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Abstract: Mathematical models are designed to assist decision-making processes across various
scientific fields. These models typically contain numerous parameters, the values’ estimation of
which often comes under analysis when evaluating the strength of these models as management
tools. Advanced artificial intelligence software has proven to be highly effective in estimating these
parameters. In this research work, we use the Lotka–Volterra model to describe the dynamics of a
telecommunication sector in Greece, and then we propose a methodology that employs a feed-forward
neural network (NN). The NN is used to estimate the parameter’s values of the Lotka–Volterra system,
which are later applied to solve the system using a fourth-algebraic-order Runge–Kutta method. The
application of the proposed architecture to the specific case study reveals that the model fits well
to the experiential data. Furthermore, the results of our method surpassed the other three methods
used for comparison, demonstrating its higher accuracy and effectiveness. The implementation of
the proposed feed-forward neural network and the fourth-algebraic-order Runge–Kutta method was
accomplished using MATLAB.

Keywords: Lotka–Volterra; feed-forward neural network; deep neural network; MATLAB; Runge–Kutta
method

1. Introduction

The primary purpose of mathematical modeling is to simplify and explain complex
systems that occur in many scientific fields. Our goal is to develop a straightforward
model that precisely fits a dataset within a defined margin of error, while also enabling
the exploration of specific properties. Our research utilizes a feed-forward neural network
to estimate the parameters’ values of the Lotka–Volterra model. Neural networks (NNs)
have emerged as a adjustable tool for solving complex systems, especially when integrated
with experimental data [1]. By training a neural network on such data, the model can
reveal hidden patterns and complex relationships that are difficult to capture through
traditional approaches. NNs are particularly effective in controlling noisy, nonlinear,
or high-dimensional datasets, which improve their ability to estimate parameters and make
accurate predictions [2]. When used on experimental datasets, neural networks prove
strong generalization capabilities, providing valuable information into system dynamics
and enabling the construction of accurate models for a variety of scientific applications [3].
In the case of a Lotka–Volterra system, the parameter values typically represent factors such
as competition, mutualism, predation, or growth between interacting species/populations.
These parameters must be quantified to effectively apply the model as a decision-making
tool in a specific context [4]. The challenge is to accurately quantify these parameters
to solve the problem quantitatively and ensure that the model closely fits the raw data.
Parameter estimation in dynamical systems like the Lotka–Volterra model faces significant
challenges [5]. The inherent nonlinearity complicates parameter identification using tradi-
tional linear methods, often resulting in inaccurate or unstable estimates. Moreover, noisy
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observational data hinder the computation of reliable derivatives essential for accurate
estimation. Furthermore, high-dimensional systems increase computational complexity as
the number of parameters scales with system size, necessitating more sophisticated and
scalable approaches. In addition, limited data availability risks overfitting, where models
capture noise instead of underlying dynamics, reducing generalizability. The proposed
method effectively addresses these challenges by leveraging neural networks’ ability to
model complex nonlinear relationships, providing smooth approximations of state vari-
ables that mitigate noise impact. Furthermore, the architecture of the method is designed to
be scalable and robust, handling high-dimensional parameter spaces and performing well
even with limited datasets. In the literature, there are several techniques that are trying to
achieve this target. For instance, Shatalov et al. [6] and Fedatov and Shatalov [7] propose
a method that involves using direct integration to acquire goal functions and applying
subsequent quadrature rules to determine the values of the unknown parameters. On the
other hand, Michalakelis et al. [8] employ genetic algorithm techniques and advanced
computer software to solve a nonlinear system.

To demonstrate the practical application of the proposed method, we use a Lotka–
Volterra system that describes the dynamics among three competitors in the telecommu-
nication market, relying on a comprehensive set of data. The problem is formulated as a
dynamical system containing three nonlinear first-order differential equations, each includ-
ing both linear and quadratic terms, comparable to the systems discussed by Bazykin [9]
and Fay and Greeff [10]. Market concentration has long been a focus of researchers, partic-
ularly concerning the number of firms offering specific products or a range of products and
services [11]. The structure of a market is crucial in determining market power, business
behavior, and overall performance, which in turn facilitates the assessment of the level of
competition across different industries. These considerations are especially relevant in the
high-technology sector, such as telecommunications. Traditionally, telecommunications
were operated as a national monopoly until recent years when market liberalization oc-
curred. This change transformed the market from a monopolistic structure, characterized
by important entry barriers, to an oligopolistic or, in some cases, a competitive environ-
ment. Therefore, the analysis of this emerged market is basic for identifying its unique
characteristics, understanding competitor behaviors, and providing valuable insights for
lawmaking and regulatory authorities [11,12].

The proposed neural network architecture is based on a feed-forward neural network
with one input layer and one to three hidden layers, and an output layer consists of three
nodes. In this structure, the input vector is processed through the hidden layers, where
nonlinear transformations are applied, allowing the network to model complex patterns
of the experimental data. The three output nodes serve the prediction of multiple target
variables simultaneously, making the neural network ideal for tasks that include multiple
outputs. Validation applied with a walk-forward algorithm that is suitable for small datasets
and for time series data [13]. This architecture enables the model to operate in a data-driven
learning mode, producing reliable predictions. Parameter estimation on dynamical systems
using neural networks is a relatively new research field (for example, see [3,4]). The specific
problem of market modeling is addressed using real data. The purpose of this research
is to demonstrate the effectiveness of neural networks (NNs) in comparison with genetic
algorithms [8] and other methods, such as integral and logarithmic integral approaches [14],
which have already produced results for this specific problem.

2. Overview of the Lotka–Volterra Model Interpretation

The well-known Lotka–Volterra (LV) model is often utilized in order to represent the
dynamics of n interacting species within an ecosystem. The LV model is represented by the
following system of ordinary differential equations (ODEs):

dxi
dt

= xi

(
ai0 + ∑

j
aijxj

)
, i, j = 1, 2, . . . , n, (1)
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The parameters ai0 describe either the intrinsic population growth or the decline of
species i in the lack of interactions with other species (positive values indicate growth while
negative values indicate decline). Furthermore, the parameters aij can be positive, negative,
or zero, reflecting whether the species interact through predation, rivalry, or mutualism
or have no interaction at all. For n = 3, the general Lotka–Volterra system of Equation (1)
takes the following form:

dx
dt

= x(a10 + a11x + a12y + a13z)

dy
dt

= y(a20 + a21x + a22y + a23z) (2)

dz
dt

= z(a30 + a31x + a32y + a33z)

where x, y, z are the three species/competitors. The Lotka–Volterra model is ideal for captur-
ing competitive interactions among companies through its nonlinear dynamics, accurately
reflecting real market behaviors [15]. Alternative approaches, such as linear regression, fail
to model these complex interdependencies, resulting in oversimplified insights. Agent-
based models, while detailed, require extensive computational resources and large datasets,
making them less practical for certain applications. Additionally, equilibrium-based models
lack the dynamic adaptability necessary to represent evolving market conditions. Thus,
the Lotka–Volterra framework provides a balanced and effective means to analyze and
estimate parameters in competitive market environments. The modeling approach for
the specific telecommunication market has already been proposed and investigated by
researchers [8,14].

3. Description of the Method

In this section, we present the proposed methodology for estimating a parameter’s
value in dynamic systems, which are defined by nonlinear ODEs. The method applies
a feed-forward neural network and uses optimization techniques for the determination
of the parameter values. The effectiveness of the proposed approach is demonstrated on
a Lotka–Volterra system with three interacting competitors, where time-series data are
available for each. The numerical results emphasize the efficacy of the method in capturing
the system’s dynamics.

Valid parameter estimation in dynamic systems is crucial across many scientific and
engineering disciplines. Traditional approaches often involve linearization or demand
wide prior knowledge of the system’s structure, which can be difficult when dealing with
nonlinearities and intricate variable interactions. In this study, we present a method that
uses the capabilities of neural networks to model complex relationships, coupled with
optimization techniques to estimate the parameters of a nonlinear dynamic system. At this
point, we present an algorithm to provide a better understanding of the proposed approach
(Algorithm 1).

Algorithm 1 Proposed approach

1: Initialize t_data← [0, . . . , 18]T , data← [x, y, z], normalize data
2: Define NN with x hidden layers using tanh activation
3: Initialize storage for validation_errors, params_all
4: for i = 5 to 18 do
5: Train NN on t_data[0 : i− 1], data_norm[0 : i− 1, :]
6: Perform walk-forward validation on t_data[i], data_norm[i, :]
7: Predict YPred_train, denormalize, compute derivatives
8: Estimate parameters via optimization, store in params_all
9: Predict YPred_val, denormalize, calculate error, store in validation_errors

10: end for
11: Compute average error, plot parameter stability and predictions
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In the algorithm, YPred_train refers to the neural network’s predicted outputs on
the training dataset, which are denormalized to their original scale for further analysis.
YPred_val denotes the predictions made on the validation dataset, used to evaluate the
model’s performance. The variables dx

dt , dy
dt , and dz

dt represent the computed derivatives
based on the training predictions essential for parameter optimization. Additionally,
validation_errors stores the error between the predicted and actual values on the validation
set, while params_all maintains a record of all estimated model parameters throughout the
training iterations.

3.1. Data Collection and Normalization

In our application, we use time-series data for the three variables in the system (2),
which were collected over a time span of 19 6-month periods. Data for the variables x(t),
y(t), and z(t) were stored in the vectors xdata, ydata, and zdata, respectively. For more
efficient network training, we normalize the data by subtracting the mean and dividing
by the standard deviation of each variable. Normalization involves scaling input data,
including time points and state variables, using Z-score normalization. This ensures that all
features contribute equally to neural network training [16], enhancing numerical stability
and accelerating convergence by preventing larger-scale features from dominating the
learning process. The benefits include improved training efficiency, balanced feature
contribution, and enhanced performance of activation functions like tanh or sigmoid by
keeping inputs within their sensitive ranges. After the neural network generates predictions
in the normalized scale, denormalization transforms these outputs back to the original data
scale. This step is crucial for accurately interpreting results and computing derivatives in
their true scale, which is essential for reliable parameter estimation in the Lotka–Volterra
model. Normalization and denormalization are inverse processes using the same statistical
parameters (µ and σ), ensuring consistency and enabling the neural network to learn
efficiently on scaled data while accurately applying results in their original context.

3.2. Neural Network Architecture

A feed-forward neural network was designed with the following architecture:

• Input Layer: A single feature input representing time (tdata).
• Fully Connected Hidden Layers: Each with n possible neurons and a hyperbolic

tangent activation function (tanh). Custom weight and bias initializers were used to
ensure small initial weights and zero biases.

• Output Layer: A fully connected layer producing three outputs, corresponding to
the predictions of x(t), y(t), and z(t). The regression layer in each output is used
to calculate the loss based on the difference between the predicted and normalized
true values.

An example of the proposed architecture is presented in Figure 1.
In our approach, the neural network (NN) captures the time evolution of the system,

represented by three variables (xdata, ydata, and zdata) based on time (t).
Basic Roles:

1. Prediction of system dynamics: The NN is trained on normalized data (xdata, ydata,
zdata) to predict the values of x, y, and z over time (t). After training, it can generate
predictions (YPred) for the system based on the time data.

2. Learning the relationships: The NN is developed to approximate the underlying
dynamics between the variables (x, y, z) and time (t), allowing the model to capture
the relationships between these variables that might be nonlinear or complex.

3. Providing inputs for further analysis: The NN’s predictions are denormalized to
provide continuous estimates of the system variables, which are then used to compute
the derivatives ( dx

dt , dy
dt , dz

dt ). These derivatives are essential for parameter estimation
using fminunc in the subsequent optimization process.
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Hidden
Layer 1

Hidden
Layer 2

Input

Output

Figure 1. An example of a random feed-forward neural network with one input neuron, three output
neurons, and two hidden layers with seven neurons on every layer.

In summary, the NN approximates the time-dependent behavior of the system vari-
ables and provides predictions that are crucial for calculating the derivatives needed
for optimization.

Feed-Forward Propagation

A feed-forward neural network operates according to the following procedure [17]:
For each data point t(m), the learning process begins by setting r[0]1 = t(m). Next, to com-
pute rl from rl−1, we follow two key steps. The first step involves calculating an inter-
mediate vector cl by performing a matrix multiplication between the previous layer’s
activations rl−1 and the weight matrix W l , and then adding the bias vector bl . This can be
represented as follows:

cl
j ≡

hl−1

∑
k=1

W l
jkrl−1

k + bl
j., (3)

Alternatively, in matrix notation, Equation (3) becomes the following:

cl = W lrl−1 + bl . (4)

The next step involves the application of an activation function σl to the values in cl to
produce the activations rl from (4). This step can be expressed as follows:

rl = σl(cl) = σl
(

W lrl−1 + bl
)

. (5)

In summary, for each input data point t(m), we compute both cl and the output rl by
using Equations (4) and (5), respectively. To emphasize the dependence on the input t(m),
we can denote the activations and intermediate values as rl(m) = σl(cl(m)). Thus, using
matrix and vector notation, we can summarize the forward pass across all data points
as follows:

T = [t1, . . . , tN ],

cl = [cl(1), . . . , cl(N)], (6)

Al = [rl(1), . . . , rl(N)].
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Using the notation of (6), we lead to the following recursive update rules:

A0 = T,

cl = W l Al−1 + bl , (7)

Al = σl(cl), for l = 1, . . . , L.

The output layer AL represents the final output of the network, denoted as follows:

N(T, WL, bL) = AL. (8)

Alternatively, in component form, we write the network output as follows:

Nj(t(m), WL, bL) = πj(AL) = AL
j (t

(m), W, b), (9)

where πj in (9) refers to the j-th component of the output vector.

3.3. Training Process, Prediction, and Denormalization

The neural network was trained utilizing the Adam optimization algorithm, running
for a total of 10,000 and 20,000 epochs. The initial learning rate was set to 0.01 because
different values resulted in quite large deviations, and we also tested three different sets
of layers. Furthermore, different activation functions were used, resulting in significant
deviations, leading to the conclusion that the tanh activation function should be used.

Walk-forward validation involves iteratively training the model on an expanding
training set, including all data up to the current time point, and validating it on the
subsequent data point [18]. This approach ensures that the model leverages all available
historical information, continuously updating with new data and adapting to evolving
patterns. By systematically moving through the dataset in this manner, walk-forward
validation provides a realistic assessment of the model’s performance, mimicking real-
world scenarios where models are retrained as new data become available [13].

To track the training process and ensure convergence, a live plot displaying training
progress was employed. Upon completing the training, the network was applied to predict
the normalized values of x(t), y(t), and z(t) for the entire time series. These predicted
values were subsequently denormalized using the original mean and standard deviation of
the dataset.

The proposed method is highly sensitive to the choice of activation functions and
the initialization of weights and biases. Utilizing the hyperbolic tangent (tanh) activation
function is preferable to others like sigmoid or ReLU because tanh centers data around zero,
which accelerates convergence and improves gradient flow. Tanh provides stronger gradi-
ents than sigmoid, helping to overcome the vanishing gradient problem, and unlike ReLU,
it avoids issues with dead neurons, ensuring consistent learning across all neurons. Initial-
izing weights and biases with small random values is essential to prevent the activation
functions from saturating early in training. Small initial weights help ensure that neurons
start in a region where the activation function behaves more linearly, promoting stable
and efficient gradient descent. This approach prevents exploding gradients and maintains
effective learning dynamics. Additionally, small biases help in maintaining symmetry
breaking without pushing neurons into saturated states prematurely. Together, the use
of tanh and careful initialization of weights and biases enhance the stability, convergence
speed, and accuracy of the proposed method, making it well suited for precise parameter
estimation in complex dynamical systems.

From Table 1, we select the best architecture for each layer size based on the mean RMSE.
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Table 1. Hyper-tuning.

Epochs Layers Neurons RMSE X RMSE Y RMSE Z Mean RMSE

10.000 1 20 0.0126 0.0119 0.0176 0.0140

10.000 2 20 0.0107 0.0109 0.0131 0.0116

10.000 3 20 0.0109 0.0096 0.0129 0.0111

10.000 1 30 0.0134 0.0123 0.0174 0.0144

10.000 2 30 0.0124 0.0116 0.0136 0.0125

10.000 3 30 0.0119 0.0109 0.0144 0.0124

10.000 1 40 0.0123 0.0119 0.0169 0.0137

10.000 2 40 0.0114 0.0107 0.0136 0.0119

10.000 3 40 0.0108 0.0112 0.0128 0.0116

20.000 1 20 0.0141 0.0119 0.0168 0.0143

20.000 2 20 0.0105 0.0104 0.0131 0.0113

20.000 3 20 0.0105 0.0088 0.0128 0.0107

20.000 1 30 0.0142 0.0124 0.0190 0.0152

20.000 2 30 0.0105 0.0113 0.0132 0.0117

20.000 3 30 0.0109 0.0098 0.0137 0.0115

20.000 1 40 0.0144 0.0126 0.0183 0.0151

20.000 2 40 0.0107 0.0110 0.0134 0.0117

20.000 3 40 0.0104 0.0091 0.0130 0.0110

RMSE evaluates the accuracy of predictions by measuring the average error between
observed and predicted value based on a validation procedure:

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (10)

Then, we extract the coefficients for the most efficient architecture corresponding to
each layer size and solve the system using the fourth-order Runge–Kutta method. Based on
the comparison of the mean RMSE values, we select the best model, which we subsequently
compare with other methods and include in the graphs.

3.3.1. Backpropagation

Backpropagation is an algorithm used for training feed-forward neural networks [19].
It involves two main phases:

1. Forward Pass: The input data are passed through the network, and the output
is calculated.

2. Backward Pass (Backpropagation): The error (difference between the predicted output
and the actual output) is propagated backward through the network. The gradients
of the loss function with respect to each weight are calculated, and the weights are
updated using these gradients (often via a gradient-based optimization method like
Adam or SGD).

Backpropagation relies on the chain rule of calculus to compute the derivatives of the
loss function with respect to the weights.

Here is the general mathematical form:
Given that aL is the output of the network at the final layer L (predicted output), p

is a true label or ground truth, C is the cost function or loss function (e.g., Mean Squared
Error or Cross-Entropy Loss), W l and bl are the weights and biases of layer l, tl is the
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activation at layer l, and zl is the weighted input at layer l, where zl = W ltl−1 + bl and σ is
the activation function (e.g., sigmoid, ReLU, tanh).

1. Loss (Cost) Function:

The loss function C measures the error between the predicted output aL and the true
output p. For a given training example, it can be represented as follows:

C =
1
2 ∑(aL − p)2 (11)

This is just one example (for Mean Squared Error), but the form of C will vary depend-
ing on the task and choice of loss function.

2. Gradients in the Output Layer (Layer L):

The error at the output layer is defined as follows:

δL = ∇aC ◦ σ′(zL) (12)

where ∇aC = (aL − p) in (12) is the derivative of the loss function (11) with respect to the
output activations, ◦ denotes element-wise multiplication (Hadamard product), and σ′(zL)
is the derivative of the activation function at the final layer.

3. Gradients in the Hidden Layers (Layer l):

For the hidden layers, the error is propagated backward using the following:

δl = (W l+1)Tδl+1 ◦ σ′
(

zl
)

(13)

where (W l+1)T is the transpose of the weight matrix from layer l + 1, δl+1 is the error from
the next layer, and σ′(zl) is the derivative of the activation function for layer l.

4. Gradients with Respect to Weights and Biases:

Once the errors δl in (13) are calculated for each layer, the gradients of the loss with
respect to the weights and biases are computed as follows:

∂C
∂W l = δl(tl−1)T ,

∂C
∂bl = δl . (14)

5. Weight and Bias Updates (with learning rate η):

W l = W l − η
∂C

∂W l ,

bl = bl − η
∂C
∂bl . (15)

3.3.2. Adam Optimizer

Based on the optimal learning parameters W∗ and b∗ from (14) and (15), we obtain
the approximate solutions of the dynamical system. In our study, the Adaptive Moment
Estimation (Adam) algorithm was employed to update these parameters. The update
process follows the following rules:

Mk
w = β1Mk−1

w + (1− β1)∇J1(Wk),

Mk
b = β1Mk−1

b + (1− β1)∇J1(bk),

Vk
w = β2Vk−1

w + (1− β2)(∇J1(Wk))2,

Vk
b = β2Vk−1

b + (1− β2)(∇J1(bk))2, (16)
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where β1 and β2 ∈ [0, 1) are the decay rates for the moment estimates. The corrected
moment estimates for the weights and biases are then given by the following:

M̂k
w =

Mk
w

1− βk
1

, V̂k
w =

Vk
w

1− βk
2

,

M̂k
b =

Mk
b

1− βk
1

, V̂k
b =

Vk
b

1− βk
2

. (17)

Finally, the weights and biases are updated as follows:

Wk+1 = Wk − η
M̂k

w√
V̂k

w + ϵ
,

bk+1 = bk − η
M̂k

b√
V̂k

b + ϵ
. (18)

In Equation (18), η is the learning rate, ϵ is a small constant to prevent division by
zero, and Mw, Mb, Vw, and Vb are the first and second moment vectors initialized to zero.
Commonly used values for the hyperparameters include η = 0.001, β1 = 0.9, β2 = 0.999,
and ϵ = 10−8, as suggested by the literature [20].

3.4. Prediction Process After Training

Once the neural network has been trained, we use the time data as the input. This
input is a one-dimensional array where each value corresponds to a specific time point,
representing the system’s behavior at that instant. Essentially, the input is a sequence of
time points that the network encountered during training. The trained neural network
is then employed to predict the normalized output values for the variables x(t), y(t),
and z(t) over the entire time series. In Matlab R2024a, this is achieved by using the predict
function with the time data as input. The network processes each time step individually
and produces a corresponding set of three outputs, one for each variable (x, y, and z).
Since the network’s predictions are in their normalized form (because the training data
were normalized before input), we must convert them back to their original scale. This
is performed by reversing the normalization, applying the mean and standard deviation
that were initially used to normalize the data. The final output is a matrix, where each
row corresponds to a specific time point and the columns represent the denormalized
predictions for x(t), y(t), and z(t) at that point in time. These predictions can be directly
compared with the actual measured values or used for further computations, such as
determining derivatives to estimate system parameters.

3.5. Parameter Estimation via Optimization

The predicted values were utilized to calculate the numerical derivatives with respect
to time, applying finite difference methods. These derivatives were then related to the
parameters of the dynamic system through a set of nonlinear equations. The general form
of these equations is as follows:

dx
dt

= x(t) · (a10 + a11 · x(t) + a12 · y(t) + a13 · z(t))

dy
dt

= y(t) · (a20 + a21 · x(t) + a22 · y(t) + a23 · z(t)) (19)

dz
dt

= z(t) · (a30 + a31 · x(t) + a32 · y(t) + a33 · z(t))

In Equation (20), the time derivatives of x(t), y(t), and z(t) are expressed in terms of
the unknown parameters a10 through a33 and the values of the variables at each time step.
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The parameters a10 to a33 were determined by minimizing the sum of the squared
differences between the left-hand and right-hand sides of the system of equations. This
minimization was carried out using the quasi-Newton optimization technique, specifically
the fminunc function in MATLAB. The mathematical formulation for minimizing the
sum of squared differences between the left-hand and right-hand sides of the system of
Equation (19) can be expressed as follows:

minimize
N

∑
i=1

(
dx(ti)

dt
− x(ti) · (a10 + a11 · x(ti) + a12 · y(ti) + a13 · z(ti))

)2

+
N

∑
i=1

(
dy(ti)

dt
− y(ti) · (a20 + a21 · x(ti) + a22 · y(ti) + a23 · z(ti))

)2

(20)

+
N

∑
i=1

(
dz(ti)

dt
− z(ti) · (a30 + a31 · x(ti) + a32 · y(ti) + a33 · z(ti))

)2

where

• N is the number of time points;
• ti represents each time point;

• dx(ti)
dt , dy(ti)

dt , dz(ti)
dt are the time derivatives of the variables x, y, z;

• a10, a11, . . . , a33 are the parameters to be estimated.

As mentioned earlier, we employed an iterative training approach for the neural
network, in which the NN was trained multiple times using datasets of increasing size.
Specifically, for each iteration i from 5 to 18, the NN was trained using the first i data points
(from t = 0 to t = i− 1). This approach resulted in training datasets ranging from 5 to
18 data points. This method allows us to assess the model’s performance as more data
become available.

In our study, N represents the number of data points used in the least squares problem,
corresponding to the number of time instances at which observations are available after
computing derivatives. Although the training procedure uses a maximum of 18 data points
(from t = 0 to t = 17), the computation of derivatives using finite differences reduced the
dataset to 17 data points (N = 17) for the least squares problem.

Mathematical Formulation of Quasi-Newton Method

The quasi-Newton optimization method is a numerical approach designed for min-
imizing functions, particularly those that are not necessarily quadratic. It simulates the
behavior of Newton’s method but circumvents the direct computation of the Hessian matrix
by iteratively refining an estimate of it. MATLAB’s fminunc function typically utilizes the
Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm [21], or its limited-memory version
(L-BFGS), to perform the optimization.

Let f (p) be the function to be minimized, where p is a vector of parameters. The itera-
tive update of the parameter vector p at the k-th step is given by the following:

pk+1 = pk − αkB−1
k ∇ f (pk) (21)

where

• pk is the parameter vector at iteration k;
• αk is the step size (also known as the learning rate);
• B−1

k is an approximation of the inverse Hessian matrix;
• ∇ f (pk) is the gradient of the function f (p) evaluated at pk.

In quasi-Newton methods, instead of calculating the Hessian matrix Hk directly,
the inverse Hessian approximation B−1

k is updated iteratively using information from the
gradient. This update typically follows the following BFGS algorithm:
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Bk+1 = Bk + ∆Bk (22)

In Equation (22), ∆Bk represents the update to the inverse Hessian matrix, derived
from differences between consecutive gradients and parameter values. In essence, the quasi-
Newton method employed by fminunc works by iteratively adjusting the parameter vector
p in (21) based on estimates of the inverse Hessian matrix and gradient information.
This approach helps efficiently locate the minimum of the objective function without the
computational cost of directly calculating second-order derivatives.

3.6. Solving the System with the Runge–Kutta Method

After estimating the parameters, they were incorporated back into the Lotka–Volterra
system of differential equations to simulate the system’s dynamics. To solve these equations,
we used the fourth-order Runge–Kutta method [22], a robust and accurate numerical
method for solving ordinary differential equations. This method was applied over the
same time interval as the original dataset. For solving first-order ordinary differential
equations (ODEs), we utilize the Runge–Kutta method, which is known for its accuracy
and efficiency [22–24]. However, when dealing with second-order ODEs, the Runge–
Kutta–Nyström [25–29] method is preferred as it is specifically designed to handle second-
order systems directly, offering improved performance by leveraging the structure of the
equations [26].

The solutions obtained from this method were then compared with the experimental
data. This comparison was used to assess how well the estimated parameters fit the
system’s behavior, providing insight into the accuracy of the model. A visual comparison
between the simulated trajectories and the data allowed us to evaluate the fit, and error
metrics were calculated to quantify the accuracy.

Mathematical Formulation of the Runge–Kutta Method

The Runge–Kutta methods are used for the numerical solution of a first-order ordinary
differential equation (ODE) of the following form:

dy
dt

= f (t, y), y(t0) = y0 (23)

The Runge–Kutta method approximates the solution of (23) by using the following
iterative scheme:

yn+1 = yn + h
s

∑
i=1

biki, (24)

ki = f

(
tn + cih, yn + h

i−1

∑
j=1

aijk j

)
, for i = 1, 2, . . . , s.

where
h is the step size;
s is the number of stages in the method; and
ki are the stages of the method.
aij, bi, and ci are the coefficients that define a specific Runge–Kutta method.

From the general form of Runge–Kutta methods (24), we can derive the desired
algebraic order scheme. The Runge–Kutta method that we used in this case is a fourth-
algebraic-order Runge–Kutta method of four stages [22].

Given the initial condition y(t0) = y0, the value of y at the next time step tn+1 = tn + h
is computed as follows:



Information 2024, 15, 809 12 of 19

yn+1 = yn +
h
6
(k1 + 2k2 + 2k3 + k4), (25)

k1 = f (tn, yn),

k2 = f
(

tn +
h
2

, yn +
h
2

k1

)
,

k3 = f
(

tn +
h
2

, yn +
h
2

k2

)
,

k4 = f (tn + h, yn + hk3).

This iterative process is repeated for each step, producing an approximation to the
solution of the differential equation of the general form (23).

4. Example
4.1. Case Study Description

In system analysis, one common challenge is the lack of accessible and reliable datasets.
However, a comprehensive historical dataset for three competitors in the Greek mobile
telecommunications market was published by Michalakelis et al. [8]. In their work, they
proposed a Lotka–Volterra model of competing species to explain the dynamics between
these companies. The goal of their research was to predict the potential of maintaining
a steady and strong competitive equilibrium in the market, using the available data to
analyze market share control in the mobile phone industry over some specific years.

The study examines the historical market penetration and future prospects of the
three competing service providers. The dataset covers the years 1995 to 2007, but since the
second competitor, y, only entered the market in 1998, the analysis of the three competitors
begins with the initial conditions from 1998. Each data point reflects the percentage of
the market that each company managed at that time, as shown in Table 2, and serves to
demonstrate the proposed methodology, while a and b refer to the observations for the
first and second halves of the reference year, respectively. These data were taken from the
paper “Lotka–Volterra Model Parameter Estimation Using Experiential Data” by Johanna
C. Greeff and P. H. Kloppers [14].

Table 2. Historical market share data for competitors.

Period Competitor x Competitor y Competitor z

1998a 0.52 0.15 0.33
1998b 0.47 0.21 0.32
1999a 0.43 0.27 0.30
1999b 0.40 0.31 0.29
2000a 0.38 0.35 0.28
2000b 0.37 0.36 0.27
2001a 0.36 0.37 0.27
2001b 0.36 0.37 0.27
2002a 0.35 0.38 0.27
2002b 0.36 0.38 0.25
2003a 0.37 0.39 0.24
2003b 0.38 0.39 0.23
2004a 0.39 0.39 0.22
2004b 0.38 0.39 0.23
2005a 0.37 0.39 0.24
2005b 0.38 0.39 0.23
2006a 0.38 0.40 0.22
2006b 0.36 0.39 0.25
2007a 0.34 0.38 0.28

Michalakelis et al. [8] applied this model, based on the principles outlined in Equation (2),
where x, y, and z represent the market shares of the three competitors, respectively. To esti-
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mate the unknown parameters, they utilized genetic algorithm techniques mentioned as
the “Advanced Method” in the subsequent sections. These are their results:

dx
dt

= x(0.45− 0.6x− 0.2y− 0.66z),

dy
dt

= y(0.86− 0.02x− 1.8y− 0.59z), (26)

dz
dt

= z(0.2− 0.06x− 0.13y− 0.5z).

Except for the “Advanced Method” that produced the coefficients in system (26),
Kloppers and Greeff [30] introduce the integral and log integral techniques as effective
tools for addressing complex systems, improving accuracy by taking into account non-
uniform system behaviors. These techniques can be applied to parameter estimation
challenges in dynamic models such as the Lotka–Volterra system, which is often used in
telecommunication modeling.

Using the proposed integral method, the resulting system can be expressed as follows:

dx
dt

= x(4.1492− 4.2136x− 3.8654y− 4.5320z),

dy
dt

= y(0.9902− 0.0360x− 2.0410y− 0.7621z), (27)

dz
dt

= z(−2.6812 + 2.5223x + 2.8576y + 2.6392z).

and for the log integral method, the system is as follows:

dx
dt

= x(4.3432− 4.4069x− 4.0595y− 4.7270z),

dy
dt

= y(0.5734 + 0.3298x− 1.5848y− 0.3285z), (28)

dz
dt

= z(−3.6170 + 3.4259x + 3.8169y + 3.5911z).

By observing the estimated parameter values in the systems (26)–(28), we notice that
there are significant differences among them. This highlights the common understanding
that mathematical systems often have multiple solutions. Additionally, the initial problem
was viewed as a typical scenario of competing species, where intra-species competition
could occur, as evidenced by the incorporation of the terms involving x2, y2, and z2 [30–32].
It is important to mention that the the species y benefits from the existence of the species
x, but the reverse is not true. This interaction is known as one-sided mutualism between
prey species in the presence of the predator z. In the context of telecommunication service
providers in Greece, this can be understood as follows: The provider y entered the market
when the providers x and z were already recognized, yet it gradually secured its share of
the market. It benefited from a one-sided mutualistic relationship with its more established
competitor x, which effectively protected it from the predator z.

Table 3 shows the three best architectures based on the mean RMSE after solving
the system with the fourth-order Runge–Kutta method and from where we choose the
best one for the graphs and the final results. The results from the three architectures are
similar. In terms of time complexity, the architecture with 10,000 epochs is the most efficient;
however, in terms of accuracy, the one with 20,000 epochs and two neurons is a little
more effective.
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Table 3. Model evaluation metrics.

Epochs Layers Neurons Mean RMSE x, y, z

10,000 1 40 0.0112
20,000 2 20 0.0111
20,000 3 20 0.0112

According to the previous analysis, we demonstrate numerical results based on the
neural network with two hidden layers and 20 neurons (denoted as FFNN).

Finally, the system with the estimated parameters from the FFNN method is given
as follows:

dx
dt

= x(2.8869− 3.2245x− 2.6295y− 2.8031z)

dy
dt

= y(2.2487− 1.4324x− 3.2173y− 1.9492z) (29)

dz
dt

= z(−1.0575 + 1.5341x + 1.1662y− 0.1452z)

The final estimated parameters from our FFNN model offer valuable insights into the
competitive dynamics of the telecommunications market [8].

Intrinsic Growth Rates:
Parameters a10 = 2.8869 and a20 = 2.2487 indicate strong natural growth potentials

for companies x and y, respectively.
Self-Limitation Effects:
Negative values a11 = −3.2245 and a21 = −1.4324 reflect significant internal con-

straints on x and y, such as market saturation or resource limitations.
Competitive Interactions:
Parameters a12 = −2.6295, a13 = −2.8031, a22 = −3.2173, and a23 = −1.9492 sig-

nify intense competitive pressures among firms, likely due to overlapping services or
customer bases.

Declining Growth:
Parameter a30 = −1.0575 for z suggests a declining natural growth without competition.
Supportive Interactions:
Positive values a31 = 1.5341 and a32 = 1.1662 imply that x and y may have a support-

ive influence on z’s growth.
Minimal Constraints:
Parameter a33 = −0.1452 for z indicates negligible internal constraints.
Overall, these parameters elucidate the balance between intrinsic growth, competitive

forces, and internal constraints that shape the strategic landscape of the telecommunica-
tions market.

In Figure 2, we show the evolution of the market shares based on the estimated
parameter’s values derived from the methodology described in Section 3.
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Figure 2. Neural network estimates and the measured data for the three competitors x, y, and z.

4.2. Results and Comparison of the Four Methods

In this section, we present a comparison of the four methods—FFNN, advanced,
integral, and log integral—by evaluating their performance on the variables x, y, and z,
which represent telecommunications companies. The FFNN method shows the closest
alignment with the observed data, while the advanced method offers a reasonable estimate
with slightly larger deviations. The integral and log integral methods, though less accurate,
still provide meaningful approximations, with the log integral method slightly outperform-
ing the integral method. The four Lotka–Volterra systems were solved by a fourth-order
Runge–Kutta method, and to better illustrate these findings, we include diagrams of the
results (Figure 3 for competitor x, Figure 4 for competitor y, Figure 5 for competitor z) and
a table displaying the Root Mean Squared Error (RMSE) for each method (Table 4).
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Figure 3. Comparison of the four methods with the measured data for the x competitor.
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This comprehensive analysis highlights the superiority of the FFNN method in accu-
rately modeling the behavior of the telecommunications companies.

As observed in Figure 3, after point 4 on the time axis corresponding to the year 2001,
the market shares of telecommunications providers have shown minimal fluctuations,
suggesting that the market is reaching a state of equilibrium.
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FFNN Method

Log Integral Method

Figure 4. Comparison of the four methods with the measured data for the y competitor.

This stability aligns with findings from [33], which examine how a company’s re-
sponse time and strategy to competitors’ marketing initiatives can affect market dynam-
ics. Similar to those findings, the introduction of a new product or pricing strategy in
oligopolistic markets poses a significant challenge to rivals, often leading to faster and more
assertive reactions.

0 2 4 6 8 10 12 14 16 18

t

0.22

0.24

0.26

0.28

0.3

0.32

0.34

z

Comparison of z for Different Methods

Data

Advanced Method

Integral Method

FFNN Method

Log Integral Method

Figure 5. Comparison of the four methods with the measured data for the z competitor.
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In markets with few competitors, firms that are highly interdependent tend to closely
monitor each other’s activities, enhancing their ability to respond swiftly. This behavior
aligns with the idea that market outcomes, like product sales, are shaped by the interplay
of marketing strategies and competitive actions, as discussed in [34].

Comparison of the four methods—FFNN, advanced, integral, and log integral—
reveals that the proposed method delivers the most accurate performance across all three
competitors (x, y, and z). In particular, it closely aligns with the actual data points, ef-
fectively capturing both the trends and the inflection points, especially for the variables
x and z. The advanced method, while reasonable, tends to deviate more, particularly
in modeling z, where it underestimates the initial drop and overestimates the recovery.
The integral and log integral methods show moderate accuracy, but they both diverge
from the data significantly in the early phases of x and z, where they struggle to match the
initial dynamics.

Table 4. Root Mean Squared Error (RMSE) values for different methods and variables x, y, and z.

Method RMSE for x RMSE for y RMSE for z

FFNN 0.01223 0.00715 0.01401
Advanced 0.03445 0.00719 0.03216

Integral 0.01995 0.00918 0.02493
Log Integral 0.01868 0.00853 0.02318

Overall, the proposed method stands out for its ability to model the competitor’s
market shares with the least deviation from the actual data, making it the most reliable
approach among the four.

5. Discussion

Future research will investigate advanced neural network architectures to enhance
parameter estimation in dynamical systems. Recurrent Neural Networks (RNNs) and Long
Short-Term Memory (LSTM) networks will be explored for their ability to capture temporal
dependencies in time-series data, potentially improving accuracy in dynamic environments.
Convolutional Neural Networks (CNNs) may be adapted to identify spatial patterns and
handle high-dimensional data more efficiently. Physics-Informed Neural Networks (PINNs)
will be examined for integrating physical laws directly into the training process, ensuring
that parameter estimates adhere to known system dynamics. Additionally, Autoencoders
could be utilized for dimensionality reduction, uncovering latent structures that facilitate
more efficient parameter estimation. Ensemble learning methods will be considered to
combine multiple models, enhancing the reliability and stability of estimates. By leveraging
these diverse neural network approaches, future work aims to build upon the FFNN
method, offering more robust, accurate, and scalable solutions for parameter estimation in
complex dynamical systems.

6. Conclusions

The work presented in this paper introduces a novel approach for estimating market
shares in the telecommunications sector, drawing on principles from population dynamics
and ecological modeling. The core assumption is to treat market providers as interacting
species competing for a shared resource—the market itself—and to analyze the system’s
dynamics accordingly. Our method for parameter estimation using a feed-forward neural
network demonstrates superior performance compared with advanced, integral, and log-
integral methods. This is evident from the lower Root Mean Squared Error (RMSE) values,
indicating more accurate predictions. As shown in Table 3, for various architectures,
the RMSE values are quite close to each other. In terms of time complexity, the architecture
with 10,000 epochs is the most efficient; however, in terms of accuracy, the one with
20,000 epochs and two neurons is a little bit more effective.
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Future research also includes developing methodologies based on alternative versions
of the Lotka–Volterra model to examine different markets. Additionally, the effectiveness
of the proposed approach should be assessed in other high-tech industries that share
similar characteristics with the telecommunications sector, such as stringent regulatory
requirements. With regulatory restrictions, strict government regulations or licensing
requirements limit new competitor’s ability to enter the market. These barriers can create
a significant challenge for startups or smaller companies, ensuring that only established
players or those with substantial resources can compete. Industries like pharmaceuticals,
where regulatory approvals for new drugs are stringent, or the energy sector, with heavy
government oversight and infrastructure needs, also experiences similar entry barriers as
those in telecommunications.
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