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Abstract: In tasks such as wood defect repair and the production of high-end wooden furniture,
ensuring the consistency of the texture in repaired or jointed areas is crucial. This paper proposes the
WTSM-SiameseNet model for wood-texture-similarity matching and introduces several improve-
ments to address the issues present in traditional methods. First, to address the issue that fixed
receptive fields cannot adapt to textures of different sizes, a multi-receptive field fusion feature extrac-
tion network was designed. This allows the model to autonomously select the optimal receptive field,
enhancing its flexibility and accuracy when handling wood textures at different scales. Secondly, the
interdependencies between layers in traditional serial attention mechanisms limit performance. To
address this, a concurrent attention mechanism was designed, which reduces interlayer interference
by using a dual-stream parallel structure that enhances the ability to capture features. Furthermore,
to overcome the issues of existing feature fusion methods that disrupt spatial structure and lack inter-
pretability, this study proposes a feature fusion method based on feature correlation. This approach
not only preserves the spatial structure of texture features but also improves the interpretability and
stability of the fused features and the model. Finally, by introducing depthwise separable convolu-
tions, the issue of a large number of model parameters is addressed, significantly improving training
efficiency while maintaining model performance. Experiments were conducted using a wood texture
similarity dataset consisting of 7588 image pairs. The results show that WTSM-SiameseNet achieved
an accuracy of 96.67% on the test set, representing a 12.91% improvement in accuracy and a 14.21%
improvement in precision compared to the pre-improved SiameseNet. Compared to CS-SiameseNet,
accuracy increased by 2.86%, and precision improved by 6.58%.

Keywords: Siamese network; wood texture similarity; concurrent attention; multi-receptive field

1. Introduction

Texture is an important visual feature of wood, reflecting its local structure and surface
details. In high-end applications such as the production of premium wooden furniture, the
restoration of ancient architecture, and the defect-free joining of wood, material selection
is based not only on strength or durability but also on the uniformity and aesthetics of
appearance. As consumer demands for visual consistency increase, the market’s need
for highly consistent wood-texture matching is growing. Traditional manual selection
methods are not only time-consuming and labor-intensive but also struggle to ensure
accuracy, making them unsuitable for large-scale production. Therefore, the development
of automated wood-texture-similarity matching technology has become an inevitable trend
in industrial development.

Wood texture similarity matching refers to the process of calculating and analyzing the
similarity of surface textures in order to assess the degree of similarity in texture between
different wood samples. This is a subtask of content-based texture matching. Unlike other
subtasks such as face recognition [1], fingerprint matching [2], medical diagnosis [3], and
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object detection [4], wood-texture-similarity matching presents greater challenges due to
the complexity, randomness, and diversity of wood textures. First, wood textures not only
exhibit significant differences between different wood species, but the texture of the same
species can also vary considerably due to factors such as growth environment, cutting
method, and annual rings. This high degree of texture diversity [5] makes it difficult for
traditional texture-matching methods to effectively capture and represent the similarities
of wood surfaces. For example, the textures of different woods may be similar in overall
shape, but local details (such as small pores or color differences) may vary significantly,
increasing the difficulty of matching algorithms to handle these details. Secondly, the
randomness of wood textures arises from the complex structures naturally formed during
the growth process, and this randomness is reflected in aspects such as the direction,
density, and morphology of the textures. Therefore, wood-texture-similarity matching
requires the model not only to handle textures at different scales and angles but also
to possess sufficient robustness to address texture variations caused by factors such as
lighting, shooting angles, or deformations during processing. In contrast, other texture-
matching tasks, such as face recognition and fingerprint matching, often rely on relatively
regular features (such as facial characteristics or unique fingerprint patterns), which are
either not prominent or exhibit considerable variability in wood. Additionally, although
medical image diagnostics involve complex texture analysis, the targets in medical images
usually have clearer boundaries and contrasts [6], thus differing from the processing of
wood textures. Although object-detection tasks also involve texture analysis, their primary
goal is the localization and classification of target objects rather than fine-grained texture
matching [7]. Therefore, the challenges faced during texture analysis are different. In
conclusion, the difficulty of wood-texture-similarity matching arises not only from the
high complexity of wood textures but also from their randomness and diversity. These
factors make wood-texture matching more challenging than other texture-matching tasks
and require the development and optimization of algorithms specifically designed to
account for the unique characteristics of wood. Currently, the mainstream methods for
texture-similarity matching can be categorized into the following three types:

The first method is based on pixel differences for texture similarity comparison, such
as calculating the similarity between images using the Gray-Level Co-occurrence Matrix
(GLCM) [8] and the Structural Similarity Index Measure (SSIM). However, it is important
to note that the GLCM is not directly used to compute texture similarity; rather, it describes
the texture structure by extracting statistical features of the image, such as contrast, homo-
geneity, and energy, thereby providing a basis for further similarity calculation. Srivastava
D [9] et al. proposed that by using the GLCM to statistically analyze the joint distribution
of grayscale levels at specific directions and distances, one can determine texture patterns,
such as horizontal, vertical, and diagonal stripes, and assess whether the textures are
similar. Furthermore, in fields such as camouflage clothing design [10] and image forgery
detection [11], the GLCM is also used to assess texture similarity. Calculating features such
as contrast, homogeneity, and entropy can reveal areas of texture inconsistency, which helps
to evaluate the rationality of camouflage designs and the likelihood of image manipulation.
However, this method has notable limitations when dealing with wood textures. It is
not sensitive enough to details and color variations in the texture, making it difficult to
accurately capture the complex and intricate texture features of wood surfaces. On the
other hand, the Structural Similarity Index Measure [12] (SSIM) is mainly used to compare
texture similarity based on local differences in brightness, contrast, and structure. Although
SSIM can compare the local features of images, in wood-texture matching, it relies too
heavily on local information, making it difficult to reflect the global structure of the texture.
Especially for wood with significant differences in texture details, the sensitivity of SSIM is
too high, often leading to inaccurate matching results. Therefore, pixel-level comparison
methods like the Gray-Level Co-occurrence Matrix and SSIM, while capable of capturing
some texture features, exhibit significant shortcomings in addressing the complexity and
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diversity of wood textures, making them inadequate for precise wood texture-similarity
matching tasks.

The second method is the Bag of Visual Words (BoVWs) approach based on local
feature extraction and clustering [13]. This method extracts representative key points from
images using feature detection algorithms such as SIFT [14], SURF [15], and ORB [16] and
compiles these local features into a “visual vocabulary”. Subsequently, the similarity of
images is computed based on the feature distribution in the visual vocabulary. However, the
limitation of the Bag of Visual Words method in wood texture-similarity matching lies in its
neglect of the spatial relationships among texture features. Wood textures possess complex
spatial structures, and variations in relative positioning are crucial for assessing texture
similarity. The Bag of Visual Words method focuses solely on the frequency distribution of
local features without considering their arrangement within the image. Therefore, while
this method is effective in certain scenarios, it performs poorly in wood texture-similarity
matching because it cannot reflect the global layout of the texture.

The third method is based on deep learning, particularly the Siamese network. This
approach effectively captures multi-level features of wood texture, from local details to
global structures, using deep convolutional neural networks (CNNs), allowing for the
automatic learning and extraction of subtle changes and complex patterns in wood surfaces.
Compared to traditional Bag of Visual Words methods, deep learning can not only handle
local features but also preserve the spatial positional information of textures, thereby better
reflecting the global characteristics of wood textures. This gives the Siamese network a
strong advantage in wood-texture-similarity matching. However, the Siamese network
also faces several challenges. First, the fixed receptive field of the network cannot adapt to
texture features of different scales, limiting the model’s ability to capture the diversity of
complex wood textures. Secondly, the continuous use of multiple attention mechanisms
may lead to interference among these mechanisms, restricting each mechanism’s ability
to capture features. Thirdly, overly simplistic feature fusion methods may disrupt the
spatial structure of the original data, weakening the global understanding of textures.
Finally, directly using fully connected networks for similarity calculation, while capable of
capturing global information, results in a dramatic increase in model parameters, thereby
increasing computational complexity and reducing efficiency.

To address the issues present in the aforementioned Siamese network and enhance
the performance of wood-texture-similarity matching, this paper designs the WTSM-
SiameseNet (Wood-Texture-Similarity Matching-SiameseNet) network model. The main
contributions of this paper are as follows:

1. A feature extraction network with multi-receptive field fusion was designed. By
integrating feature extraction networks with different receptive fields, the model can
adaptively select the optimal receptive field, addressing the issue of fixed receptive
fields not being able to accommodate textures of different sizes. This design allows
the model to exhibit better flexibility and accuracy when dealing with wood textures
of varying scales;

2. A concurrent attention mechanism was designed. By employing a dual-stream par-
allel attention mechanism, the interdependence among layers in traditional serial
attention mechanisms is reduced, enhancing the overall performance of the attention
mechanism. This not only enhances the capability of feature capture but also avoids
interference among multiple attention mechanisms;

3. A feature fusion method based on feature correlation was designed. The newly
designed feature fusion method retains the spatial structure of the original texture fea-
tures while enhancing the interpretability of the fused features, optimizing the overall
expressive capability of the model, reducing parameter complexity, and improving
the stability and accuracy of the model;

4. By optimizing the Siamese network structure with depthwise separable convolutions,
the model’s parameter count is significantly reduced, thereby improving training
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efficiency. This optimization significantly reduces the consumption of computational
resources while ensuring the model’s performance.

2. Related Work

Research on texture-similarity matching not only has practical value but is also an
important research direction in the fields of computer vision and deep learning. Siamese
networks can not only capture the global and local features of two input texture images
through two shared-weight neural networks but also precisely calculate their similarity
by comparing the feature vectors of the two images. Furthermore, Siamese networks are
sensitive to spatial structures. In wood texture-similarity matching, the relative positions
and arrangement of textures are crucial. By using deep feature representation, Siamese
networks can fully consider these spatial relationships, making them more suitable for
wood-texture-similarity matching than traditional methods. At the same time, Siamese
networks have demonstrated strong capabilities in many other computer vision tasks, such
as video object tracking [17], change detection [18], handwriting recognition [19], and self-
supervised learning [20]. These applications further demonstrate the broad applicability
and flexibility of Siamese networks in various scenarios, providing valuable insights and
inspiration for addressing the wood-texture-similarity matching problem in this study.

The accuracy of similarity computation in the Siamese network primarily relies on the
feature extraction performance of its texture feature extraction module and the learning
ability of the similarity metric function in the texture feature aggregation matching module.
To enhance the performance of the texture feature extraction module, researchers have
proposed various methods. Figueroa-Mata G [21] used multiple convolution kernels
of different sizes (e.g., 11 × 11, 8 × 8, and 5 × 5) in the feature extraction network,
which can improve the model’s ability to extract texture information at different scales
and enhance its generalization capability. However, for wood texture, in addition to the
most prominent and regular primary textures on the wood surface, there are also finer-
grained secondary textures, which reflect the details of wood fibers, tiny pores, and color
variations. Although using larger convolution kernels (such as 11 × 11, 8 × 8, and 5 × 5)
can effectively capture primary textures, it also captures excessive irrelevant information,
leading to overfitting on secondary textures and unrelated details, thereby reducing the
model’s ability to generalize to new samples. Moreover, larger convolution kernels require
training more parameters compared to smaller ones, resulting in reduced training speed.
Hudec L [22] proposed using AlexNet as the feature extraction network for the Siamese
network, which mitigates overfitting while enhancing the stability and robustness of
texture feature extraction by reducing kernel size and incorporating pooling operations.
However, multiple pooling operations may lead to the loss of significant detail texture
features, affecting the model’s ability to perceive texture details. VGGNet [23,24] increased
the model’s receptive field by using multiple 3 × 3 convolution kernels while requiring
fewer parameters for training. Building on this, Cao W [25] and others introduced the
CBAM attention mechanism in VGGNet to help the network effectively select high-value
information, further enhancing the model’s feature extraction capability. However, this
method still faces challenges regarding the smoothness of the network. Yan R [26] designed
CS-SiameseNet by combining an improved VGG16 with a Siamese network, using the
Mish function instead of the ReLU function to enhance the network’s smoothness, non-
linearity, and tolerance. Nevertheless, the fixed receptive field size of the feature maps
of CSNet limits its performance in capturing complex texture features, leaving room for
improvement. Additionally, Peng Z [27] and others proposed that cascaded self-attention
modules can deteriorate local feature details, and using concurrent structures can maximize
the preservation of local features and global representations. However, these studies have
not been widely applied in texture-similarity matching based on Siamese networks.

Researchers have also explored various methods to enhance the performance of the
texture-feature-aggregation matching module. First, the Pearson correlation coefficient [28]
and the Spearman correlation coefficient [29] are often used as metrics in the Siamese



Information 2024, 15, 808 5 of 22

network due to their simplicity in computation and ease of interpretation, providing direct
and effective standardized results for similarity measurement. However, their assumptions
of linear and monotonic relationships limit their ability to reflect the complex relationships
between wood textures, and both methods may perform poorly in wood-texture-similarity
matching. Additionally, Hayale W [30] attempted to use Euclidean distance as the similarity
metric function for the Siamese network to enhance the smoothness of the metric function
and assist in model training. However, Euclidean distance assumes equal weights for all
features, making it ineffective in distinguishing the importance of different features. Since
fully connected networks can capture complex nonlinear relationships from input data. Yu
J [31] and others replaced the conventional similarity metric function with a fully connected
network, learning the mapping relationship between the high-order features of the data
and the similarity score through multiple fully connected layers and directly outputting
the similarity score. This approach addresses the issue of traditional Siamese networks
being overly influenced by thresholds in texture-similarity classification. However, directly
using fully connected networks to compute similarity significantly increases the model’s
parameter count, leading to slow training; thus, further improvements are necessary.

3. WTSM-SiameseNet

The Siamese network is commonly used to analyze the similarity between data. Its
core components include the texture feature extraction module and the texture feature
aggregation and matching module, as shown in Figure 1. The texture feature extraction
module (Figure 1a) uses two identical feature extraction networks to extract features from
the target image, x1, and the comparison image, x2. The texture feature aggregation and
matching module (Figure 1b) first uses a feature fusion module to merge all texture features
into a new feature; then, it uses a similarity calculation module to obtain the similarity
between the two images. However, in real scenarios, wood textures have significant
differences in size, shape, and detail. The fixed receptive field of the existing texture feature
extraction module cannot automatically adjust according to the characteristics of the texture,
making it unsuitable for extracting all types of wood texture features. This limitation can
lead to feature loss during extraction, resulting in a misjudgment of wood texture similarity.
Additionally, the structure of the feature fusion module and the similarity calculation
module in the Texture Feature Aggregation and Matching Module is too simplistic, making
it difficult to accurately map the relationship between texture features and similarity scores,
leading to inaccurate similarity scores.

Figure 1. Diagram of the SiameseNet architecture.
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To address the above issues, a WTSM-SiameseNet (Wood-Texture-Similarity Matching-
Siamese Network) suitable for wood-texture-similarity matching was designed, as shown
in Figure 2. In the texture feature extraction module, a concurrent attention mechanism was
introduced, and a feature extraction network with a multi-scale receptive field, MRF-Resnet
(Multi-scale Receptive Field-Resnet), was designed. This improved the receptive field
dimension and edge attention during feature extraction, enhancing the model’s ability
to evaluate texture similarity. In the Texture Feature Aggregation and Matching Module,
the Feature Fusion Module was improved based on feature correlation, and the Similarity
Computation Module was enhanced using deep convolution and point convolution, thereby
improving the accuracy of similarity computation.

Figure 2. Diagram of the WTSM-SiameseNet architecture.

3.1. Texture Feature Extraction Module

Wood texture includes large-scale main textures and small-scale detailed textures. To
address this characteristic, the MRF-ResNet model designed in this study effectively extracts
texture features at different scales by using multiple receptive fields, enabling the model
to consider both coarse and detailed textures in wood, thus enhancing the understanding
and extraction of complex textures. Furthermore, by considering the high demands of
wood-texture-similarity matching for the spatial continuity and position dependence of
the textures, as well as the regularity and repetitiveness of texture distribution, this paper
proposes a concurrent attention mechanism that combines edge attention and CBAM
attention. By using the edge attention mechanism, the model can better assess the continuity
of board edge textures, and simultaneously, the CBAM attention mechanism enhances the
model’s sensitivity to the importance of different textures. These designs not only overcome
the shortcomings of traditional methods in handling complex textures but also significantly
improve the accuracy and robustness of wood-texture-similarity matching.

3.1.1. MRF-Resnet

We designed MRF-Resnet with Resnet as the backbone. Its core components include
the Base Residual Block, Bottleneck Residual Block, and multi-receptive field fusion, as
shown in Figure 3.

The Base Residual Block (Figure 3a) consists of three convolutional layers. The first
convolutional layer reduces the number of channels in the input feature map, thereby
reducing computation and parameter count. The second convolutional layer is responsible
for feature extraction and transformation, capturing local texture features in the input
feature map and converting them into higher-level feature representations. The third
convolutional layer restores the feature dimensions, ensuring that the output feature map
has the same dimensions as the input feature map.

The Bottleneck Residual Block (Figure 3b) is similar in structure to the Base Residual
Block but sets the stride of the second convolutional layer to 2. This enables the Bot-
tleneck Residual Block to perform downsampling while simultaneously increasing the
receptive field.
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Figure 3. Diagram of the MRF-Resnet architecture.

The receptive field refers to the model’s visual field on the input image during feature
extraction. Small textures in wood require a smaller receptive field for coverage, whereas
larger textures necessitate a larger receptive field. Therefore, a multi-scale receptive field
fusion method has been designed to enhance the receptive field dimension in features by
integrating features from different receptive fields extracted by the network. The principle
of multi-scale receptive field fusion is illustrated in Figure 4 as follows:

Figure 4. Multi-scale receptive field fusion.

Because the Bottleneck Residual Block enlarges the receptive field of the feature map
while changing its dimensions, integrating features from different receptive fields requires
the dimension transformation of the features beforehand. The initial size of the feature
map is (C, K, K), where C denotes the number of channels in the feature map, and K
represents the dimensions (length and width) of the feature map. After each pass through
the Bottleneck Residual Block, the number of channels in the feature map doubles from
its original amount, and the size of the feature map becomes 1

2 times the original. After

passing through the fourth submodule, the size of the feature map becomes
(

8C, K
8 , K

8

)
.

First, we preserve the feature maps after processing each Bottleneck Residual Block.
Next, we use convolutional operations to transform the shape of all feature maps into(

8C, K
8 , K

8

)
, as shown in the size transformation process in Equation (1):

Fi,j = ∑F=1
m=0 ∑F=1

n=0 f(i∗S+m),(j∗S+n) · Km,n (1)
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where Fi,j represents the pixel value at position (i, j) in the output feature map; f(i∗S+m),(j∗S+n)
represents the pixel values at positions (i ∗ S + m) and (j ∗ S + n) in the input feature map;
Km,n represents the convolutional kernel weights.

Finally, we concatenate all reshaped feature maps along the channel dimension to
obtain a new feature of shape

(
32C, K

8 , K
8

)
, which has the same receptive field (spatially)

but different receptive fields across channels. The formula for concatenating the new feature
is shown in Equation (2):

F′ = concat(F1, F2, F3, F4, dim = 1) (2)

where F′ represents the new feature obtained after feature extraction by MRF-Resnet;
F1, F2, F3, and F4, respectively, represent the feature maps after dimension transformation
by each of the four submodules; concat(dim = 1) represents the concatenation along the
channel dimension.

3.1.2. Concurrent Attention

In traditional feature extraction networks, all features have equal weights. However,
for wood-texture-similarity matching tasks, the focus of feature extraction should be on
texture features rather than background features. To enhance the focus on texture features
in MRF-Resnet, the CBAM attention mechanism is introduced to enhance attention to
textures during global feature extraction. Furthermore, edge textures in wood play a crucial
role in subsequent tasks like joining, as they directly affect the consistency of textures at the
joints. Therefore, during texture feature extraction, attention needs to be focused on edge
textures. However, the serial structure of attention mechanisms may interfere with each
other, leading to diminished effectiveness. To address this issue, a concurrent attention
mechanism is designed to more effectively extract texture and edge features, as shown in
Figure 5.

Figure 5. Concurrent attention.

In the concurrent attention mechanism, MRF-ResNet is used to extract features from
both complete wood texture patterns and wood patterns containing only edge textures.
Obtaining global features and edge features simultaneously ensures that these features are
structurally consistent. Additionally, since MRF-ResNet only includes the CBAM attention
module, it can preserve complete global texture features during global feature extraction.
In contrast, during edge feature extraction, only edge texture patterns are used, ensuring
that the extracted features contain only edge texture information without interference from
other region features. By integrating global features and edge features, the weight of edge
features can be enhanced while preserving global features as much as possible.

CBAM (Convolutional Attention Module) is an attention mechanism that combines
channel attention and spatial attention, as shown in Figure 6. Using channel attention
(Figure 6a) adjusts the importance of each channel in the feature map, allowing the network
to focus more on the most relevant and important channels for texture feature extraction.
Using spatial attention (Figure 6b) increases the weights of regions containing rich texture
information while decreasing the weights of regions with less texture information.
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Figure 6. CBAM attention.

The formula for the channel attention module is shown in Equation (3):

fc = σ(MLP(AvgPool(F)) + MLP(MaxPool(F))) (3)

where F represents the input feature map; AvgPool and MaxPool denote global average
pooling and global max pooling, respectively; MLP represents a multi-layer perceptron; σ
denotes the Sigmoid function.

The formula for the spatial attention module is given in Equation (4):

fs = σ
(

c7×7([AvgPool(Fc); MaxPool(Fc)])
)

(4)

where Fc represents the feature map after applying channel attention; c7×7 denotes a
convolution operation with a kernel size of 7 × 7. The choice of this kernel size is due to
the application of CBAM directly on the original wood texture patterns in the paper, where
the main texture spans a large area within the pattern. To more comprehensively capture
global texture information and the relative positions between main textures, we use a larger
7 × 7 convolution kernel. This not only helps capture more global texture features but also
allows the neural network to focus more on the main textures, reducing interference from
minor textures in the model; [AvgPool(Fc); MaxPool(Fc)] represents the concatenation of
average pooling and max pooling structures along the channel dimension.

In edge feature extraction, the element-wise multiplication of the wood texture image
with the mask matrix obtains the edge texture pattern. The mask formula is shown as
Equation (5):

Edge_Patterni,j = Wood_Texturei,j ⊙ Mi,j (5)

where Edge_Pattern represents the edge texture image; Wood_Texture denotes the input
wood texture image; M represents the mask matrix with the same shape as Wood_Texture,
and the form of M is shown as Equation (6):

1 1 1 . . . 1 1 1

1
. . .

...
...

. . . 1
1 . . . 1 . . . 1 . . . 1
1 . . . 0 . . . 0 . . . 1
...

...
. . .

...
...

1 . . . 0 . . . 0 . . . 1
1 . . . 1 . . . 1 . . . 1

1
. . .

...
...

. . . 1
1 . . . 1 . . . 1 . . . 1


(6)
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3.2. Texture Feature Aggregation and Matching Module

The texture feature aggregation-matching module consists of two parts: the Feature
Fusion Module and the Similarity Computation Module. Since the texture feature extraction
module in this study returns both global texture features and edge texture features, the
traditional fusion method of element-wise subtraction and absolute value leads to feature
confusion, failing to effectively capture the potential correlations and interactions between
different feature dimensions and resulting in a lack of richness and accuracy in the fused
information representation. To address this, we propose an improved feature fusion method
from the perspective of feature correlation, which, while preserving the internal structure
of the features, dynamically adjusts the fusion weights to promote the model’s ability to
explore the relationships between feature dimensions. Meanwhile, depthwise separable
convolutions are employed to optimize the similarity computation module, reducing
the model’s parameter count and improving computational efficiency while maintaining
performance. The improved texture feature aggregation module is shown in Figure 7.

Figure 7. Texture feature aggregation and matching module.

3.2.1. Feature Fusion Module

The role of the Feature Fusion Module is to integrate the global features of the target
image, x1, obtained from the texture feature extraction module, the edge features of the
target image, x1, the global features of the reference image, x2, and the edge features of
the reference image, x2. Since these four features differ in their sources and types, the
meaning represented at each corresponding position is also different. Therefore, directly
using the method of subtracting the absolute value pair-wise is not suitable for feature
fusion. However, these four features all come from the same feature extraction network,
so they share commonalities in structure; they have the same shape and similar receptive
fields in the same channels. Based on these characteristics, a feature fusion method based
on feature correlation is designed. The specific fusion method is as follows:

Firstly, we concatenate the global features and edge features of the target image
along the width (W) direction. Secondly, we concatenate the global features and edge
features of the reference image in the same manner. The concatenation formula is shown in
Equation (7):

ftarget(contrast) = concat
(

fglobal , fedge, dim = 2
)

(7)

where ftarget(contrast) represents the fused features of the target or reference image after fusion.
fglobal and fedge denote the respective global features and edge features. concat(dim = 2)
signifies the concatenation operation along the width dimension.

Finally, we concatenate the already concatenated features of the target image and
reference image along the height (H) dimension. The concatenation formula is shown in
Equation (8):

fmix = concat
(

ftarget, fcontrast, dim = 3
)

(8)

where ftarget and fcontrast represent the features of the target image and reference image obtained
in the previous step; concat(dim = 3) denotes the concatenation operation along the height



Information 2024, 15, 808 11 of 22

dimension; fmix represents the newly fused features. By using this method of feature fusion,
it is possible to maximize the preservation of the internal relationships of the original
features. Additionally, the new features combine all the features of the reference image and
the comparison image spatially while still having different receptive fields in the channels.

3.2.2. Similarity Computation Module

The original similarity metric module directly flattens the fused features into a one-
dimensional vector and calculates similarity by using a fully connected network, which
ignores the internal relationships among features, making it difficult to accurately fit the
mapping relationship between features and similarity by not analyzing the relationship
between the target and comparison images from the spatial and channel dimensions.
Furthermore, the feature maps (after extraction) are large, and directly flattening them for
use in a fully connected network increases the parameter count to millions. To address
this, we designed an optimized similarity computation module that utilizes depthwise
separable convolutions to improve similarity calculations. Additionally, to enhance the
accuracy of similarity computation, we incorporate the structural similarity, Euclidean
distance, and hash similarity of the target and comparison images as extra feature inputs to
the network. The specific steps for similarity computation are as follows:

Depthwise separable convolution consists of depthwise convolution and pointwise
convolution. First, depthwise convolution is applied to each channel of the feature map
separately, integrating global and edge features and learning the relationship between
the target image and comparison image under the same receptive field. Next, pointwise
convolution is performed on features from different channels using a 1 × 1 convolution
kernel to learn the relationships between features under different receptive fields. Finally,
the feature vectors after pointwise convolution are flattened, and the structural similarity
(SSIM), Euclidean distance, and hash similarity of the target and comparison images are
added at the end, enhancing the dimensionality of features during similarity computation.
This enhances the feature dimensionality of the model during similarity computation.

The multidimensional features provided by SSIM (such as brightness, contrast, and
structural information) can enrich the input features of neural networks, helping the model
assess wood texture similarity from multiple aspects. The structural similarity calculation
formula is shown in Equation (9):

SSIM(x, y) =

(
2µxµy + c1

)(
2σxy + c2

)(
µ2

x + µ2
y + c1

)(
σ2

x + σ2
y + c2

) (9)

where x and y, respectively, denote the reference texture image and the comparison texture
image; µx and µy represent the local means of x and y; σx and σy denote the local standard
deviations of x and y; σxy represents the local covariance of x and y; c1 and c2 represent
two constants.

Combining Euclidean distance with other features can supplement more complex
features. The formula for calculating the Euclidean distance is shown in Equation (10):

d(x, y) =

√
∑m

i=1 ∑n
j=1

(
x(i,j) − y(i,j)

)2
(10)

where x(i,j) and y(i,j), respectively, represent the pixel values of the reference texture image
and the comparison texture image at position (i, j).

Hash similarity exhibits robustness against minor changes in images (such as rotation,
scaling, slight noise, etc.), helping the model accurately determine similarity even when
facing subtle variations in wood texture. The hash similarity calculation formula is shown
in Equation (11):

similarity = 1 − ∑n
i=1(H1(i)⊙ H2(i))

n
(11)
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where H1(i) and H2(i), respectively, represent the hash codes of the reference texture image
and the comparison texture image; n denotes the length of the hash code; ⊙ represents the
bitwise XOR operation.

Finally, we establish the mapping relationship between texture features and texture
similarity using a fully connected network, and we output the texture similarity score
through a sigmoid function.

4. Dataset Introduction
4.1. Dataset Design Ideas

Due to the lack of public datasets in the field of wood-texture-similarity matching, this
study created a custom wood-texture-similarity-matching dataset. The dataset is designed
to simulate human visual perception using machine vision, enabling the model to better
recognize and assess the similarity of wood images. The classification of the labels in the
dataset is based on human visual perception of color and texture:

1. Class 0 label: Color consistent and texture similar, representing human visual recogni-
tion of the same material and surface characteristics;

2. Class 1 label: Color consistent but texture dissimilar, aiming to simulate how humans
recognize different textures under the same color;

3. Class 2 label: Significant color difference, intended to examine whether the model can
differentiate based on texture features under varying color conditions.

This labeling classification method helps the model learn more dimensions of features,
particularly the ability to distinguish between similar and dissimilar factors under different
conditions, thereby enhancing the model’s generalization capability. Furthermore, in the
formulation of Class 0 and Class 1 labels, this study also considers the impact of overall
visual similarity and content-based similarity on the experimental results. If the dataset is
labeled solely based on overall visual similarity, the images returned by the model may
have colors similar to the target image but may not be similar in texture details such as
stripe direction and spacing. Conversely, if the dataset is labeled solely based on content,
the results would be the opposite. Based on these two comparisons, the dataset design
clearly distinguishes Class 0 (where both color and texture are similar) from Class 1 (where
color is consistent but texture differs), helping the model accurately identify wood images
that truly possess similar texture features as required for the experiments. This distinction
allows the model to better learn the differences between texture structure and overall
visual during training, thereby improving the classification accuracy and performance of
the model.

4.2. Labeling Strategy

When humans perform a comparison of wood texture similarity, they not only evaluate
aspects such as the direction, arrangement, and distribution patterns of the texture but
also consider multiple factors like texture coarseness, details, color, tone, surface gloss,
and tactile feel. This allows the human eye to form an intuitive perception during wood-
texture-similarity matching. However, there is no single metric that can meet all these
complex requirements, and any single metric cannot fully and accurately reflect human
subjective perception. Therefore, this dataset is labeled manually to better simulate human
visual judgment logic. This annotation method is also a common method for label creation
regarding datasets in the field of perceptual similarity computation. During the labeling
process, we required annotators to evaluate similarity from two perspectives: texture
characteristics and overall color. For texture, we focused on whether the primary texture’s
direction, quantity, coarseness, and relative positions were generally consistent. For overall
color, we assessed whether the base color of the wood, the color of the texture, and the
depth of the texture color were generally consistent. If both texture and color met the
required criteria, the image pair was categorized as Class 0 (highly similar texture). If only
color was consistent, the pair was classified as Class 1. All other cases were classified as
Class 2.
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Moreover, although subjectivity is inevitably present in the labeling process, this
does not reduce the validity of the experiment; on the contrary, it helps the model more
accurately simulate human visual perception. To reduce the potential subjective bias
introduced during manual labeling, we adopted the “multiple raters averaging” method.
Specifically, we invited multiple annotators to rate the same image pair, and the average
rating was used as the final label. This method not only effectively reduces individual
differences among annotators but also improves label consistency and reliability, thereby
enhancing the dataset’s accuracy and ensuring the validity of the experimental results.

4.3. Dataset Production

The dataset used in this paper is a self-made wood-texture-similarity matching dataset.
The creation of this dataset involves three steps: wood texture image collection, texture
image preprocessing, and label creation, as detailed below:

During the wood texture image collection stage, to ensure uniform lighting on the
wood surface and reduce the impact of factors such as exposure on image quality, supple-
mentary lighting was used in the shooting environment. Subsequently, an OscarF810C
industrial camera was employed to capture 3000 original wood texture images with a
resolution of 2048 × 2048 pixels.

During the texture image preprocessing phase, 1000 images were randomly selected
from the original set of 3000 wood texture images with a resolution of 2048 × 2048 pixels,
and these images were randomly rotated. The rotation angles included 0◦, 90◦, 180◦,
and 270◦, thereby expanding the dataset to 4000 images. Subsequently, 500 images were
randomly selected from the 4000-image dataset and subjected to random translations. The
translation range was ±10% in both the horizontal and vertical directions. This operation
simulated minor positional deviations that may occur during the acquisition process,
further expanding the dataset to 5000 images. Next, Perlin noise was applied to fine-tune
and simulate the 5000 wood texture images, generating 5000 new images consistent with
natural texture characteristics. This introduced natural variations, increasing the diversity
of the dataset. Finally, a sliding window method was employed to segment each 2048 ×
2048-pixel original image into 176 × 176-pixel sub-images in a non-overlapping manner,
with a sliding step size of 400 × 400 to prevent excessive similar images from biasing model
training. The segmented images underwent a quality evaluation to select images with
clear textures, complete boundaries, and distinct features. Ultimately, 10,000 images were
retained for the construction of the wood texture similarity dataset.

During the label creation stage, two images were randomly selected from the pre-
processed set of 10,000 wood texture images to form an image pair, with one serving as
the target image and the other as the comparison image. Subsequently, each image pair
was manually classified based on similarity. The classifications were as follows: Label 0
indicated that the two images were highly similar in both color and texture; Label 1 indi-
cated similarity in color but significant differences in texture; Label 2 indicated significant
differences in both color and texture. Considering the continuity characteristics of wood
texture, areas close to each other on the same board often exhibit high texture similarity.
However, differences may arise in the texture of the same type of wood across different
boards, even when the color is similar. Similarly, color differences may exist between
different types of wood. Therefore, during the manual labeling process, these texture
characteristics were taken into account, and multiple reviews were conducted to ensure
the accuracy and consistency of the labels while minimizing significant imbalances in the
number of data points across different categories. In total, 7588 image pairs were created,
with each pair assigned a corresponding similarity label. These pairs were used to train
and test the wood texture similarity dataset. The similarity classification criteria are shown
in Table 1:
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Table 1. Dataset labels.

Label Meaning

0 The image pair has consistent colors and similar textures.
1 The image pair has consistent colors but dissimilar textures.
2 The image pair has significant color differences.

The dataset labeling is shown in Figure 8.

Figure 8. Sample dataset.

5. Experiment and Result Analysis
5.1. Experimental Introduction

In the experiment, the dataset was randomly split into training and test sets in
a 4:3 ratio, where the training set was used for model training and the test set for model
evaluation. Moreover, during the training process, it was ensured that all models were fully
trained until convergence to the optimal state. Furthermore, WTSM-SiameseNet, which
was designed in this study, utilizes the PyTorch deep learning framework. During training,
it employs the Adam optimizer with a learning rate of 1 × 10−3 and a batch size of 10. The
remaining experimental hardware devices and software platforms are shown in Table 2.

Table 2. Hardware equipment and software platform.

Name Configuration Instruction

Image Acquisition Equipment AVT Oscar F-810C
GPU NVIDIA RTX 3080/NVIDIA A40 48 G
CPU Intel Core i7-12700K

Operating System Windows10/Ubuntu 23.0
Deep Learning Framework Pytorch 1.13.0 + cu117

Version of Python 3.10.13

5.1.1. Training Process

To train the model, we first need to set the training parameters, including choosing
the Adam optimizer and setting the epoch to 200 and the Batch Size to 10. Next, we input
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the texture image pairs and their corresponding similarity labels. Then, we used WTSM-
SiameseNet to calculate the similarity between the two images. Finally, we performed
a cross-entropy loss operation on the similarity categories and the similarity labels of
the image pairs to obtain the training loss, and we optimized the parameters in WTSM-
SiameseNet using backpropagation to enable the model to more accurately predict the
similarity of the input image pairs. The calculation of the cross-entropy loss function is
shown in Equation (12):

Loss(y, ŷ) = −∑3
i=1 yi log(ŷi) (12)

where y represents the similarity label, with only the elements in the corresponding class
being 1 and the others being 0; ŷ represents the model’s prediction value, which is a vector
representing the probability distribution of the predicted classes by the model; yi is the ith
element in y; ŷi is the ith element in ŷ.

5.1.2. Evaluation Metrics

The model’s performance was evaluated using accuracy, precision, recall, and F1-score.
Accuracy, precision, and recall are calculated based on common confusion matrix metrics
(such as TP, TN, FP, and FN). The F1-score combines precision and recall. The formulas for
calculating accuracy, precision, recall, and F1-score are shown in Equations (13)–(16):

Acc =
TP + TN

TP + TN + FP + FN
(13)

Precision =
TP

TP + FP
(14)

Recall =
TP

TP + FN
(15)

F1 = 2 × Precision × Recall
Precision + Recall

(16)

5.2. Comparative Experiment
5.2.1. SiameseNet Comparative

To validate the performance of WTSM-SiameseNet in the wood-texture-similarity
matching task, comparative experiments were conducted using SiameseNet, SE-SiameseNet,
Res-SiameseNet, and CS-SiameseNet. Among them, SiameseNet is the basic Siamese net-
work model, with a nine-layer convolutional network for feature extraction and a two-
layer fully connected network for similarity computation; SE-SiameseNet is an improved
Siamese network that uses SENet50 as the backbone, as proposed by Yu et al. in 2020 [31];
Res-SiameseNet, also proposed by Yu et al. in 2020, uses ResNet50 as the backbone and in-
corporates attention mechanisms to further improve the Siamese network; CS-SiameseNet
is the model proposed by Yan et al. in 2023 [26], which improves the performance of the
Siamese network using CBAM attention with VGGNet as the backbone. The minimum
training loss and the number of training epochs to obtain the best model for each group are
shown in Table 3:

Table 3. Best loss and optimal model for model training.

SiameseNet SE-SiameseNet Res-SiameseNet CS-SiameseNet WTSM-
SiameseNet

Cross-entropy loss 0.1050 0.0860 0.0839 0.0558 0.0461
Best model (epoch) 79 157 152 169 154

The changes in training loss for the comparative experiment models are shown in
Figure 9:
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Figure 9. Training loss.

As shown in the figure, the original SiameseNet model has the fastest fitting speed,
with the loss tending to flatten after the 50th epoch, while the losses of the other models
tend to flatten after the 110th epoch. This is because the SiameseNet network structure
is relatively simple. In terms of training model loss, our proposed WTSM-SiameseNet
performs better than the other models.

To further compare the generalization abilities of each model, experiments were
conducted on the test set, and the comparative experimental results are shown in Table 4:

Table 4. Comparison of experimental results.

Model Params Accuracy/% Precision/% Recall/% F1-Score

SiameseNet 7.3M 83.76 83.03 85.15 0.840
SE-SiameseNet 27.1M 87.85 88.39 86.83 0.867
Res-SiameseNet 25.6M 89.08 88.45 86.66 0.875
CS-SiameseNet 17.2M 93.81 90.66 91.78 0.912

WTSM-SiameseNet 20.7M 96.67 97.24 96.81 0.970

The results in Table 4 indicate that, as a baseline model, SiameseNet performs relatively
poorly. This may be due to its relatively simple structure, which uses only a nine-layer
convolutional network for feature extraction and lacks the ability to learn complex texture
features. Additionally, using a two-layer fully connected network for similarity compu-
tation may lead to information loss, affecting classification performance. SE-SiameseNet
introduces SENet50 as the backbone, significantly improving model performance, with an
increase of 4.09% in accuracy and 5.36% in precision. This indicates that the SE (Squeeze-
and-Excitation) mechanism effectively enhances the model’s focus on important features,
improving both accuracy and precision. Compared to SiameseNet, SE-SiameseNet is better
at capturing subtle differences in texture features. Res-SiameseNet uses ResNet50 as the
backbone, utilizing residual connections to improve gradient propagation and enhance
model training effectiveness. Although there is a significant improvement over Siame-
seNet, its performance is similar to SE-SiameseNet, with only a 1.23% increase in accuracy
and a 0.06% increase in precision. This may be because the attention mechanism in Res-
SiameseNet may not have fully played its role in comparing similarities, leading to a
relatively small improvement. CS-SiameseNet adopts VGGNet with the CBAM attention
mechanism as its backbone, greatly improving model performance. CBAM enhances im-
portant features and suppresses irrelevant ones, making the model’s judgments on texture
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similarity more precise; this results in significant increases in precision and recall of 4.73%
and 2.21% over Res-SiameseNet, respectively. WTSM-SiameseNet, which was designed
in this study, improves the texture feature extraction module and the texture feature ag-
gregation matching module, making the model more suited for wood-texture-similarity
matching tasks. In the test set, WTSM-SiameseNet achieved an accuracy of 96.67%, which
is an increase of 2.86% over CSNet. At the same time, the model achieved a precision
of 97.24%, significantly higher than that of other models. Moreover, WTSM-SiameseNet
achieves high precision performance with a moderate number of parameters, indicating
the efficiency of its structural design.

5.2.2. Pseudo-SiameseNet Comparative

To verify whether the pseudo-Siamese network can further improve the performance
of wood-texture-similarity matching, three comparison experiments were designed in
this study; the experimental results are shown in Table 5, and the experimental setup is
as follows:

1. Experiment 1 utilized the existing pseudo-Siamese network architecture [32] for
wood-texture-similarity matching. The specific approach involves using two weight-
independent feature extraction networks to extract features from the target and con-
trast images and then compute the texture similarity.

2. Experiment 2 is based on the Siamese network architecture proposed in this study.
Weight-independent feature extraction networks are used to extract features from
the target and contrast texture patterns, and the corresponding mask patterns are
extracted using the same feature extraction network as the original images.

3. Experiment 3 is also based on the Siamese network architecture proposed in this study.
However, the same feature extraction network is used for the target and contrast
texture patterns, and a separate weight-independent feature extraction network is
used for their corresponding mask texture patterns.

Table 5. Pseudo-SiameseNet comparative experiment.

Group Accuracy/% Precision/% Recall/% F1-Score

1 72.53 93.62 68.81 0.793
2 74.23 79.68 75.17 0.773
3 98.09 96.41 97.52 0.969

Our Method 96.67 97.24 96.81 0.970

According to the experimental results, the performance differences between Exper-
iment 1 and Experiment 2 primarily arise from the different feature extraction methods.
Experiment 1 used two weight-independent feature extraction networks, which may have
led to insufficient alignment of texture features between the target image and the contrast
image, affecting the texture similarity calculation and resulting in a lower recall (68.81%).
Although Experiment 2 adopted an improved Siamese network architecture, it still used the
same feature extraction network to extract features for the mask pattern from the original
image, which failed to effectively capture the detailed texture patterns, resulting in lower
precision (79.68%). Thus, the results of Experiment 1 and Experiment 2 indicate that the
different branch weights in the pseudo-Siamese network may lead to the output of different
features from the two branches, affecting the similarity calculation and reducing the match-
ing accuracy. Although the pseudo-Siamese network can effectively match images of the
same object in different modalities, in the wood-texture-matching task, the primary com-
parison involves the similarity of different textures within the same modality. Therefore,
a unified feature extraction method may be more suitable. In contrast, Experiment 3 im-
proved performance significantly by optimizing the feature extraction module. It used the
same feature extraction network for both target and contrast textures while independently
processing the mask textures, achieving the following: an accuracy of 98.09%, a precision of
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96.41%, and a recall of 97.52%. This indicates that by properly combining independent and
shared networks, the model can better align texture features and reduce information loss.
The success of Experiment 3 suggests that the rational combination of shared and indepen-
dent feature extraction networks can enhance texture-similarity-matching performance.
Compared to the Siamese network in this study (accuracy: 96.67%, precision: 97.24%, and
recall: 96.81%), the results of Experiment 3 are similar, with a slight advantage in accuracy.
This provides insight for further optimizing the feature extraction network design from this
study. Since mask images and original images originate from the same source but exhibit
differences in feature representation, extracting features separately from both original
texture images and mask texture images, although increasing computational load, may
be more beneficial for wood-texture-similarity matching, especially in optimizing mask
pattern feature extraction. Overall, these comparative experiments suggest that combining
different feature extraction module designs can effectively enhance model performance.
In the future, further exploration of the optimization directions for mask pattern feature
extraction in different network architectures could be conducted, along with experimenting
with more feature fusion methods to improve the model’s generalization ability.

5.3. Optimization Experiment

To validate the effectiveness of concurrent attention, this study designed optimization
experiments to evaluate the contribution of each attention mechanism to model perfor-
mance. It is important to note that in experiments without the edge attention mechanism,
due to changes in the number of features, feature fusion based on feature correlation cannot
be used. Instead, vector subtraction to take the absolute value was used for fusion, while the
rest of the modules remained consistent. The concurrent attention optimization experiment
is shown in Table 6, where “✓” indicates the use of the corresponding module.

Table 6. Concurrent attention optimization experiment.

CBAM Edge Att Accuracy/% Precision/% Recall/% F1-Score

86.46 84.25 86.04 0.851
✓ 94.61 92.58 93.72 0.931
✓ ✓ 96.67 97.24 96.81 0.970

The data from the table show that from not using any attention mechanism to using
only the CBAM attention mechanism, accuracy improved by 8.15%, and the F1-score
increased by 0.080. This indicates that the CBAM attention mechanism enhances important
features and suppresses noise, helping the model focus on key texture information and
thereby improving classification accuracy. When the concurrent attention mechanism was
introduced, the model’s accuracy further increased to 96.67%, with an F1-score of 0.970.
This indicates that the use of the concurrent attention mechanism further optimized model
performance in feature extraction and similarity computation. This also demonstrates that
the concurrent attention mechanism combines the advantages of CBAM and edge attention,
allowing the model to simultaneously focus on global and local features, enhancing its
ability to learn complex texture features. This complementary information characteristic
enables the model to have a more comprehensive understanding of image content, thus
enhancing performance. By employing different types of attention mechanisms, the model
may better generalize to unseen samples, reducing overfitting regarding the training data.
This capability improves the model’s performance on the test set. In summary, the attention
mechanism significantly enhances model performance, especially with the introduction
of the concurrent attention mechanism, which further strengthens the understanding and
classification ability of texture features. By using a combination of different mechanisms,
the model can better capture the complex features of wood textures, achieving higher
accuracy and F1-scores.
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5.4. Ablation Experiment

To verify the impact of improvements to attention (Att), feature extraction network
(FEN), the feature fusion module (FFM), and the similarity computation module (SCM)
on model performance, ablation experiments were conducted on the four modules. The
ablation experiment results are shown in Table 7, where “✓” indicates the use of the
corresponding module.

Table 7. Main module ablation experiments.

Att FEN FFM SCM Accuracy/% Precision/% Recall/% F1-Score

85.73 84.06 85.77 0.849
✓ 82.84 82.02 84.27 0.831
✓ ✓ 86.86 87.48 85.86 0.866
✓ ✓ ✓ 95.38 94.49 95.58 0.950
✓ ✓ ✓ ✓ 96.67 97.24 96.81 0.970

The data from Table 6 indicates that using the concurrent attention mechanism alone
leads to a decrease in model performance. This is because using the concurrent attention
mechanism generates four texture features, and directly fusing them by taking the absolute
value of the vector difference increases feature complexity, making similarity computation
more difficult. Secondly, the improved feature extraction network effectively alleviates the
limitation of the receptive field by increasing its dimensionality, thus enhancing feature
quality. This resulted in an increase of 1.13% in accuracy and 3.42% in precision for the
model. Furthermore, the improved feature fusion module can fuse features based on
their correlation, effectively reducing the destruction of the original feature structure and
thereby enhancing feature expressiveness. The experimental results show that the model’s
accuracy, precision, recall, and F1-score increased by 8.52%, 7.01%, 9.72%, and 0.084,
respectively. Finally, the improved similarity computation module employs depthwise
separable convolutions, which, while only yielding a limited increase of 1.29% in model
accuracy, reduces the number of parameters by 86.8%.

5.5. Matching Example

To visually observe the matching effect of wood texture similarity using WTSM-
SiameseNet, three sets of defect wood repair instances were designed. In the early stages of
the project, texture generation techniques [33] were used to study texture generation for
defective wood areas. The purpose of this experiment was to use the generated textures as
target images to search for similar boards in the texture library for practical wood repair
work. The specific steps of the experiment are as follows:

First, locate and extract the defective area image (Defect Image) from the original
image of the solid wood board (Original Image). Next, we used MRS-Transformer (the
method from reference [33]) to generate a texture for the defective area, obtaining the
generating textures (Generating Textures). Then, use WTSM-SiameseNet to compare the
generated wood texture with the real textures in the database to select the highest matching
texture (Matching Textures). Finally, replace the generated texture with the matching
texture to repair the defective area in the original solid wood board. The wood defect
texture repair process is shown in Figure 10, where the red box area is the repair area.

From the experiment, it can be seen that WTSM-SiameseNet performed well in the
task of wood-texture-similarity matching. Using this method for tasks such as wood defect
repair can significantly improve the quality and consistency of the repaired texture, making
the texture better meet the subjective perception of the human eye.
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Figure 10. Wood-texture-similarity matching example.

6. Conclusions

In the wood-texture-similarity-matching task, the reliability of the similarity score
depends both on the model’s ability to extract texture features and on the adaptability of the
similarity measure function to the task. WTSM-SiameseNet, which is based on the Siamese
network architecture and is studied in this paper, can efficiently extract wood texture
features through concurrent attention mechanisms and a multi-receptive field feature
extraction network. Based on this, the model improves the similarity measure module using
feature fusion methods based on feature correlation and depthwise separable convolutions,
enabling it to adaptively generate wood texture similarity scores that align with human
subjective perceptions while reducing the computational load of model parameters. The
evaluation results on the wood texture similarity dataset indicate that the model’s scoring
of wood texture similarity aligns with human subjective perception. However, in real
production environments, incorrectly predicting dissimilar textures as similar textures can
have a more significant negative impact than other prediction errors. Therefore, future
research directions will focus on further improving the loss function by incorporating
penalty mechanisms that better align with the wood-texture-similarity-matching task,
enhancing the model’s learning efficiency and capability.
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Abbreviations
The following abbreviations are used in this manuscript:

GLCM Gray-Level Co-occurrence Matrix
SSIM Structural Similarity Index Measure
BoVW Bag of Visual Words
CNNs Convolutional neural networks
WTSM-SiameseNet Wood-Texture-Similarity Matching-SiameseNet
MRF-Resnet Multi-scale Receptive Field-Resnet
CBAM Convolutional Block Attention Module
TP True Positive
TN True Negative
FP False Positive
FN False Negative
Att Attention
FEN Feature extraction network
FFM Feature fusion module
SCM Similarity computation module
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