1 November 2024), https://www.cs.uoi.gr/~marina/sipakmed.html (accesed on 1 Novem-
ber 2024). For the 2Xray models, data used were extracted from (D. S. Kermany 2018) [14]: 
https://www.kaggle.com/datasets/paultimothymooney/chest-xray-pneumonia?datasetId=17810 
(accesed on 1 November 2024). For the 43Xrays and 4XRays models, data used were extracted from 
(Sait, et al. 2020): https://www.kaggle.com/datasets/unaissait/curated-chest-xray-image-dataset-for-
covid19 (accesed on 1 November 2024). For the Pediatric_Xrays models, data used were extracted 
from (Kermany, Zhang and Goldbaum 2018) [15]: https://www.kaggle.com/datasets/an-
drewmvd/pediatric-pneumonia-chest-xray/ (accesed on 1 November 2024). For the 4BrainAug-
mented models, data used were extracted from (Hashemi 2023) [21], https://www.kaggle.com/da-
tasets/mohammadhossein77/brain-tumors-dataset (accesed on 1 November 2024). For the mela-
noma models, data used were extracted from https://www.kaggle.com/datasets/bhaveshmittal/mel-
anoma-cancer-dataset (accesed on 1 November 2024). 

Conflicts of Interest: The authors declare no conflicts of interest. 

Appendix A. Residual Network Model Architectures  

 
Figure A1. ResNet50 model architecture (residual network). 

 
Figure A2. MobileNet model architecture (inverted residual network). 

Figure A1. ResNet50 model architecture (residual network).

Information 2024, 15, x FOR PEER REVIEW 24 of 28 
 

 

Institutional Review Board Statement: The study was conducted in accordance with the Declara-
tion of Helsinki, and approved by the Ethics Committee of Democritus University of Thrace, Greece, 
protocol code ΔΠΘ/ΕΗΔΕ/43087/302, Apr. 24, 2024. 

Data Availability Statement: For the Pap Test models, data used were extracted from (Marina E. 
Plissiti 7–10 October 2018) [9]: https://www.kaggle.com/datasets/mohaliy2016/papsinglecell (ac-
cesed on 1 November 2024), https://www.cs.uoi.gr/~marina/sipakmed.html (accesed on 1 Novem-
ber 2024). For the 2Xray models, data used were extracted from (D. S. Kermany 2018) [14]: 
https://www.kaggle.com/datasets/paultimothymooney/chest-xray-pneumonia?datasetId=17810 
(accesed on 1 November 2024). For the 43Xrays and 4XRays models, data used were extracted from 
(Sait, et al. 2020): https://www.kaggle.com/datasets/unaissait/curated-chest-xray-image-dataset-for-
covid19 (accesed on 1 November 2024). For the Pediatric_Xrays models, data used were extracted 
from (Kermany, Zhang and Goldbaum 2018) [15]: https://www.kaggle.com/datasets/an-
drewmvd/pediatric-pneumonia-chest-xray/ (accesed on 1 November 2024). For the 4BrainAug-
mented models, data used were extracted from (Hashemi 2023) [21], https://www.kaggle.com/da-
tasets/mohammadhossein77/brain-tumors-dataset (accesed on 1 November 2024). For the mela-
noma models, data used were extracted from https://www.kaggle.com/datasets/bhaveshmittal/mel-
anoma-cancer-dataset (accesed on 1 November 2024). 

Conflicts of Interest: The authors declare no conflicts of interest. 

Appendix A. Residual Network Model Architectures  

 
Figure A1. ResNet50 model architecture (residual network). 

 
Figure A2. MobileNet model architecture (inverted residual network). Figure A2. MobileNet model architecture (inverted residual network).

https://www.kaggle.com/datasets/paultimothymooney/chest-xray-pneumonia?datasetId=17810
https://www.kaggle.com/datasets/paultimothymooney/chest-xray-pneumonia?datasetId=17810
https://www.kaggle.com/datasets/unaissait/curated-chest-xray-image-dataset-for-covid19
https://www.kaggle.com/datasets/andrewmvd/pediatric-pneumonia-chest-xray/
https://www.kaggle.com/datasets/andrewmvd/pediatric-pneumonia-chest-xray/
https://www.kaggle.com/datasets/mohammadhossein77/brain-tumors-dataset
https://www.kaggle.com/datasets/mohammadhossein77/brain-tumors-dataset
https://www.kaggle.com/datasets/bhaveshmittal/melanoma-cancer-dataset


Information 2024, 15, 806 25 of 27
Information 2024, 15, x FOR PEER REVIEW 25 of 28 
 

 

 
Figure A3. MobileNetV1 and MobileNetV2. 

 
Figure A4. Identity block. 

 
Figure A5. Convolutional block. 

 
Figure A6. Residual network connection. 

Figure A3. MobileNetV1 and MobileNetV2.

Information 2024, 15, x FOR PEER REVIEW 25 of 28 
 

 

 
Figure A3. MobileNetV1 and MobileNetV2. 

 
Figure A4. Identity block. 

 
Figure A5. Convolutional block. 

 
Figure A6. Residual network connection. 

Figure A4. Identity block.

Information 2024, 15, x FOR PEER REVIEW 25 of 28 
 

 

 
Figure A3. MobileNetV1 and MobileNetV2. 

 
Figure A4. Identity block. 

 
Figure A5. Convolutional block. 

 
Figure A6. Residual network connection. 

Figure A5. Convolutional block.

Information 2024, 15, x FOR PEER REVIEW 25 of 28 
 

 

 
Figure A3. MobileNetV1 and MobileNetV2. 

 
Figure A4. Identity block. 

 
Figure A5. Convolutional block. 

 
Figure A6. Residual network connection. Figure A6. Residual network connection.



Information 2024, 15, 806 26 of 27

Adam optimizer algorithm
(as presented in its original paper [28])
gt

2 indicates the elementwise square gt ⊙ gt.
Good default settings for the tested machine learning problems are a = 0.001,
β1 = 0.9, β2= 0.999 and ϵ = 10−8. All operations on vectors are element-wise.
With β1

t and β2
t, we denote β1 and β2 to the power t.

Require: a: Stepsize
Require: β1, β2 ∈ [0, 1): Exponential decay rates for the moment estimates
Require: f (θ): Stochastic objective function with parameters θ
Require: θ0: Initial parameter vector

m0 ←0 (Initialize 1st moment vector)
v0 ←0 (Initialize 2nd moment vector)
t←0 (Initialize timestep)
while θt not converged do

t← t + 1 gt ← ∇θ fΘ(θt − 1) (Get gradients w.r.t. stochastic objective at timestep t)
mt ← β1· mt−1 + (1− β1) ·gt (Update biased first-moment estimate)
vt ← β2· vt−1 + (1− β2) ·gt

2 (Update biased second raw moment estimate)
m̂t ← mt /

(
1− β1

t) (Compute bias-corrected first-moment estimate)
v̂t ← vt /

(
1− β2

t) (Compute bias-corrected second raw moment estimate)
θt ← θt−1 − a· m̂t /

(√
v̂t + ϵ

)
(Update parameters)

end while
return θt (Resulting parameters).

Appendix B. Computer Specifications

The models were trained on a modern conventional computer with the following
specifications:

CPU: AMD Ryzen 7700 8 cores/16 threads up to 5.3 Ghz (PBO off);
GPU: Nvidia RTX 4060Ti 16 GB VRAM;
RAM: 2 × 16 GB dual channel 6000MT/s DDR5 (XMP off/4800 MT/s);
ROM: 1TB PCIe 4.0 NVME M.2 SSD 7000 MB/s read, 6000 MB/s write (Windows 11);
ROM: 1TB PCIe 4.0 NVME M.2 SSD 7000 MB/s read, 6000 MB/s write (Ubuntu 22.04).
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