
Citation: Bose, S.; Marijan, D.

Traversable Ledger for Responsible

Data Sharing and Access Control in

Health Research. Information 2024, 15,

815. https://doi.org/10.3390/

info15120815

Academic Editor: Evaggelos

Karvounis

Received: 11 October 2024

Revised: 3 December 2024

Accepted: 9 December 2024

Published: 18 December 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Traversable Ledger for Responsible Data Sharing and Access
Control in Health Research †

Sunanda Bose * and Dusica Marijan

Simula Research Laboratory, 0164 Oslo, Norway; dusica@simula.no
* Correspondence: sunanda@simula.no
† This article is a revised and expanded version of a paper entitled [Secure Traversable Event logging for

Responsible Identification of Vertically Partitioned Health Data], which was presented at [TrustCom, Exeter,
UK, 1–3 November 2023].

Abstract: Healthcare institutions and health registries often store patients’ health data. In order to
ensure privacy, sensitive medical information is stored separately from the identifying information
of the patient. Generally, institutions anonymize medical information while sharing it for external
use. However, internal users may also use it for identifying inaccuracies or missing information.
Even though internal users may be legally permitted to access sensitive medical information, such
access may lead to the identification of the patient, which can be vulnerable to patient privacy.
Ensuring the accountability and responsibility of the internal users may lead to tractability in case of
adversarial access with malicious intentions. Therefore, a secure system must be developed for the
storage and retrieval of health data. To this end, in this paper, we propose a ledger-based system that
cryptographically ensures that all access to health data must be logged into a ledger. Nevertheless,
the ledger entries must be protected against adversarial access, too. At the same time, the ledger
must be traversable by the patients as well as internal users. To address these needs, we propose
techniques for the construction of a ledger to permit both internal users and patients to securely
traverse and view only the entries to which they are linked.

Keywords: privacy; healthcare; health registry; health data; responsible de-identification; traversable
ledger; secure private information retrieval

1. Introduction

Health Data (HD), typically seen as private information belonging to patients, is often
held in the possession of a healthcare institution. These data can potentially be utilized for
medical research involving researchers both within and outside the institution’s jurisdiction.
Generally, institutions anonymize the data before it is shared with researchers who are not
within their jurisdiction. However, there can also be internal researchers who operate under
the institution’s jurisdiction. They may employ the data to identify any incompleteness
and inconsistencies present in the medical record [1]. Incompleteness in the data could
suggest that some essential documents (for example, laboratory tests or doctor’s reports)
that should be present in the repository are yet to be submitted. If any inconsistency is
detected by the internal researchers, it could lead to the decision to repeat certain clinical
tests or could even result in the identification of a misdiagnosis.

Registry-based healthcare is not only limited to healthcare institutions like hospitals.
National healthcare systems of several countries also maintain documentation of the pop-
ulation [1–3]. The first population-based cancer registries were created in Germany in
1929 [3]. In different countries, several registries of health registries are maintained [1–3].
These registries comprise different types of health data associated with their personal
identity numbers [2]. This way, the health data of approximately 27 million people are
documented in several registries, including birth registries, death registries, patient reg-
istries, prescription registries, cancer registries, etc. [2]. Each of these registries has different

Information 2024, 15, 815. https://doi.org/10.3390/info15120815 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info15120815
https://doi.org/10.3390/info15120815
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0002-6484-9682
https://orcid.org/0000-0001-9345-5431
https://doi.org/10.3390/info15120815
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info15120815?type=check_update&version=4

Information 2024, 15, 815 2 of 36

purposes and sources of data collection. The cancer registries usually collect data from
various sources, like hospitals, clinicians, dentists, laboratories, radiotherapy data, and
death certificates [4]. Both national and city-wide registries exist to document and monitor
small groups of cancer patients located in the same city. The Geneva Cancer Registry,
created in 1970, documents the cancer cases from a small population of Geneva [3]. The first
cancer registry in India was established in 1963 in Mumbai as a unit of the Indian Cancer
Society [1]. In India, hospital-based registries are maintained along with population-based
ones [1]. In [1,5], two methods of data collection are suggested. In the passive method, the
institutions send information to the cancer registries. In the active method, the staff from
the cancer registry collects the data from these institutions. A team of registry personnel
working in the jurisdiction ensures the quality of the data by checking duplicate entries
and validating the consistency of records. Such teams are typically led by a medically
qualified supervisor (often referred to as principal investigator [1]) who has a background
in epidemiology and/or public health.

It is common for healthcare registries to maintain a group of internal experts who
regularly analyze the data stored in their custody [1]. The medical records of a patient may
contain sensitive information that is associated with the identifying information of that
patient. However, as these data contain highly sensitive information, they must be protected
against adversarial access even when they are being accessed by internal researchers. To
minimize risk, the identifying part of HD is stored separately from the medical information.
However, as a patient can have multiple medical records, the many-to-one relationship
between medical information and the identifying information must be manifested by some
techniques that securely link the identifying information with the sensitive information. A
foreign key-based approach may provide fast retrieval, but that does not offer a solution for
securing the retrieval operation. In our case, the only legitimate users of these data are the
internal experts, who may identify the patient associated with any given medical record.
It may also be necessary to retrieve all medical records belonging to a patient. Hence, we
summarize two legitimate data access scenarios: (1) A custodian identifying the patient
associated with a record; and (2) A custodian fetching all records of a patient.

In both scenarios, the custodian performing these operations is gaining significant
private information about the patient. Although the legal framework allows the custodian
to access this information, it is crucial to ensure that the information obtained is not used
for harmful purposes. However, the incidents of such information being exploited for
malicious purposes may only occur in the future after the information has been accessed.
In the case of such future events, the events of information gain can be correlated only if
those events are logged. Such an approach can promote the legitimacy of information gain
by ensuring the responsibility of the custodians. Although there have been research works
addressing the security and privacy concerns of private information storage and retrieval,
which is mentioned in Section 2, these works do not address the problem of responsible
identification of de-identified sensitive data.

Therefore, in this paper, we expand our earlier work [6] and propose a secure system
of storage and retrieval for sensitive medical information that can be accessed by custodians
with sufficient credentials. As such access can lead to information gain about the patients,
the events of such access are documented in an immutable ledger, which can be securely
traversed by the custodians and the patients with appropriate credentials. However, in
order to design such a solution, we must overcome some technical challenges. The ledger
must be protected from adversarial access to ensure the privacy of the custodians as well
as the patients. Simultaneously, the legitimate users (custodians and the patients) should
be permitted to traverse through the ledger and analyze the events of information gain that
relate to them. Moreover, the supervisor(s) (often known as the principal investigator [1])
may need to access the ledger to correlate the events with some malicious incident and
verify its legitimacy.

Hence, in this paper, we propose an approach for enabling secure linkage between
de-identified medical data and identifying information through a ledger-based system

Information 2024, 15, 815 3 of 36

that custodians and patients can traverse securely, given proper credentials. The proposed
approach ensures that sensitive data can be accessed responsibly without exposing it
to risks of unauthorized access or misuse. It integrates the concept of “custodianship”
where designated individuals have the responsibility and authority to manage data access,
which aligns with legal and ethical standards. The proposed approach offers a framework
that could be adapted beyond healthcare to other domains where sensitive data requires
stringent access controls and accountability. Although we have focused on the use case of
securing internal researchers’ (data managers) access to health data, healthcare registries
often deal with a similar problem while sharing health data with external researchers. The
proposed framework may be extended to ensure privacy and responsibility for health data
sharing and research.

The paper is organized as follows: In the next Section, we present a summary of
related problems encountered in the scientific literature and the solutions proposed by the
authors. In Section 3, the scientific problems that must be solved to address these challenges
are discussed. Our proposed solution to address the problem is presented in Section 4.
In Section 5, we present an evaluation of the proposed approach. First, we theoretically
evaluate the security aspects of our proposed solution in Section 5.1. Then, we present
performance analysis by performing experiments on the implementation of this work in
Section 5.2. The limitations of our proposed framework are presented in Section 6.1. Finally,
Section 7 concludes the paper.

2. Related Work

Studying the confidentiality of HD has been an active research field [7]. To ensure the
confidentiality of HD, authors in [8] implemented an AT&T-based scheme for access control
of medical records. The proposed scheme uses XACML for defining access policies. Various
components are involved in ensuring the mechanism. When storing, HD is encrypted
using symmetric encryption. In [9], the authors describe several access control mechanisms
(RBAC, MAC, DAC, and PBAC) and their applicability for ensuring the privacy of the
HD. Discretionary Access Control (DAC) specifies per user per object-based granular
permissions, which can be materialized using Access Control List (ACL) and Capability
List (CL). ACL takes an object-centric approach where an object is associated with a set
of users with different permissions. CL, on the other hand, takes a user-centric approach
where objects are associated with users with different permissions. Mandatory Access
Control (MAC) assigns a security level to each of the objects and a clearance level to each
of the users. Role-Based Access Control (RBAC), on the other hand, does not associate
objects with individuals. Instead, it assigns roles to each of the users, and access to objects is
governed by the role. However, restricting access to the documents is not our only objective.
We want to make the user responsible for accessing the document. Moreover, encrypted
documents are difficult to search for or analyze. We only need de-identified data that can
be used for knowledge discovery without directly revealing the patient’s identity.

The authors in [10] mention three levels of the confidentiality of medical information
that allow the owner to define confidentiality of his/her own personal health records. A
restricted level of information can be accessed by the emergency staff only if k out of a
predefined n trusted users grant permission. An exclusive level of information can never
be accessed by the emergency staff. The encrypted medical records are stored on a server.
Encryption is performed using (k,n)-threshold cryptosystem. In [11], a different approach is
proposed while using the (k,n)-threshold cryptosystem. The medical records are encrypted
using the RSA algorithm. The private key, which is required to decrypt the records, is shared
using (k,n)-threshold cryptosystem. Instead of giving these shares to human entities, they
are stored on the server. Each of these shares corresponds to different context conditions,
such as the doctor’s identity, role, location, duty time, patient location, status, etc. In [12]
(k,n) threshold cryptosystem is used to securely store patients’ healthcare records. However,
the authors identify several problems while applying the original secret-sharing scheme
proposed by Shamir et al. [13] in the healthcare problems. The participants must reveal

Information 2024, 15, 815 4 of 36

their share of the secret in order to reconstruct the secret key. The authors in [12] propose a
novel cryptographic scheme in which the participants keep their secret shares, but instead
of sharing them directly, they share a transformed value from which the original secret
share cannot be retrieved. Cryptographic access schemes like IBE and CP-ABE are used
in [10,14–16]. In [15], medical data are first encrypted by the sender using the symmetric
encryption algorithm AES. The secret key is encrypted using IBE and shares the encrypted
document along with the encrypted key. In [14], a hierarchical access scheme is proposed,
where the Public Health Office serves as the public key generator (PKG) at the highest level,
and the hospitals and clinics are at the lower level. The storage servers located at hospitals
and clinics store the medical records of their patients only. The public storage server is
responsible for storing the referral medical records. In [17], IBE is used along with a Markle
Hash Tree to ensure the deletion of HD. Although some of the techniques used in our
work may be considered to be similar to Samir’s Secret-Sharing, our intention is to allow
one custodian to access the patients’ records independently without any cooperation from
other custodians. Therefore, a threshold-based cryptosystem may not be directly applied to
address our primary problem. Moreover, we want the health data to be de-identified but
not encrypted. We want the identification of the de-identified data to be a secure operation
that can only be performed by a legitimate user, and the user must be held responsible for
performing that operation.

Vertical partitioning of data is a popular technique of de-identifying data, which
is often used along with anonymization. In [18], HD is partitioned into three tables.
One contains the original medical information without the identifying attributes. The
other two tables contain anonymized quasi-identifiable (The attributes that can reveal
important information about the identity of the patient when correlated with publicly
available information.) attributes and encrypted ciphertexts of identifying and quasi-
identifiable attributes. Different healthcare institutions may maintain records as vertically
partitioned data [19], which may be mined for scientific or statistical purposes. Data
anonymization techniques are often used to protect medical data from being re-identified.
Such techniques include k-anonymity [18,20], l-diversity [21], t-closeness [22] etc. are often
used by healthcare registries while exchanging HD with external research institutions.
These techniques protect the data from being re-identified when correlated with publicly
available information. However, it processes the original data and generalizes the values of
attributes, which reduces the amount of information [23]. However, in our problem [6], the
internal users are the only legitimate entities who are permitted to access the data. Also, the
quality of the data cannot be compromised because the data must be reviewed by internal
researchers for correctness and completeness.

Blockchain-based techniques are often used for HD-related transactions between [24,25].
In [25], all transactions are performed using smart contracts that provide two functions,
store and get, and all data are stored in the blockchain as key-value pairs. In [24], the
patients may delegate hospitals to encrypt their medical records and store them on semi-
trusted cloud servers. The researchers consume the medical data from patients if the
requirements are met. The data requirements are published via smart contracts. Patients
who believe that their records meet the published requirements present zero-knowledge
proof to the smart contract. Once qualified, the semi-honest cloud server transforms
the encrypted medical data into an intermediate ciphertext that can be decrypted by the
researcher. However, in our case, the patients are not actively participating in the process.
Instead, the patients remain passive while the events of their records being accessed are
documented for later viewing.

The central challenge our work addresses transcends mere access control or sharing of
medical information. We aim to ensure that even if the medical information of a patient is
accessed, the identifying information remains confidential, and vice versa, while enforcing
accountability for data access. Hence, access control mechanisms are not sufficient. To
address risks of re-identification of the patient from the medical information, techniques
such as anonymization have been employed on vertically partitioned data. However, while

Information 2024, 15, 815 5 of 36

these methods can mitigate direct identification risks, they often degrade the quality and
completeness of the data, which may be problematic for internal researchers in critical
health registries. For example, anonymization can strip data of its specificity, which is
essential for detailed medical research and analysis. The (k,n)-threshold cryptosystem and
other cryptographical schemes that have been proposed in the literature focus on secure
sharing of health data. Since our scenario assumes health data are already shared, our
goal is to enforce responsible access to these data. We aim to enforce the responsibility
of accessing it. Given these gaps, our approach introduces a novel framework designed
specifically for the intricate balance required in health data systems, where data must
remain usable for research without compromising patient privacy. Our solution integrates
enhanced accountability measures without the drawbacks of data degradation associated
with standard anonymization techniques and extends beyond traditional cryptographic
sharing controls.

In the next section, we define our problem along with the formulation of the technical
requirements that need to be satisfied by a feasible solution. The rest of the paper is
organized as follows. In Section 4, we explain the proposed solution. In Sections 5.1 and 5.2,
we present an adversarial and experimental evaluation of our proposed work. In Section 6.1,
we mention the limitations of our work. Finally, Section 7 concludes the paper.

3. Problem Definition

For privacy-related concerns, the database is often vertically partitioned, where per-
sonal information is separated from sensitive medical information [18]. In our proposed
system, we assume that a medical record is de-identified and the sensitive information is
stored separately from the identifying information. Only the permitted users can identify
the patient associated with that de-identified record and can also find all medical records
associated with the patient. We may refer to this action as record identification. However,
there are two constraints applied to the identification operations.

1. Even if some adversary obtains control of the secrets of the storage server, it will not
be possible to perform any of these identification actions without the participation of
the permitted users.

2. In order to ensure the responsibility of the identifier, an entry must be created in the
immutable ledger whenever each of these actions is performed.

It is important to note that by de-identification, we mean that the identifying infor-
mation has been stripped and stored separately from the sensitive medical information.
This work does not focus on protecting health data against re-identification attacks. It
is technically possible to re-identify the de-identified data using sophisticated statistical
methods. Many anonymizing techniques can be applied in order to protect that. However,
it is not the focus of our work to propose solutions for re-identification techniques. Instead,
we focus on ensuring the security and privacy of health data by enforcing accountability
while acting on identification.

We refer to these actions of record identification as an Access Event. An access event
is participated by two users. The permitted user that initiates the identification process
is considered active because this user is actively communicating in order to identify the
record for further analysis. The patient whose record is being accessed may be unaware of
such an event before it happens. The decision that the records associated with that patient
must be accessed may not be taken in the active participation of that patient. Hence, we
consider the patient as a passive user. We need an immutable public ledger that documents
the access events between these two users. Both of these users should be allowed to
browse through the events logged into the immutable ledger securely. We refer to these
documented events as blocks. The event participation information must not be disclosed to
anyone other than these active and passive users and the supervisors who have sufficient
credentials to access any random block and view participation information. The active
user is allowed to navigate to the next and the previous blocks in which the same user was
active. Similarly, the passive user is allowed to navigate to the next and the previous blocks

Information 2024, 15, 815 6 of 36

in which the same user was passive. However, no users should be allowed to navigate to
blocks associated with a different user. We formulate this problem as follows (the symbols
used in the formulation and throughout the paper are shown in Table 1):

Table 1. Symbol Table.

Symbol Usage

p, q, g Modulus, Subgroup order and generator of the group.
πx, yx = gπx Private and Public key of user Ax
Y =

⋃
x∈X

yx Set of public keys of all users X.

ξ, ζ Symmetric Encryption, Decryption Algorithm. e.g., AES
H, H2 Cryptographic Hash functions e.g., SHA512
x ∈R X x is a random integer from set X
a
b ab′ where b′ is the multiplicative inverse of b in Zp, such that bb′ ≡ 1 (mod p)
a−1 Multiplicative inverse of a in Z(p−1), such that aa−1 ≡ 1 (mod (p− 1))

f (x)→ y y is deterministically computable using function f and x.

τ
(k)
x kth block in which user Ax was active

τ
(k)
x̂ kth block in which user Ax was passive

τ(r) rth block in the ledger, where the information regarding the involvement of any
user is either irrelevant or unknown.

3.1. Storage Requirements

For the purpose of securing record identification, we associate each side of the parti-
tioned record with a ciphertext that we refer to as an anchor. In Figure 1, the identifying
anchor is shown as a circle inside the red bars on the left, while the sensitive information
anchor is shown as a circle inside the yellow bars. Formally, given a complete record Di, the
set of personal information dpi and the set of medical information dmi are annotated with
different numbers dp∗i , dm∗i , respectively. However, ∃

−→
f (dp∗i , x)→ dm∗i ,

←−
f (dm∗i , x)→ dp∗i

can relate both of these anchors, where x is the secret that can be obtained securely by
the cooperation of permitted users only. For fast retrieval, the records are indexed with
dp∗i , dm∗i .

Figure 1. Secure De-Identification.

3.2. Traversability Requirements

Given two ordered entries Bm, Bn in which user Ai is active ∃
−→
fa ,
←−
fa such that

−→
fa (Bm, πi) → Bn and

←−
fa (Bn, πi) → Bm where πi is a secret information that only Ai

has access to. Similarly, if user Ai is passive and Bm, Bn are two ordered entries in which
it was passive, then ∃

−→
fp ,
←−
fp such that

−→
fp (Bm, πi) → Bn and

←−
fp (Bn, πi) → Bm. We call

−→
fa ,
←−
fa ,
−→
fp ,
←−
fp as traversal functions. In order to make the traversal secure ∄

−→
f ′a (Bm, x) →

Bn such that x ̸= πi, and same applies for the other traversal functions. Also, there
∄ Fa(Bm, Bn)→ [0, 1], Fp(Bm, Bn)→ [0, 1] that deterministically produces a binary output

Information 2024, 15, 815 7 of 36

denoting the given two entries are related to the same active or passive user, respectively.
In that case, an adversary can apply that function of all pairs or entries to partition all
entries belonging to the same user. We refer to each of these entries as a block.

In Figure 2, we show 4 blocks (shown in yellow rectangles), each referring to an access
event. In the first block from the top, user Au′ is active while the user Av is passive, and it
is the first access event associated with both of these users. Similarly, in the fourth block,
the user Au is active while the user Av′ is passive. The user Au can reach this block using
the function

−→
fa and its private credentials, which is reachable from τ

(0)
u . Although it is the

fourth block in the order of time, it is the second block that Au can jump into through active
traversal. Similarly, the user Av′ can jump into this block by traversing only once from τ

(0)
v′ .

We label these blocks from these users’ perspectives. Hence, the same block is referred to
as τ

(2)
u and τ

(1)
v′ by users Au and Av′ . Genesis blocks are shown on the top, which are the

first blocks (0th) associated with each user.

Figure 2. Traversable Ledger.

Each user is associated with a dedicated chain of events, which has a traversable total
order. However, a block in a user-specific chain may overlap with some other user’s chain.
As these chains are sets of blocks, the ledger proposed in our work can be described as the
union of totally ordered sets. All these totally ordered sets start with a genesis block that
does not have a mutual order in the context of the users’ secret, which makes this union a
partially ordered set. However, all blocks, including the genesis blocks, are totally ordered
with respect to time. Although the order of these sets is secret in the absence of users’
secret, the total order of the ledger, which is the union of all these sets, is transparent as it
is ordered by time. Additionally, ensuring the total order of the blocks inside the ledger
implies that the order of the sets is also maintained. A blockchain platform can be used to
maintain the integrity of this temporal total order of the ledger. The colored arrows in the
figure denote active or passive traversals. In the end, the creation of a new block is shown
in the figure, which can be traversed from the last blocks τ

(2)
u and τ

(2)
v .

3.3. Challenges

We intend to motivate users toward privacy awareness. Therefore, the users should
participate in the security system while using resource-constrained devices, e.g., cell phones.
Such devices operate using limited computing abilities and do not have enough storage
and memory capabilities. Previous surveys have found that users do not favor apps that
consume huge storage [26]. Immutable ledgers like blockchain can grow over time. The
current size of the Bitcoin blockchain is 400 GB, and it is growing every day [27]. It may
also consume memory to deal with such a big blockchain. Such huge resource requirements
may demotivate users and force them to ignore their privacy concerns. Hence, we intend
to design our solution in such a way that does not impose large storage or memory
requirements on the end users. The proposed system uses a ledger with which every

Information 2024, 15, 815 8 of 36

patient can synchronize. However, there can be independent parties synchronizing with
the ledger and maintaining the offchain index of blocks. As the block contents are encrypted
and immutable, the ledger can be securely accessed by all users. In the proposed scheme,
the users use their private credentials to securely compute the address of the block, which
they look up in the offchain index. Such a lookup works, irrespective of the location of
the ledger. The proposed scheme only requires the users to memorize their secrets and
the public key of one entity for the traversal. We facilitate bidirectional traversal over the
ledger without requiring any local cache or network communication.

The custodians require one or more pieces of sensitive information associated with
multiple patients to find consistency in their healthcare and further medical research. In
order to make the solution practically usable, we need to make sure that the process
of secure retrieval does not obstruct the actual medical research with time-consuming
operations. Hence, the time taken for secure information retrieval and the subsequent
ledger entry construction must be deterministic and polynomially proportional to the
number of records retrieved.

We secure the identification of de-identified medical information. However, there can
be multiple medical information associated with a single patient. We also need to protect
the database from attackers who intend to horizontally partition the database into groups
such that each group represents the same patient.

4. Secure Ledger

The human entities in the problem are the data managers, supervisors, and patients,
as shown in Figure 3. In this paper, we often refer to the data managers and supervisors as
custodians because they are in the jurisdiction of the Institution. A custodian is permitted
to access and identify the medical record(s) without depending on any other custodian. The
responsibility is enforced by the creation of an entry in the immutable ledger. The database
is vertically partitioned but not encrypted. Hence, any unauthorized user, if granted access
to the database, may see the medical records but will not have the ability to identify the
patient associated with the medical record. We choose to keep the data unencrypted to
permit fast access and query processing, which is often required for medical research.
The focus of this work is to make the custodians responsible for record identification.
Therefore, we do not consider data thefts while the stolen data remains non-identifiable.
With this setup, an adversary may still use statistical techniques to re-identify the vertically
partitioned data. But we ensure that given all records, an adversary cannot partition
them into groups, each associated with an individual patient without using some external
information. Problems of re-identification can be solved using various techniques like
encrypted quasi-identifiable attributes, k-anonymity, l-diversity, differential privacy, etc.
However, our paper does not deal with re-identification threats. The focus of our paper is
concentrated on enforcing the responsibility of identification.

Figure 3. Actors.

As we have already discussed in the previous section, we require pre-processing
on the existing medical records in order to perform vertical partitioning and associating

Information 2024, 15, 815 9 of 36

cryptographically computable anchors with the partitioned data. We have explained the
vertical partitioning and computation of the cryptographic anchor in Section 4.1. We
assume that a trustworthy agent has already performed this operation. The proposed
scheme uses a trusted server (TS) to resolve either of dp∗i given dm∗i and vice versa. The
TS is trustworthy enough to follow the protocol. However, it can be compromised by an
attacker who may intend to identify some medical records using the secrets found in the
storage. Therefore, our scheme requires the cooperation of two entities in order to identify
a record, one of which is the TS, and the other is a custodian.

After each identification operation, an entry is written into the immutable ledger. The
ledger works like a conventional blockchain, where each block contains the checksum of
the previous block. However, in our case, all blocks are not relevant for all users. Hence,
the users can selectively browse through the blocks that are associated with them with
appropriate credentials. The trusted server (TS) is the only entity that writes into the ledger.
The other entities, e.g., the custodians and the patients, can read from it and interact with TS
to write to the ledger. Different entities can synchronize with the ledger without requiring
any special credentials. However, we require offchain indexing based on some contents of
each block for fast search and retrieval. Therefore, those who maintain a copy of the ledger
are also expected to maintain an offchain index. The offchain index can be a key-value store
that maps two integer addresses (found in each block) with the block ID.

Every user At and the trusted server in the system has a public yt = gπt , yw = gw and
private keys πt, w. When generating the private keys, we make sure that ∃π−1

t , w ∈ Zp−1

such that gπtπ
−1
t ≡ g(mod p) and gww−1 ≡ g(mod p).

4.1. Securely Identifiable Vertical Partitioning

Every record is associated with a patient Av identified by public key gπv . Each of these
records is vertically partitioned such that the medical information parts of these records
{Mv,1, Mv,2, . . . } do not include any identifying information. The identifying information
part contain the public key gπv of the patient and a random number pv ∈R [1, 2512]. We
annotate each record Mv,j with an anchor av,j expressed as a tuple. The system is initialized
with θ ∈R Zp−1 such that ∄ θ−1 ∈ Zp−1, but for its hash h = H(gθ), ∃h−1 such that

ghh−1 ≡ g (mod p). The construction of anchor av,j is shown in Equation (1). The identifying
parts are indexed by gπv and Mv,j are indexed by mv,j for fast retrieval.

av,j = (mv,j, ηv,j, tv,j ∈R [1, 2512])

mv,j = ξ
(

gπv , H2(gθtv,j−1)
)

ηv,j = tv,j−1H(gθtv,j)

(1)

With knowledge of tv,j and gθ , one can compute H2(gθtv,j), which is used as the
key in the symmetric encryption algorithm ξ. Hence, with that knowledge, it is also
possible to decrypt mv,j+1 and extract gπv and identify the patient. tv,j is obtained as a
plaintext from av,j. However, one can also extract tv,j from ηv,j+1 by computing the hash of
(gθ)tv,j+1 . Therefore, we can find out gπv from any mv,j ∀ j in two different ways as shown
in Equation (2). The first case is useful while iterating through all records associated with
the same patient, while the second is useful for identifying a random record.

ζ

(
mv,j, H2

(
(gθ)

ηv,j

H((gθ)
tv,j)
))

= gπv = ζ
(

mv,j, H2((gθ)tv,j−1)
)

(2)

However, in order to iterate through all medical records of a patient, we need a first
record with which to start. However, the first record needs a tv,−1 which does not exist.
Hence, we use pv associated with the identifying part of the record as shown in Equation (3).

Information 2024, 15, 815 10 of 36

av,0 = (mv,0, ηv,0, tv,0 ∈R [1, 2512])

mv,0 = ξ
(

gπv , H2(gθpv)
)

ηv,0 = pv H(gθtv,0)

(3)

Now, in order to iterate through all records belonging to patient Av, we need pv,
which is included with the identifying part as plaintext and gθ . However, θ or gθ is not
remembered or stored in any persistent storage. Instead, a key is computed using that
and the user’s private key, which is shared with all users, as explained in the next section.
However, before forgetting the θ, it computes the access key using its private key w for all
users At and distributes it to them as shown in Equation (4).

(gπt)θw = gπtθw (4)

A user Au can use the multiplicative inverse of its private key πu and send that to the
trusted server, which can use the multiplicative inverse of w to recover the gθ which was
previously lost in the beginning as shown in Equation (5).

(gπuθw)π−1
u = gθw ⇒ (gθw)w−1

= gθ (5)

However, we need to make the exchange in a way that enforces the creation of an
entry in the immutable ledger. Therefore, the exchange of shared secrets is incorporated
into a protocol. We call that process the Request for Sensitive Information (RSI). RSI can
be of two types. One is for retrieving all medical records for a patient. The other is when
the custodians want to identify the patients associated with a set of medical records. In the
next Section, we formulate the entries in the immutable ledger. In Section 4.3, we explain
the construction of the entries, and then we describe the protocol that integrates ledger
construction and exchange of access key.

4.2. Ledger Formulation

An access event is associated with two users, one of which is active and the other is
passive. The active user invokes the access operation with sufficient credentials, while the
passive user may not be aware of the event at that point in time. In our case, the custodians
work as active users as they identify the patients’ records. The patients remain passive in
this event. We use the symbols Au and Av to denote the active and the passive users, re-
spectively. Now we translate the problem mentioned in Section 3.2 in Equations (6) and (7)
in terms of Au and Av. In Equations (6) and (7) τ

(k)
u , τ

(k+1)
u are two consecutive blocks

ordered by time in which user Au was active. Similarly, τ
(k)
v̂ , τ

(k+1)
v̂ are two consecutive

blocks ordered by time in which user Av was passive and the arrows denote unidirectional
deterministic computability.

−→
fa (τ

(k)
u , πu)→ τ

(k+1)
u (6a)

←−
fa (τ

(k+1)
u , πu)→ τ

(k)
u (6b)

−→
fp (τ

(k)
v̂ , πv)→ τ

(k+1)
v̂ (7a)

←−
fp (τ

(k+1)
v̂ , πv)→ τ

(k)
v̂ (7b)

We refer to Equations (6) and (7) as traversability requirements while Equations (6a),
(6b), (7a) and (7b) are referred to as active forward, active backward, passive forward and
passive backward traversability requirements, respectively. The blocks must be constructed
in such a way that it satisfies these requirements. However, these blocks are constructed as

Information 2024, 15, 815 11 of 36

an effect of the access event, which happens in collaboration with the trusted server, which
is supposed to enforce the creation of the block. Hence the trusted server should construct
the block and post it on the ledger. Every block has three parts, namely address, active,
and passive.

The address component is used for indexing each block for fast retrieval, Active and
passive parts contain information for the active and passive traversals. Now, we discuss
how the different parts of the block are constructed by the trusted server.

4.2.1. Block Address

Each block has a pair of active and passive addresses cu and cv̂. These values are
indexed locally by all maintainers of the ledger so that it does not require a linear search
across all blocks to find a block associated with an active or passive address. The address
of the kth block depends on the random numbers introduced in the previously active and
passive blocks r(k−1)

u and r(k−1)
v , respectively. The random numbers r(k−1)

u and r(k−1)
v are

contained in the active and the passive parts of the corresponding previous blocks. The
addresses are constructed in such a way that given sufficient credentials, one active user
can compute c(k)u using the information in τ

(k−1)
u . In addition, a passive user can compute

c(k)v̂ using the information in τ
(k−1)
v̂ and its credentials. As the addresses cu, cv̂ are indexed

against the block ID τu, τv̂, it is possible to find the block associated with that address
quickly. The formulation of the addresses is provided in Equation (8).

c(k)u =τ
(k−1)
u H

(
gπur(k−1)

u
)

(8a)

c(k)v̂ =τ
(k−1)
v̂ H

(
gπvr(k−1)

v
)

(8b)

4.2.2. Active Component

Previously, when constructing the address c(k)u of the current block τ
(k)
u , we have men-

tioned the usage of random number r(k−1)
u which was introduced in the active component

of block τ
(k−1)
u . Now, we describe the composition of the active component. The active

component of the block needs to consist of sufficient information that can be used by the
active user to reach the next and the previous blocks in which the same user is active. It

consists of two parts,
−→
l(k)u , which is used for forward traversal, and

←−
l(k)u , which is used for

backward traversal by the active user.
Another information that the active component consists of is l(k)∗u , which works as a

checksum in the process of construction, which is explained later. The composition of the
active component is described in Equation (9).

−→
l(k)u =gr(k)u (9a)
←−
l(k)u =H(gπur(k)v)gr(k−1)

u (9b)

l(k)∗u =H
(

gwπur(k)u gπu
)

(9c)

The traversal function
−→
fa (τ

(k−1)
u , πu) is modeled as shown in Equation (10). The objective

of
−→
fa is to make it possible to compute cu using sufficient credentials, which can then be

used to look up the ID of the block.

Information 2024, 15, 815 12 of 36

−→
fa (τ

(k−1)
u , πu) = τ

(k−1)
u H

((−−−→
l(k−1)
u

)πu
)

= τ
(k−1)
u H

(
gπur(k−1)

u

)
= c(k)u

(10)

However, for the active backward traversal, the function
←−
fa (τ

(k)
u , πu) computes the ID of

the previous active block without requiring looking up in the index of the addresses. The
traversal function

←−
fa (τ

(k)
u , πu) is modeled as shown in Equation (11).

←−
fa (τ

(k)
u , πu) =

cu

H

((←−
l(k)u

H
((−→

l(k)v

)πu)
)πu)

=
cu

H
(

gr(k−1)
u πu

)
=

τ
(k−1)
u H

(
gπur(k−1)

u
)

H
(

gπur(k−1)
u

) = τ
(k−1)
u

(11)

4.2.3. Passive Component

Like the active component, the passive component of block τ
(k−1)
v̂ uses random number

r(k−1)
v which is also used to construct the passive address c(k)v̂ . The passive component

should have sufficient information for the forward and backward traversals
−→
fp ,
←−
fp . In the

active component, we have used the hash of gπur(k)v backward traversal. Similarly, here we

use the hash of gπvr(k)u in the passive component. The formulation of the passive component
is shown in Equation (12).

−→
l(k)v̂ =gr(k)v (12a)
←−
l(k)v̂ =H(gπvr(k)u)gr(k−1)

v (12b)

l(k)vw =H(gwr(k)v)ghπvr(k)v (12c)

The forward traversal function
−→
fp (τ

(k−1)
v̂ , πv) is modeled as shown in Equation (13).

Like the active traversal, the passive user Av can use its private key πv to perform the
passive traversal.

−→
fp (τ

(k−1)
v̂ , πv) = τ

(k−1)
v̂ H

((−−−→
l(k−1)
v̂

)πv
)

= τ
(k−1)
v̂ H

(
gπvr(k−1)

v
)
= c(k)v̂

(13)

The passive traversal function computes the ID of the previous block τ
(k−1)
v̂ from the

information in the block τ
(k)
v̂ . But τ

(k)
v̂ is constructed using gr(k−1)

v , which is found in the

previous block. However, gr(k−1)
v can also be extracted from

←−
l(k)v̂ using

←−
l(k)v̂ and πv. As

←−
l(k)v̂

Information 2024, 15, 815 13 of 36

is accessible to the passive user too, it can compute the hash H(gπvr(k)u) and extract gr(k−1)
v .

The passive traversal function
←−
fp (τ

(k)
v̂ , πv) is shown in Equation (14).

←−
fp (τ

(k)
v̂ , πv) =

cv̂

H

((←−
l(k)v̂

H
((−→

l(k)u

)πv)
)πv) = τ

(k−1)
v̂

(14)

4.2.4. Genesis Blocks

A genesis block does not have addresses. However, it has a fixed ID, which is de-
terministically computable by anyone so that a user with proper credentials can traverse
forward till the last block without memorizing anything other than its private key. The ID
is computed as a hash of the public key of the user as shown in Equation (15). At the same
time, anyone with the public key of the user can verify that the user exists in the system.
As the genesis block does not describe any actual access event, it does not follow the usual
semantics of active and passive users. Instead, the same user is simultaneously considered
active and passive.

τ
(0)
t = τ

(0)
t̂

= H(yt) = H(gπt) (15)

As the genesis block is the first block belonging to the user, it is not meant to traverse
backward from that block. Hence, only the forward traversal information is sufficient, and

we do not include the
←−
l(0)u and

←−
l(0)v̂ as we have done in other blocks.

−→
l(0)u =gr(0)t (16a)

l(0)∗u =H
(

gwπtr
(0)
t gπt

)
(16b)

−→
l(0)û =gr(0)t (17a)

l(0)uw =H(gwr(0)t)ghπtr
(0)
t (17b)

Other than that, the construction of the active and passive components is similar to
the regular blocks.

4.3. Sensitive Information Request

Blocks are constructed by the trusted server through active participation with the
active user Au. The request for sensitive information (RSI) contains information regarding
which record it wants to retrieve. The trusted server constructs the block registering the
event and returns the record(s) requested. While retrieving that record, the trusted server
learns about the patient, who is the passive user Av in this context. With the knowledge of
Au, Av, and some private information computed by the Au, the trusted server constructs
the block.

We propose a two-stage protocol through which the trusted server obtains sufficient
information securely without damaging the privacy of Au. The protocol is illustrated
in Figure 4. In the first stage of the protocol, Au sends the RSI with the tuple shown in
Equation (18). τ

(n)
u is the ID of the last block in which Au was active. As the blocks are

traversable by the active user, it is expected that Au can have this information even without
caching or memorizing anything. gπu is the public key of Au. Au computes the token

gπur(n)u using
−→
l(n)u and its private key πu as shown in Equation (19).

Information 2024, 15, 815 14 of 36

Au TS

y = gπu , τ = τ
(n)
u , Γ = gπur(n)u

λgwπu

{ϵ, Dϵ, gwθλ}

Figure 4. RSI Protocol.

(
τ = τ

(n)
u , Γ = gπur(n)u , y = gπu

)
(18)

However, the two parts of the request, τ
(n)
u and gπu , are claims by Au. Because the

public key is known by anyone, it is not guaranteed that Au is not using someone else’s
public key with the intention of impersonating that user. Also, τ

(n)
u may not be the last

block in which the user was active. Even if Au was active, it may not be the last block. It
may even be a block that does not exist in the ledger. In all those cases, the ledger will be
malformed if these claims are not verified.

gπur(n)u =
(−→

l(n)u

)πu
=
(

gr(n)u
)πu

(19)

Hence, the trusted server needs to verify these claims. To verify the existence by
checking equality of H(yΓw) and l(n)∗u which is available in block τ

(n)
u . To satisfy this

equality, τ = τ
(n)
u needs to exist, and y = gπu must be the public key using which τ

(n)
u is

constructed. Hence, if τ
(n)
u is constructed using the correct public key, then y is also correct

and the same public key. Additionally, the checksum l(n)∗u is matched because the token
Γ is correctly computed. But it requires the knowledge of private key πu to compute that.
Hence, the user Au has the private key πu.

l(n)∗u = H(yΓw) = H

(
gπu
(

gπur(n)u
)w
)

= H
(

gπur(n)u wgπu
)

(20)

However, we do not yet know if τ
(n)
u is the last block in which Au was active. In order

to check that, the trusted server computes τ
(n)
u Γ as shown in Equation (21) and searches for

its existence in the index of addresses. If it exists, then τ
(n)
u is not the last block in which the

user was active because τ
(n)
u Γ = c(n+1)

u . In that case, the user could be malicious and try to
fork the ledger, so that request is rejected. Otherwise, the request is accepted, and it goes to
the next stage.

τ
(n)
u Γ = τ

(n)
u gπur(n)u = c(n+1)

u (21)

However, in Equation (21), we have already computed c(n+1)
u , which is a component

of the next block that is due to be constructed.
In the second stage of the protocol, the active user communicates the intended opera-

tion and related data along with the access key, with which the trusted server recomputes
gθ , which was lost initially. The trusted server generates a random λ ∈ Z∗q and sends
λ
(

gπu
)w

= λgwπu to the Au. The server also computes its inverse λ−1 and stores it tem-
porarily. Au can extract the λ by computing

(
gw)πu and then send gθλw, as shown n

Equation (22).
(gθπuw)λπ−1

t = gθλw (22)

The tuple shown in Equation (23) summarizes the message that the active user sends to
the trusted server in Stage 2. The ω and Dω denote the action that the active user intends

Information 2024, 15, 815 15 of 36

to perform and the corresponding data, respectively. The set of possible actions and their
corresponding data are represented in Table 2.

(ω, Dw, gθπuw) (23)

Table 2. Actions in an access event.

ω Dω Intention

identify av,j Retrieve public key of the patient associated with medical information avj

fetch gπv Fetch all records of patient identified by public key gπv

insert gπ
v , A Insert records A = {av,1 . . . av,m} and associate them with patient identified by

gπv

delete av,j Delete Record av,j

After receiving the response, the trusted server uses the λ−1 to reconstruct gθ as shown
in Equation (24). This gθ is the secret with which the database anchors are encrypted. After
reconstruction of gθ , the trusted server does not need to remember the value of λ or λ−1.

(gθλw)w−1λ−1
= gθ (24)

To construct
−−−→
l(n+1)
u , the trusted server generates a r(n+1)

u ∈R Zp and computes gr(n+1)
u .

The public key gπu has been verified in the request stage. Therefore, the checksum l(n+1)∗
u

can be computed reliably. Hence, the active component is constructed by the trusted server
as summarized in Equation (25).

−−−→
l(n+1)
u := gr(n+1)

u (25a)
←−−−
l(n+1)
u := H

(
(gπu)r(n+1)

v
)

gr(n)u = H
(

gπur(n+1)
v

)
gr(n)u (25b)

l(n+1)∗
u := H

(
(gπu)wr(n+1)

u gπu
)
= H

(
gπuwr(n+1)

u gπu
)

(25c)

However, while generating the random number r(n+1)
u , we have to be careful that the

inequality shown in Equation (26) has to be satisfied. More on this inequality is explained
later at the end of Section 4.4. Additionally, r(n+1)

u may not be invertible in Z(p−1).

H2

(
gπvr(n+1)

u
)
̸≡ H2

(
gπur(n)u

)
(mod 2) (26)

The trusted server has already computed gθ as shown in Equation (24). Hence, if
the RSI is for identifying medical records, then the value in id∗ can be decrypted using
Equation (2).

If the RSI is for retrieving all records of a patient, then the gπv is provided in the
request. For the passive component, the random number r(n+1)

v ∈R Zp is generated such
that the first one has no multiplicative inverse in Z(p−1) but the second one does not. This

construction also uses the random number r(n+1)
u generated for the active component. The

construction is summarized in Equation (27). The random number r(n+1)
v is also used to

compute the
←−−−
l(n+1)
u . As, the trusted server has recomputed the forgotten gθ using which it

can now also compute the hash h = H(gθ) and construct l(n+1)
vw .

Information 2024, 15, 815 16 of 36

−−−→
l(n+1)
v̂ := gr(n+1)

v (27a)
←−−−
l(n+1)
v̂ := H

(
(gπv)r(n+1)

u
)

gr(n)v = H
(

gπvr(n+1)
u

)
gr(n)v (27b)

l(n+1)
vw := H

((
gw)r(n+1)

v
)(

gπv
)hr(n+1)

v
= H

(
gwr(n+1)

v
)

gπvhr(n+1)
v (27c)

The active part of the address component can be computed as shown in Equation (21). The
construction of the address component is summarized in Equation (28).

c(n+1)
u := τ

(n)
u Γ (28a)

c(n+1)
v̂ := τ

(n)
v̂

(
l(n)vw

H
((−→

l(n)v̂

)w)
)h−1

= τ
(n)
v̂

(
H(gwr(n)v)ghπvr(n)v

H(gwr(n)v)

)h−1

= τ
(n)
v̂

(
ghπvr(k)v

)h−1

= τ
(n)
v̂

(
gπvr(k)v

)
(28b)

4.4. Encrypting Block Contents

Each block should have content explaining the reason behind the access event. Ad-
ditionally, it should include information about the active and passive users associated
with it. The encryption technique we apply to the contents of the block should satisfy the
following properties.

1. Given a random block, only the active user Au involved in the creation of that block
will be able to decrypt its content.

2. Given a random block, only the passive user Av whose data have been accessed will
be able to decrypt its content.

3. A supervisor can decrypt the contents of any block.
4. It should be possible to decrypt the contents of a block offline without connecting to

any other server.

Such requirements are very similar to the well-known secret-sharing problem such
as Samir’s Secret-Sharing. While using the secret-sharing scheme, the ciphertext can be
decrypted using a secret, which is shared among multiple entities. It can be recovered by
the participation of a threshold number of actors who hold shares of that secret. However,
in our case, it does not require the participation of more than one actor in order to decrypt,
which is similar to the Diffie–Hellman key exchange. In the Diffie–Hellman key exchange,
the two participants use symmetric encryption for communication. However, the key they
use for symmetric encryption is derived from both of their secrets, which are not revealed
but exchanged securely before the data communication begins. In our case, the active user
Au is not communicating with the passive user Av or the supervisors. However, both Av
and supervisors need the ability to decrypt the ciphertext. The encryption scheme that we
follow for encryption of the block content is discussed below.

The TS formulates a straight line primarily with two coordinates (shown in Equation (29))
that only the users Au and Av can compute. Although the TS can compute those coordinates
during construction, it loses the information it needs to reconstruct that again. Once the
straight line is constructed, it finds two random coordinates that satisfy that linear equation.
One of those coordinates is published with that block as plain text along with the x value

Information 2024, 15, 815 17 of 36

of the other. The cryptographic hash of the y value of the other random coordinate is used
as a password to symmetrically encrypt the message.

d(u) =

[
H2

(
gπur(n)u

)
cv

]
, d(v) =

[
H2

(
gπvr(n+1)

u
)

cu

]
(29)

The line can be formulated as ax + by = c where the coefficients can be computed as
shown in Equation (30). However, we can divide both sides with the e = Gcd(a, b), and the
equation remains the same.

a = d(v)y − d(u)y

b = d(u)x − d(v)x

c = d(v)y d(u)x − d(v)x d(u)y

(30)

As we need to find integer coordinates only, we can consider the straight line as a
linear diophantine equation. In that case, we can generate a random coordinate r on that
line using Equation (31). The s on Equation (31) can be any coordinate on that line. As we
already have two coordinates, we can choose either d(u) and d(v).

r = s + ∆m ∀ m ∈ Z where ∆ =

[b
e
− a

e

]
(31)

We generate two random coordinates γ, δ using Equation (31). γ and δx are published
with the block. The contents are encrypted using H2(δy). This straight line is shown in
Figure 5. Both active and passive users can compute either d(u) or d(v) and then interpolate
a straight line using γ, which is available as plaintext. Then, the users put x = δx on that
equation and calculate y = δy. Once δy is retrieved, its hash H2(δy) can be computed, with
which the encrypted message can be decrypted and the plaintext can be obtained.

Figure 5. Straight line used for encrypting block content.

However, the supervisors cannot compute either d(u) or d(v), hence cannot use γ to
interpolate the straight line. As the supervisors can also perform access events, they too
have their access key like the data managers. Additionally, they have gϕwπs , which is
specifically used for viewing, but unlike gθ , it is not lost by the TS. Although gθ is lost, it
is reconstructed in the second stage of the protocol by the TS. Hence, the TS computes a

suffix
(

gθwgϕw
)γx

and multiplies the H2(δy), as shown in Equation (32), and stores that
ciphertext in the block.

δ
(s)
y = H2(δy)

(
gθwgϕw

)γx
= H2(δy)g(θ+ϕ)wγx (32)

The supervisors As can compute the suffix and obtain H2(δy) by division in Zp, as
shown in Equation (33).

δ
(s)
y(

(gϕwπs)π−1
s (gθwπs)π−1

s

)γx =
H2(δy)g(θ+ϕ)wγx(

gϕwgθw
)γx =

H2(δy)g(θ+ϕ)wγx

g(ϕ+θ)wγx
= H2(δy) (33)

Information 2024, 15, 815 18 of 36

However, the Au and Av also knows H2(δy) and can extract the suffix g(θ+ϕ)wγx

through division. As γx is known, anyone can compute γ−1
x and extract g(θ+ϕ)w =

(g(θ+ϕ)wγx)γ−1
x using that. Once extracted, it can be reused with some other γx associ-

ated with some other block. But if we can ensure that ∄γ−1
x , such that γxγ−1

x ≡ 1 ∈ Z(p−1),
then the malicious user cannot reuse that suffix. γx is non-invertible only if it is not coprime
with p− 1, i.e., Gcd(γx, p− 1) > 1. Given that p is a prime and any prime greater than 2
is odd, p is odd, and p− 1 is even. Hence, if γx is also even, then their Gcd is at least 2.
However, γx is computed in Equation (31) using a random integer m that contributes to γx
being odd or even. γx can be expressed by Equation (34).

γx = sx + ∆xm (34)

If sx is even, then γx is also even only if ∆xm is even. We can trivially ensure that ∆xm
is even by making m an even random number even if ∆x is odd. If sx is odd, we need ∆xm
to be odd in order to make γx even. If ∆x is odd, then choosing an odd m will result in an
even γx. However, if ∆x itself is even, then we cannot make it odd by finding an odd or
even m. In that case, γx is odd. In order to make an odd number non-coprime with (p− 1)
(which is even), γx must be divisible by some other factors of (p − 1). If (p − 1) is the
product of a few large primes, one of which is 2, then it will be difficult to find a random
number m that results in an even γxbecause now there are <50% random numbers from
which we can choose. The number of favorable random numbers decreases as the smallest
factors of p− 1 (other than 2) increase. If we can ensure that ∆x is always even, then we
can avoid such an exhaustive search. For that, we need to ensure that d(u)x − d(v)x is odd, as
shown in Equation (30). Now, both of these values d(u)x and d(v)x are results of hashing, and
there are exactly 50% odd and 50% even numbers in the output space. d(u)x is determined
already because it depends on r(n)u , which was decided while constructing the previous
block. However, r(n+1)

u is decided while constructing the current block. Hence, if d(u)x is

odd, then we need to find a r(n+1)
u such that H2

(
gπvr(n+1)

u
)

is even. And if d(u)x is even, then

we need to find a r(n+1)
u such that H2

(
gπvr(n+1)

u
)

is odd. Hence, although block construction
is a non-deterministic process, there is a 50% probability of termination in each iteration.

Finally, a checksum of the block is calculated, and the blocks are signed by the trusted
server. All the terms that we have computed for a block are shown in Figure 6. At first, the
block addresses are shown in yellow. Then, the active and the passive components of the
block are shown in light red and blue, respectively. In the end, we show the block contents
part in green.

Figure 6. Block design.

Information 2024, 15, 815 19 of 36

In the above sections, we have explained different parts of our proposed system. In
Section 4.3, we have discussed the protocol that active users (data managers) use to interact
with TS. We have shown that the request for sensitive information (RSI) originates from
an active user, leading to the creation of an entry in the ledger documenting the access
event. Someone who is not a custodian but who is trying to interact with the trusted
server for the de-identification of patients’ health data is considered to be an adversary.
Additionally, a data manager who is trying to gain information about an entry for an access
event in which some other data manager was involved is also considered to be adversarial
access. The patients are supposed to be able to retrieve information only about the events
in which that patient was involved. Otherwise, this is considered to be adversarial access.
In the next section, we present a list of possible adversarial accesses. Then, we show
that the performance of each of these adversarial accesses is practically impossible for a
polynomial adversary.

5. Evaluation

We summarize the computational overhead for active and passive traversals in terms
of the number of arithmetic operations in Table 3. The columns in the table represent
multiplication, exponentiation, inversion, and hashing, respectively. We can observe that
the backward traversals require more computation than the forward traversal.

Table 3. Computations required for traversals.

Action
Number of Operations

ab ab a−1 H(a)

Traversal Forward 1 1 0 1

Backward 2 2 2 2

Now, we evaluate our proposed framework theoretically as well as experimentally in
the following sections.

5.1. Adversarial Evaluation

First, we evaluate our proposed framework in terms of its usability and security con-
cerns. The objective of this paper is to propose a secure scheme to ensure the responsibility
and privacy of the involved entities, and the proposed work is deterministic. In Section 1,
we have described the primary use case of the work. Here, we theoretically analyze the
related security concerns and discuss how these concerns are addressed.

5.1.1. Adversarial Model

Now, we analyze the threats that the proposed system may encounter. The entities
involved in the proposed system are a vertically partitioned database, a trusted server,
patients, and custodians (data managers and supervisors). We consider that the trusted
server is honest but curious and follows the protocol, but it may use the secret it stores
to gain information that it is not allowed to obtain. We claim that our security solution is
resilient against scenarios when the trusted server is compromised, but the custodians do
not interact with the compromised server. Malicious users, including the custodians, may
try to gain information from the blockchain. We ensure that the information contained in
the blockchain should not disclose information regarding the association of the active and
the passive users with any event block. A list of adversarial attack scenarios motivated by
malicious intentions is presented below.

1. Find records associated with a patient while compromising the trusted server and the
database. (Section 5.1.2)

2. All custodians collude to perform (1) while compromising the database but not the
trusted server (Section 5.1.2)

Information 2024, 15, 815 20 of 36

3. Perform active or passive traversal without compromising any entity in the system.
(Theorems 2–5 in Section 5.1.3)

4. Partition blocks into groups, each associated with a user without compromising any
entity in the system. (Theorems 6 and 7 in Section 5.1.3)

5. Read contents of a random block in the blockchain without compromising any entity
in the system. (Theorem 8 in Section 5.1.3)

6. Adversarial custodian performing access event while impersonating another custo-
dian without compromising the victim’s private key. (Theorem 9 in Section 5.1.3)

We analyze the security of our proposed work based on computational and decisional
Diffie–Hellman assumptions [28]. The computational and decisional problems are de-
fined in Definitions 1 and 2. There have been several generalizations of Diffie–Hellman
assumptions because the application is group-based protocols [29,30]. Based on these
assumptions, we define the generalized computational Diffie–Hellman (GenCDH) problem
in Definition 3. In Definition 4, we define the security assumptions about the cryptographic
hash function H.

Definition 1. Given a cyclic group G of order q, with generator g, and {ga, gb}, the computational
Diffie–Hellman (CDH) problem is to compute gab, where a, b ∈R Z∗q .

Definition 2. Given a cyclic group G of order q, with generator g, and {ga, gb}, the decisional
Diffie–Hellman (CDH) problem is to distinguish gab from gc, where a, b, c ∈R Z∗q .

Definition 3. Given a cyclic group G of order q, with generator g, and {gr1 , . . . , grn} the generalized
computational Diffie–Hellman (GenCDH) problem is to compute gr1...rn where ri ∈R Z∗q∀ i ∈ [1, n].

Definition 4. A cryptographic hash function H : {0, 1}∗ → {0, 1}n is a deterministic function
that satisfies the following properties:

Pre-image resistance: Given a hash value h, it is computationally infeasible to find any input x
such that H(x) = h.

Second pre-image resistance: Given an input x, it is computationally infeasible to find another
input x′ ̸= x such that H(x) = H(x′).

Collision resistance: It is computationally infeasible to find any two distinct inputs x and x′

such that H(x) = H(x′).

Additionally, we assume that H satisfies the non-correlation property as mentioned in [31]. The
non-correlation property implies that the inputs and the outputs of the hash function should not be
statistically correlated.

Based on these definitions, we present Lemmas 1 and 2, which we will extensively use
to demonstrate the difficulties of adversarial access in the rest of the section.

Lemma 1. Computing H(gab)gc from gc is intractable under the CDH assumption when a, b are
unknown exponents but ga, gb are known, and H is an irreversible cryptographic hash function.

Proof. Let us assume that the adversaryA can compute H(gab)gc from gc using an efficient
oracle B.

Assumption:

Given a cyclic group G of order q, with generator g B(ga, gb, gc) = H(gab)gc

Goal:

Construct an algorithm C using oracle B to compute gab from ga and gb without
knowing a, b.

Information 2024, 15, 815 21 of 36

Inputs: g, ga, gb, gc

Unknowns: a, b

B(ga, gb, gc) = H(gab)gc

⇒B(ga, gb, g) = H(gab)g substitute c = 1

⇒B(ga, gb, g)/g = H(gab)

1. Hence, A can construct algorithm C = B(ga, gb, g)/g to compute H(gab).
2. However, H being an irreversible cryptographic hash function, the only way to

compute H(gab) is to be able to compute gab.
3. However, computing gab using ga, gb without knowledge of a, b is intractable

under CDH assumption.

∴ if oracle B can be used to compute gab, then the adversary A can use B to solve the CDH
problem.

Lemma 2. Computing H(gwarga) from w, ga, gr, H(gar) is intractable under the CDH assumption
when a, r are unknown exponents but ga, gr are known and H is an irreversible cryptographic hash
function.

Proof. Let us assume that the adversary A can compute H(gwarga) from w, ga, gr, H(gar).
However, H is an irreversible cryptographic hash function. Hence, knowledge of H(gar)
does not provide any advantage, and in order to construct H(gwarga). Also, because H
is irreversible cryptographic hash function, gwarga needs to be computed first in order to
compute H(gwarga). Now, let us assume that an adversary A has an oracle B that can
compute gwarga given w, ga, gr without knowing a, r.

Assumption:

Given a cyclic group G of order q, with generator g B(ga, gr, w) = gwarga

Goal:

Construct an algorithm C using oracle B to compute gwarga from w, ga, gr without
knowing a, b.

Inputs: g, ga, gr, w
Unknowns: a, r

B(w, ga, gr) = gwarga

⇒B(1, ga, gr) = garga substitute w = 1

⇒B(1, ga, gr)/ga = gar

1. Hence A can construct algorithm C = B(1, ga, gr)/ga to compute gar.
2. But computing gab using ga, gb without knowledge of a, b is intractable under

CDH assumption.

∴ if the oracle B can be used to compute gar from ga, gr while a, r are unknown, then the
adversary A can use it to solve the CDH problem.

We now analyze the security of our proposed work against the above-mentioned
threats. Throughout this section, we show that the adversary incapable of solving CDH,
DDH, and GenCDH problems cannot solve the challenges required to perform the attacks.

Attacks (1–3) are the computational challenge that the adversary must perform, while
(4) requires the adversary to solve a decisional challenge. In Section 5.1.2, we discuss
the first two scenarios related to attacks on the database concerning the disclosure of the
de-identified data.

Information 2024, 15, 815 22 of 36

The attack scenarios targeting the block are discussed in Section 5.1.3. In Theorems 2
and 3, we prove that Attack (3) requires the malicious user to solve a problem that is as
difficult as CDH. In Theorems 4 and 5, we prove that the decision version of this problem
is as difficult as the computational version. To prove the difficulty of Attack (4), we first
prove the difficulty of decidability of block participation without knowledge of the user’s
private key in Theorem 6. Then we show that to solve the partitioning problem in (4), the
malicious user needs to have an oracle that can solve problems described in Theorems 4–6,
which makes it as difficult as CDH too. In Theorems 8 and 9, we prove that Attacks (5,6)
require the malicious user to solve a problem that is as difficult as CDH.

5.1.2. Adversarial Attacks on Storage

In this section, we discuss Attacks (1) and (2), which are about the ability of an attacker
to find records associated with a patient while assuming that the trusted server and the
database have been compromised (i.e., the attacker has gained access to it). We do not
consider the case of re-identification as it is out of the focus of this work. We only consider
the case of direct identification of a patient from the corresponding medical information.
As mentioned above in Equation (1), each entry in the medical information is annotated
with an anchor av,j, which is a tuple (mv,j, ηv,j, tv,j). An attacker can identify a patient
from corresponding medical information only if it is possible to derive the identifying
information of the patient (public key gπv) from av,j. We formalize this identification
problem in Theorem 1.

Theorem 1. Given an anchor av,j, the difficulty of associating that with a public key of any patient
or finding out the next record associated with the same patient depends on the difficulty of decrypting
ciphertext computed using symmetric algorithm ξ and difficulty of solving the CDH problem, when
θ or gθ are not known and only the trusted server is compromised by an external adversary.

Proof. The only term associated with a record av,j that is derived using the public key gπv

is mv,j, as shown in Equation (1). Hence, if the attacker derives gπv , it must be derived from
mv,j only.

However, mv,j is a ciphertext computed using symmetric encryption algorithm ξ using
H2(gθtv,j−1) as symmetric key. We assume that the attacker cannot decrypt the ciphertext
without knowing the symmetric key. Hence, to derive gπv , the symmetric key must be
constructed by the attacker.

But, computing the symmetric key gθtv,j−1 from gtv,j−1 without knowledge of θ is as
difficult as CDH problem.

Neither θ nor gθ is known by the TS. Hence, compromising the TS does not provide
any advantage for the attacker.

Traversing to the next block requires the encryption of gπv . However, we have already
shown that computing gπv is as difficult as CDH.

However, it is important to note that a subset of users (custodians) have access keys
from which they can extract gθw. However, computing gθr from r and gθw is assumed to be
intractable when w is not known. Moreover, given n custodians exchanging their access
keys {gθwπt1 , . . . , gθwπtn }, computing gθ is as difficult as GenCDH.

However, if the adversary compromises the trusted server as well as a custodian, then
it has access to both w and gθw, with which it can compute gθ and thus gθr. However, in
this work, we do not provide solutions for such scenarios. We only assume that no other
users are compromised when the trusted server is compromised.

5.1.3. Adversarial Attacks on Ledger

Attacks (3–6) are about adversarial attacks on the ledger. Attacks (3) and (4) are about
adversarial active and passive traversal of the ledger, which is possible only if the adversary
can decide whether the two given blocks are the next or previous block of each other in

Information 2024, 15, 815 23 of 36

terms of active or passive traversal. In Theorems 4 and 5, we show that this decidability
depends on the computability of components of one block using components of the other
block. We formalize this computability problem in Theorems 2 and 3.

Attack (5), which is about the confidentiality of the contents of the block, is formalized
in Theorem 8. Then, we show that the difficulty of that attack depends on the difficulty of
Attacks (3) and (4). Finally, in Theorem 9, we discuss the difficulty of Attack (6), which is
about the impersonation of one custodian by another.

Now, we revisit Equations (8), (9) and (12) and present all the traversal-related terms
regarding three blocks as shown in Figure 7. The first block shown in Figure 7a denotes the
block τ

(k)
u = τ

(k)
v̂ , which is participated in by active user Au and passive user Av. From this

block, the active user Au can perform active forward traversal and reach the second block
τ
(k+1)
u shown in Figure 7b which may be participated by a different passive user Ax. We

assume that it is a j′th block that the passive user Ax can reach through passive forward
traversal. Although this user Ax may be irrelevant to our discussion in this section, we have
included it for completeness in the table. Similarly, we represent the next block in Figure 7c
that the passive user Av can reach through passive forward traversal as τ

(k+1)
v̂ , which may

be participated in by a different active user Ay. Again, even though this active user Ay may
be irrelevant to our discussion, we have included it in the table for completeness and better
understandability. The irrelevant parts, i.e., the passive part of Figure 7b and the active
part of Figure 7c, are shaded.

Symbol Expression

c(k)u τ
(k−1)
u H

(
gπur(k−1)

u
)

▲

c(k)v̂ τ
(k−1)
v̂ H

(
gπvr(k−1)

v
)

△
−→
l(k)u gr(k)u •
←−
l(k)u H(gπur(k)v)gr(k−1)

u ▲ ◦

l(k)∗u H
(

gwπur(k)u gπu
)

•

−→
l(k)v̂ gr(k)v ◦
←−
l(k)v̂ H(gπvr(k)u)gr(k−1)

v △•

l(k)vw H(gwr(k)v)ghπvr(k)v ◦

(a) Terms for τ
(k)
u = τ

(k)
v̂

Symbol Expression

c(k+1)
u τ

(k)
u H

(
gπur(k)u

)
•

c(j)
x̂ τ

(j−1)
x̂ H

(
gπxr(j−1)

x
)

−−−→
l(k+1)
u gr(k+1)

u ▼
←−−−
l(k+1)
u H(gπur(j)

x)gr(k)u •

l(k+1)∗
u H

(
gwπur(k+1)

u gπu
)

▼
−→
l(j)
x̂ gr(j)

x

←−
l(j)
x̂ H(gπxr(k+1)

u)gr(j−1)
x ▼

l(j)
ux H(gwr(j)

x)ghπxr(j)
x

(b) Terms for τ
(k+1)
u = τ

(j)
x̂

Symbol Expression

c(j)
y τ

(j−1)
y H

(
gπyr(j−1)

y
)

c(k+1)
v̂ τ

(k)
v̂ H

(
gπvr(k)v

)
◦

−→
l(j)
y gr(j)

y

←−
l(j)
y H(gπyr(k+1)

v)gr(j−1)
y ▽

l(j)∗
y H

(
gwπyr(j)

y gπy
)

−−−→
l(k+1)
v̂ gr(k+1)

v ▽
←−−−
l(k+1)
v̂ H(gπvr(j)

y)gr(k)v ◦

l(k+1)
xv H(gwr(k+1)

v)ghπvr(k+1)
v ▽

(c) Terms for τ
(j)
y = τ

(k+1)
v̂

Figure 7. Ledger Terms for Different Cases. (a) participated by Au and Av, (b) by
Au and irrelevant passive user Ax, (c) by an irrelevant active user Ay and Av.

Legends: Terms involving random numbers (•r(k)u), (◦r(k)v), (▲ r(k−1)
u), (△ r(k−1)

v), (▼ r(k+1)
u), (▽r(k+1)

v).

Active Forward Traversal
Passive Forward Traversal

It is important to note that for the computation of different terms shown in these
three tables, different random numbers have been used. We have used different legends
to mark the terms that use the same random number. For example, a filled circle (•) has
been used to mark the terms that use random number r(k)u . We also note that, ∀ r1, r2 ∈ Z∗q ,
given gr1 , gπtr1 , computing gπtr2 is as difficult as solving the GenCDH problem. So, the
expressions that are derived from different random numbers are incompatible and to
compute one from the other is intractable.

We now analyze what information a polynomial-time adversary can gain by reading
the access blocks in the ledger based on two blocks τ

(k)
u , τ(n). We consider the case when

τ(n) = τ
(k+1)
u as shown in Figure 7b and demonstrate the computational difficulty of a

polynomial-time adversary.
To demonstrate the intractability of adversarial active traversals, we first group the

cryptographically relevant terms of τ
(k)
u (shown in Figure 7a) and τ

(k+1)
u (shown in

Figure 7b) in two different sets. Then, we show that under CDH assumptions, it is in-

Information 2024, 15, 815 24 of 36

tractable for an adversary to compute any term of one set using at least one term from
the other and vice versa in Theorem 2. Similarly, in Theorem 3, we create two sets of
cryptographically relevant terms from τ

(k)
v̂ (shown in Figure 7a) and τ

(k+1)
v̂ (shown in

Figure 7c) and show the intractability of adversarial passive traversal.

Theorem 2. Given gπu , πv, w, and two blocks τ
(k)
u , τ(n) = τ

(k+1)
u , computing any term of one

block in Figure 7a,b from a subset of terms in another block is as difficult as the CDH problem.

Proof. The terms in both of these blocks that are computed using the same random number
are marked with the same symbol in Figure 7a,b. Here, we group the terms of the first
and the second block (marked with filled circle •) that are computed using r(k)u as β(u, v)
and β(u, x). The other random number r(k−1)

v is used in β(u, v) but has not been used to
construct any term in τ

(k+1)
u . Similarly, the random r(j)

x is not used for construction of any
term in τ

(k)
u .

β(u, v) = {
−→
l(k)u , l(k)∗u ,

←−
l(k)v̂ } = {gr(k)u , H

(
gwπur(k)u gπu

)
, H(gπvr(k)u)gr(k−1)

v }

β(u, x) = {c(k+1)
u ,

←−−−
l(k+1)
u } = {τ(k)

u H
(

gπur(k)u
)

, H(gπur(j)
x)gr(k)u }

To prove the theorem, we demonstrate that the computability of each term in β(u, x),
using at least one term of β(u, v), is as difficult as CDH in Arguments 1 and 2. Then, we
show in Arguments 3–5 that computability of any term of β(u, v), using at least one term
of β(u, x), is as difficult as CDH.

Argument 1.

1. To compute c(k+1)
u , an adversary needs to compute H

(
gπur(k)u

)
first.

2. Given that πu, r(k)u are unknowns, and H is a cryptographic hash function, computing

gπur(k)u from gπu , gr(k)u is equivalent to solving CDH.

Argument 2.

1. Considering
←−−−
l(k+1)
u = H(gπur(j)

x)gr(k)u ∈ β(u, x) in context of Lemma 1, we substitute

the unknown exponents a = πu, b = r(j)
x and known gc = gr(k)u .

2. Computing H(gπur(j)
x)gr(k)u is intractable under the CDH assumption.

Hence, computing any of the terms in β(u, x) from β(u, v) while πu, r(k)u , r(j)
x are un-

known exponents is intractable under the CDH assumption. Additionally, none of these
unknown exponents are present in β(u, v).

∴, computing any term of β(u, x) using at least one term of β(u, v) is intractable under
the CDH assumption.

We now present our arguments to show that the computability of the terms in β(u, v)
from a subset of terms in β(u, v) is also intractable under the CDH assumption.

Argument 3.

1. Let us consider the computability of
−→
l(k)u = gr(k)u ∈ β(u, v) while using β(u, x) as input.

2. H, being a irreversible cryptographical hash function, c(k+1)
u = τ

(k)
u H

(
gπur(k)u

)
∈

β(u, x) does not provide any advantage for computing gr(k)u .

3. It is possible to compute gr(k)u from H(gπur(j)
x)gr(k)u ∈ β(u, x) only if H(gπur(j)

x) is known.

4. But in Argument 2 we have shown that computing H(gπur(j)
x) is intractable under the

CDH assumption as πu and r(j)
x are unknown exponents.

Information 2024, 15, 815 25 of 36

Argument 4.

1. Let us consider l(k)∗u = H(gwπur(k)u gπu) ∈ β(u, v) in the context of Lemma 2.

2. We substitute unknown exponents a = πu, r = r(k)u and known ga = gπu , gr = gr(k)u .

3. Computing H(gwπur(k)u gπu) is intractable under the CDH assumption.

Argument 5.

1. The adversary can compute
←−
l(k)v̂ = H(gπvr(k)u)gr(k−1)

v ∈ β(u, v) using the knowledge of

πv, gr(k)u , gr(k−1)
v .

2. But πv∄β(u, x), gr(k)u ∄β(u, x), gr(k−1)
v ∄β(u, x).

3. Hence, even though the adversary can compute
←−
l(k)v̂ , knowledge about β(u, x) does

not provide any advantage.

Hence, computing any of the terms in β(u, v) from β(u, x) is intractable under the
CDH assumption, while πu, r(k)u , r(j)

x are unknown exponents.
We have previously noted that terms other than β(u, v) and β(u, x) are not computed

using r(k)u , which is an unknown exponent. Even though there are terms in τ
(k+1)
u that are

computed using r(j)
x , due to DLP assumption, it is intractable to compute r(j)

x from gr(j)
x

or gar(j)
x .
∴, by combining these five arguments, we conclude that due to πu, r(k)u , r(j)

x being
unknown exponents, it is intractable to compute any term of τ

(k)
u using a subset of terms in

τ
(k+1)
u and vice versa.

Theorem 3. Given gπv , πu and two blocks τ
(k)
v̂ , τ(n) = τ

(k+1)
v̂ , computing any term of one block

from a subset of terms in another block is as difficult as the CDH problem.

Proof. We prove this theorem in a similar way. First, we group the terms of the first and
the second block that are computed using r(k)v as β(u, v) and β(y, v).

β(u, v) = {
−→
l(k)v̂ , l(k)vw ,

←−
l(k)u } = {gr(k)v , H(gwr(k)v)ghπvr(k)v , H(gπur(k)v)gr(k−1)

u }

β(y, v) = {c(n)v̂ ,
←−
l(n)v̂ } = {τ(k)

v̂ H
(

gπvr(k)v
)

, H(gπvr(k+1)
u)gr(k)v }

By swapping u and v, we show that all terms in β(y, v) are equivalent to β(u, x).
Hence, given the unknowns πv, r(k)v , r(k+1)

u , computing any of the terms in β(y, v) from
β(u, v) is intractable under the CDH assumption.

∴, computing any term of β(y, v) using at least one term of β(u, v) is intractable under
the CDH assumption.

We now present our arguments to show that the computability of the terms in β(u, v),
from a subset of terms in β(y, v), is also intractable under the CDH assumption.

Let us consider that an adversaryA can compute l(k)vw = H(gwr(k)v)ghπvr(k)v from gπv , gr(k)v ,
gh using oracle B while h, w, πu, r(k)v are unknown exponents.

B(g, gπv , gr(k)v , gw, gh) = H(gwr(k)v)ghπvr(k)v

A can construct algorithm C using B as shown below.

C ⇒ B(g, gπv , g, g, gh) = H(g)ghπv

C(g, gπv , gh)⇒ B(g, gπv , g, g, gh)/H(g) = ghπv

Information 2024, 15, 815 26 of 36

However, πv, h are unknowns and not present in β(y, v). Additionally, gh is also un-
known to the adversary. Hence, computing l(k)vw from β(y, v) is intractable under the
CDH assumption.

The rest of the terms in β(u, v) are equivalent to the terms discussed in the previous
proof. Hence, it is also infeasible to compute them from β(y, v) under the CDH assumption.
Therefore, computing any of the terms in β(u, v) from β(y, v) is intractable under the CDH
assumption, while πv, r(k)v , r(k+1)

u are unknown exponents.
∴, we conclude that due to πu, r(k)v , r(k+1)

u being unknown exponents, it is intractable
to compute any term of τ

(k)
v̂ using a subset of terms in τ

(k+1)
v̂ and vice versa.

Theorem 4. Given gπu and two blocks τ
(k)
u τ(n), deciding whether τ(n) = τ

(k+1)
u is infeasible.

Proof. Previously, while proving Theorem 2, we have grouped the terms of τ
(k)
u and τ

(k+1)
u

that are computed using r(k)u as β(u, v) and β(u, x). To prove this theorem, we re-introduce
these terms.

β(u, v) = {
−→
l(k)u , l(k)∗u ,

←−
l(k)v̂ } = {gr(k)u , H

(
gwπur(k)u gπu

)
, H(gπvr(k)u)gr(k−1)

v }

β(u, x) = {c(k+1)
u ,

←−−−
l(k+1)
u } = {τ(k)

u H
(

gπur(k)u
)

, H(gπur(j)
x)gr(k)u }

In Theorem 2, we prove that computing any term of β(u, v) using one or more terms of
β(u, x), and vice versa, is intractable under the CDH assumption. Here, we show that given
β(u, v), any term in β(u, x) is indistinguishable from the same terms of another block and
vice versa.

Under the assumptions of the Random Oracle model, H(x1) is indistinguishable from
H(x2). Additionally, the inputs and outputs of the hash function H cannot be correlated
by an adversary. Hence, we can rewrite these above-mentioned terms by substituting the
outputs of the hash functions as H1, H2, H3, H4, as mentioned below.

β(u, v) = {
−→
l(k)u , l(k)∗u ,

←−
l(k)v̂ } = {gr(k)u , H1, H2gr(k−1)

v }

β(u, x) = {c(k+1)
u ,

←−−−
l(k+1)
u } = {τ(k)

u H3, H4gr(k)u }

Now, H1, being indistinguishable, cannot provide any advantage to the adversary
for distinguishing one term of β(u, x) from the same term of another block. Additionally,
we note that, now, the β(u, x) does not involve any term related to the passive user Ax.
Therefore, H1, x becomes irrelevant.

We consider β(u)′ to be a set of the same terms from the t′th block in which the same
user, Au, was active. Hence, the terms in β(u)′ are composed of r(t)u ∈R Zp (following

our notation), which is randomly chosen and cannot be correlated with r(k)u or πu. The
challenge for the adversary is to gain a non-negligible advantage in distinguishing between
two sets β(u), β(u)′, given β(u, v), gπu . These sets are shown below.

β(u, v) = {
−→
l(k)u , l(k)∗u ,

←−
l(k)v̂ } = {gr(k)u , H2gr(k−1)

v }

β(u) = {c(k+1)
u ,

←−−−
l(k+1)
u } = {H3τ

(k)
u , H4gr(k)u }

β(u)′ = {c(t)u ,
←−
l(t)u } = {H′3τ

(t)
u , H′4gr(t)u }

Information 2024, 15, 815 27 of 36

∀ ga, gb ∃c ∈ Zp such that gagc = ga+c = gb. Hence, ∀ t, ∃m such that H′4gr(t)u =

(H′4gm)gr(k)u . However, given g, gx it is infeasible to distinguish between αgx, βgx if α, β are
unknowns.

Therefore, given g, gr(k)u it is infeasible to distinguish between H4gr(k)u and H′4gr(t)u when

r(k)u , r(t)u are unknowns, H4, H′4 are also unknowns, and outputs of H are a hash function
following the Random Oracle model.

Similarly, given β(u), it is infeasible to distinguish between β(u, v) and another set

β(u, v)′ = {gr(t)u , H′2gr(m−1)
v } from another block.

∴ Due to the properties of the Random Oracle Hash function and unfeasibility of
computation of the inputs of H, given two blocks τ

(k)
u τ(n), it is infeasible to decide whether

τ(n) = τ
(k+1)
u .

Theorem 5. Given gπv and two blocks τ
(k)
v̂ , τ(n), deciding whether τ(n) = τ

(k+1)
v̂ is infeasible.

Proof. Previously, while proving Theorem 3, we have grouped the terms of τ
(k)
v and τ

(k+1)
v

that are computed using r(k)v as β(u, v) and β(y, v). To prove this theorem, we re-introduce
these terms.

β(u, v) = {
−→
l(k)v̂ , l(k)vw ,

←−
l(k)u } = {gr(k)v , H(gwr(k)v)ghπvr(k)v , H(gπur(k)v)gr(k−1)

u }

β(y, v) = {c(n)v̂ ,
←−
l(n)v̂ } = {τ(k)

v̂ H
(

gπvr(k)v
)

, H(gπvr(k+1)
u)gr(k)v }

By following the same approach as Theorem 4, we substitute the outputs of H.

β(u, v) = {
−→
l(k)v̂ , l(k)vw ,

←−
l(k)u } = {gr(k)v , H1ghπvr(k)v , H2gr(k−1)

u }

β(y, v) = {c(n)v̂ ,
←−
l(n)v̂ } = {τ(k)

v̂ H3, H4gr(k)v }

If we swap u and v, then all terms except H1ghπvr(k)v in β(u, v) and β(y, v) become the same
as the terms in β(u, v), β(u, x) we have previously discussed while proving Theorem 4. In

l(k)vw = H1ghπvr(k)v , the hash value H1 is an output of H, which satisfies the Random Oracle

model. Hence, given H4gr(k)v , it is infeasible to distinguish between H1ghπvr(k)v from any

Hmghπvr(t)x when Hm is output of the Random Oracle and r(t)x is a random number.
∴, due to the properties of the Random Oracle Hash function and unfeasibility of

computation of the inputs of H, given two blocks τ
(k)
v̂ , τ(n) it is infeasible to decide whether

τ(n) = τ
(k+1)
v̂ .

Theorem 6. Given a non-genesis block τ(n) and a public key of a user, the problem of determining
whether that user is involved in this block or not is infeasible.

Proof. The adversary needs a decisional oracle A such that A(gπt , X) ̸= A(gπr , X) ∀r ̸= t
where X ⊂ τ(n). However, previously, we proved in Theorems 4 and 5 that such a decisional
oracle is infeasible unless a computational oracle B exists that can solve the computational
version of the same problem. In the Theorems 2 and 3, we proved that the computational
oracle is as difficult as the CDH problem. Hence, determining whether a user is involved
in a given block as an active or passive user is as difficult as CDH.

Theorem 7. Given that all blocks in the blockchain and a public key gx are associated with a user,
it is not possible to partition the blocks such that one subset contains all the blocks associated with
that user.

Information 2024, 15, 815 28 of 36

Proof. We have already proven that given any random block, deciding whether a user
Ax is involved in that block using the public key gx is infeasible. We have also proven
that even if it is known that a block is associated with user Ax, the problem of deciding
whether any random block is participated in by the same user is infeasible. Hence, even if
the genesis blocks of all users are known to decide the association of that user with any
other block is also infeasible.

Theorem 8. Given a random block, its content cannot be read without compromising the active or
the passive user involved in the block or any supervisor.

Proof. To decrypt the contents of a block, the adversary must interpolate a linear equation
and find out its value for a given x value. However, only one coordinate is visible to

the adversary. To retrieve the other coordinate, the adversary needs to compute gπur(n)u

or gπvr(n+1)
u as shown in Equation (29), which is as difficult as the CDH. Also, under

the Random Model assumption, to compute H2(gπur(n)u) from H(gπur(n)u) or to compute

H2(gπvr(n+1)
u) from H(gπvr(n+1)

u) is considered to be intractable, because both H, H2 are
different cryptographic hash functions.

The adversary can also retrieve the secret by computing g(θ+ϕ)wγx , as shown in Equa-
tion (32). However, neither of gθ , gϕ, gw, gθw, gϕw is known to the adversary because we
consider that the adversary has not compromised a supervisor or the TS. Hence, to construct
that is also intractable.

Theorem 9. Custodian At, who knows that τ
(n)
s is the last block in which user As was active,

cannot construct an access block in which As is active without knowing πs unless the trusted server
is compromised.

Proof. To construct an access block, the custodian needs to communicate with the trusted
server and send (τ

(n)
s , gπsr(n)s , gπs). Although the values of τ

(n)
s and gπs are known by

At, the value of gπsr(n)s must be computed. As At knows τ
(n)
s , the value of gr(n)s is also

known. However, to compute gπsr(n)s from gπs , gr(n)s is as difficult as solving the CDH

problem. Now, let us consider the situation that At sends gxr(n)s to the trusted server where

x ̸= πs. The trusted server computes H
(

gxr(n)s wgπs
)

as shown in Equation (20). This value

is compared with l(n)∗s = H
(

gπsr(n)s wgπs
)

. These two values do not match, and the trusted
server is trusted to follow the protocol. Hence, unless the trusted server is compromised,
the adversary custodian At cannot impersonate As and construct an access block in which
As is active.

5.2. Experimental Evaluation

In Table 3, we have summarized the number of different types of operations that we
need to perform for active and passive traversals over the ledger. We have shown that the
computational overhead of traversal is deterministic. Now, we check the performance of
the system while performing different actions, including traversals.

For testing our proposed model, we have used the Crypto++ library to implement
cryptographic functions in C++. A TCP server using the Boost Asio library was developed
to represent the trusted server. Additionally, a TCP client was created to manage user
private-key operations, as outlined in Table 2. We chose a PostgreSQL database for storing
HD and employed a key-value store for both an event log and indexing purposes. To
evaluate the performance of active or passive traversal, a reader application was developed
that accesses the key-value store using the user’s private key. The architecture of the
implementation is shown in Figure 8. The source code of the implementation is available
online https://github.com/neel/cbtl, accessed on 3 December 2024. We initialize the

https://github.com/neel/cbtl

Information 2024, 15, 815 29 of 36

system with five managers, four supervisors, seven patients, and their genesis records in
the database (We assume that the private keys are securely delivered to the users, as we do
not focus on the key-distribution problem).

Figure 8. Architecture of the implementation.

5.2.1. Insertion Overhead

In the first experiment, we assess the performance of bulk insertion to assess the
influence of the following factors on the performance of insertion.

1. Number of records already associated with the patient.
2. Total number of records in the database.
3. Number of access events in which the data manager was active.

In this experiment, we simulate the initial insertion of medical records by various data
managers into a patient database. Each data manager, denoted as Mi, inserts a specific
number of records for a designated patient Pi. For instance, M0 inserts 10 records for patient
P0, M1 adds 20 records for P1, and similarly, M4 adds 50 records for P4. This is referred to
as “incremental load”, which is depicted using blue columns in Figure 9. We observe that
CPU time consumed for insertion is proportional to the number of records inserted. Prior
to this experiment, there were no existing records or previous access events by these five
data managers, ensuring that past activities do not influence the results of this experiment.
It is also important to note that this represents each manager’s first insertion of data into
the system. At the end of this procedure, the ledger will document a single event for each
manager, highlighting their role as active users during their respective insertions.

P0 P1 P2 P3 P4 P5 P6
0

10

20

30

40

11
.8

9

16
.8

22
.0

9

28
.7

6

34
.4

6

15
.2

4 18
.1

1 20
.8

4 24
.2

4 27
.9

7

18
.7

8

20
.7

9 23
.9

2 26
.9

31
.8

5

11
.6

2

11
.3

4

20
.9

1

14
.2

1

C
PU

ti
m

e
(m

s)

Incremental Load Uniform Load Ledger Overhead (Active) Ledger Overhead (Passive)

Figure 9. Insertion overhead by scenario. The overhead varies based on the number of existing
records and access events associated with a passive user but not on the number of events tied to the
active user performing the insertion.

Information 2024, 15, 815 30 of 36

The experiment is then repeated, with each data manager inserting an identical number
of records (10 records), allowing us to observe performance under uniform input conditions.
This case is referred to as “uniform load”, which is depicted using red columns in Figure 9.
We observe that CPU time consumed for insertion increases even though the number of
records being inserted is identical. This shows that the overhead of insertion depends on
the number of records that are already associated with that patient.

Furthermore, the same manager (M0) inserts an identical number of records (10 records)
for all patients. This allows us to observe the influence of existing access events associated
with an active user on the overhead of the insertion operation. This case is referred to as
“ledger overhead (active)”, which is depicted using brown columns in Figure 9. We observe
that the overhead of insertion of records associated with P5 and P6 is identical even though
the number of access events associated with M0 is not the same before this insert operation.
Hence, the overhead of insertion is not influenced by the number of existing access events
associated with the active user performing the action but by the existing records associated
with that patient.

Lastly, we explore the influence of the number of past access events in which a
patient was a passive participant. We already have 10 records associated with P5 and P6
corresponding to 1 access event related to each of these patients. We now perform the
insertion of another 10 records by manager M0, which implies that there will be a total of
20 records associated with P6. Then, we perform 10 insertion requests, each consisting of a
single record by the same manager M0. At the end of this, we have 20 records associated
with both P5 and P6 but 20 access events associated with P5 while there are only 2 access
events associated with P6. Now we perform the insertion of one record for P5 and one for
P6. This case is referred to as “ledger overhead (passive)”, which is depicted using brown
columns in Figure 9. It is observed that although there is the same number of records
associated with both P5 and P6, the insertion overhead of P6 is less than P5. This is an
expected behavior because the TS performs passive traversal in order to find the last block
associated with the access event. This process is recursive, leading to the differences in our
observation. This overhead can be eliminated by storing the last block of all passive users
in a cache. However, that cache needs to be secured against adversarial access.

5.2.2. Retrieval Overhead

Following several insertion operations in the previous experiment, we now compile a
table (shown in Table 4) detailing the number of records associated with each data manager
and patient pair. In addition, each patient is linked to one genesis record, bringing the
total to 299 records in our database. We also summarize the number of events associated
with different managers and patients in Table 5. Additionally, we have 16 genesis events
(5 managers, 4 supervisors, 7 patients) totaling 46 events in our ledger. To ensure accuracy,
we perform a sanity check on our database and the Redis key-value store to verify that the
total number of records and event blocks match our expectations.

Table 4. Record Insertion Summary.

P0 P1 P2 P3 P4 P5 P6 Total

M0 30 10 10 10 10 21 21 112
M1 0 30 0 0 0 0 0 30
M2 0 0 40 0 0 0 0 40
M3 0 0 0 50 0 0 0 50
M4 0 0 0 0 60 0 0 60

Total 30 40 50 60 70 21 21 292

We then measure the computational overhead of retrieving these records. The data
managers, M0 and M1, represent the extremes in terms of event activity, having executed
the most and the least events, respectively. Our retrieval algorithm is independent of the
retriever. Thus, we anticipate identical computational overhead, regardless of which data

Information 2024, 15, 815 31 of 36

manager retrieves the records of a patient. The retrieval overhead for operations performed
by M0 and M1 across all patients is illustrated in Figure 10. The results clearly demonstrate
that the number of events in which the active user was previously involved does not
influence the overhead of retrieval. Instead, it solely depends on the number of records
associated with a patient.

Table 5. Access event summary.

P0 P1 P2 P3 P4 P5 P6 Total

M0 3 1 1 1 1 12 3 22
M1 0 2 0 0 0 0 0 2
M2 0 0 2 0 0 0 0 2
M3 0 0 0 2 0 0 0 2
M4 0 0 0 0 2 0 0 2

Total 3 3 3 3 3 12 3 30

P0 P1 P2 P3 P4 P5 P6

0

10

20

30

16
.8

7 19
.9

3

23
.5

2 26
.2

3 28
.5

1

21
.1

1

14
.2

517
.6

1 20
.0

7 23
.4

1 26
.5

1 28
.6

6

21
.4

4

14
.5

4

C
PU

Ti
m

e
(m

s)

M0 M1

Figure 10. Retrieval overhead depends on the number of records associated with a patient only.

5.2.3. Traversal Overhead

Following the last experiment, our ledger now includes 7 entries for each of the data
managers, M0 and M1, totaling 14 entries. These entries also involve the 7 patients as
passive users. Currently, our ledger comprises 60 blocks. We have previously noted that
the ledger traversal is an offline process that does not require communication with the
trusted server (TS). Our traversal program directly interacts with the Redis key-value store
to perform these traversals.

We conduct both active and passive traversals through our ledger in forward and
backward directions. We have previously shown that the computational overhead of
backward traversal is more than forward traversal in Table 3. This experiment reconfirms
the expected behavior: the CPU time taken for active forward traversal by M0 through
30 blocks is 20.635 ms, whereas active backward traversal for the same took 44.774 ms.
Similarly, passive forward traversal by patient P5 through 15 blocks required 8.884 ms,
while passive backward traversal took 10.31 ms.

In order to perform this experiment on a larger dataset, we do not necessarily need
a large number of records. Instead, we need a large number of blocks in our ledger. We,
therefore, execute a large number of retrieval operations involving a randomly selected data
manager and patient, which results in 2000 access events. We then select the data manager
and patient with the highest number of events for further active and passive traversal
experiments to measure computational overhead. The results are shown in Figure 11. In

Information 2024, 15, 815 32 of 36

Figure 11a, it is observed that active backward traversal is significantly slower than active
forward traversal. Figure 11b reveals that, although passive backward traversal is also
slower than passive forward traversal, the difference is not as pronounced as in active
traversal. However, both cases confirm that backward traversal consistently incurs higher
computational overhead than forward traversal.

Figure 11. Computational overhead of ledger traversal.

6. Discussion

In the previous section, we assessed the efficiency and performance of the proposed
system, demonstrating its potential for real-world applications. Now, we present a sum-
mary of our findings and interpretations from Section 5. In Section 5.1, we have provided
theoretical evidence to show that our proposed approach is secure against adversarial
access to the storage and the ledger while considering adversaries incapable of solving
CDH and DDH problems as defined in Definitions 1 and 2. First, we have shown that
the storage system is secure unless an adversary has compromised a custodian while also
compromising the trusted server at the same time. We have also shown that the ledger
is secure against adversarial knowledge gains from malicious actors inside or outside the
system. For this, we first show in Theorem 2 that the passive users cannot perform active
traversal without compromising the target data manager. Then, we show in Theorem 3
that the active users cannot perform passive traversal without compromising the target
patient. Based on these two theorems, we show in Theorem 7 that it is difficult to partition
the blocks into subsets associated with a specific actor without gaining access to the cre-
dentials of that specific actor. Hence, given the ledger, an adversary cannot find the set
of blocks belonging to a patient or a data manager. The confidentiality of the contents of
a block is also demonstrated to be safe in Theorem 8. We have also shown that with the
proposed framework, the ledger is safe against impersonation attacks by the data managers
in Theorem 9.

Section 5.2 demonstrates the system’s ability to handle various operations like insertion
and retrieval without significant performance degradation, even as the number of records
grows. This scalability is vital in healthcare settings where data volume can increase rapidly.
For the insertion of health records associated with a patient, our proposed system requires
linear traversals across all records of that patient, contributing to the complexity of O(n),
where n is the number of existing records associated with the patient. Consequently, the
overhead for adding a record varies between patients and increases over time. Therefore,
assessing the anticipated number of records per patient and their growth rate is crucial
for practical implementation. Furthermore, for the creation of a new block in the ledger,

Information 2024, 15, 815 33 of 36

the TS needs to find out the last block associated with the passive user who is not actively
participating in the access event. In our implementation, the TS performs traversal from
the genesis block to the last block associated with the passive user in order to fetch the ID
of the last block. This leads to the complexity of O(n), where n is the number of existing
blocks associated with that patient. This overhead can be mitigated if the IDs of the last
block of each user are cached in server memory. However, storing additional information
requires secured access, presenting a trade-off between safety and performance. A practical
application of our proposed system must carefully evaluate these design choices to balance
efficiency and security effectively.

However, the system’s reliance on a centralized trusted server (TS) poses potential
risks, such as single points of failure or targeted attacks. While the paper mentions the
use of a semi-honest model for the TS, suggesting that it operates correctly under normal
circumstances but could be curious or malicious, this model may not sufficiently mitigate
all potential internal threats. Future enhancements could include decentralized approaches
or additional checks within the system to further reduce these risks. Additionally, in this
paper, we do not discuss adding or removing a new data manager or a new supervisor,
which could be necessary for real-world implementation. Therefore, in the next section, we
discuss the limitations of our proposed approach.

6.1. Limitations

Despite the advancements offered by the proposed system, there are inherent lim-
itations that could affect its effectiveness and security. These limitations are crucial for
understanding the potential vulnerabilities and areas for future improvement. Here, we
outline some of the primary challenges and limitations that warrant consideration.

Re-Identification Attacks: In Theorem 1, we have shown that adversarial access to
sensitive information may not lead to the identification of the patient unless the adversary
can solve the CDH problem. However, this work does not focus on a re-identification
attack, which is possible for a polynomial adversary. There have been various works on
protection against such attacks, which can be employed along with this work in order
to improve the security of the system. The existing solutions that have been proposed
to solve re-identification attacks include but are not limited to the anonymization and
encryption of sensitive information. Anonymization, as discussed in Section 2, may lead to
the degradation of data quality, which may be problematic for the internal researchers of
healthcare registries such as cancer registries. On the other hand, the encryption of sensitive
information adds computational overheads that internal researchers may encounter while
decrypting. Moreover, the effectiveness of techniques such as encryption depends heavily
on the overall design and integration of the system.

Interaction with Manipulated TS: In Theorem 1, we demonstrate that compromising
the trusted server (TS) does not facilitate the adversarial identification of sensitive infor-
mation, as secrets θ or gθ are not stored but recomputed during each interaction with an
active user, according to the RSI protocol described in Section 4.3. However, this work does
not account for a scenario where the TS is replaced by a malicious version that retains the
recomputed secrets for malicious purposes because this violates the initial assumptions
on the trusted server. Such an event would compromise the trustworthiness of the TS,
posing a significant security risk. Potential attack vectors could include DNS spoofing,
installation of backdoors, or exploitation by advanced persistent threats (APTs). This work
does not address this limitation; future research should explore the integration of additional
defensive measures against such attacks.

Quantum Adversary: Although we have demonstrated the strength of our pro-
posed scheme in Section 5.1.3, the entries in the ledger are not immune from adver-
sarial attacks from a quantum adversary. Because our paper depends on the assump-
tions of Diffie–Hellman, a quantum computer can efficiently compute discrete logarithms,
thus breaking that assumption. However, there have been many recent works on post-

Information 2024, 15, 815 34 of 36

quantum cryptography, which can be incorporated for long-term protection against such
strong adversaries.

7. Conclusions

In this paper, we have proposed a secure, responsible, privacy-preserving document-
storage and -retrieval technique. The solution can be used for different business processes
other than healthcare. Even in healthcare, the applications of such systems are not limited
to health registries. However, a generalized use case may involve more than two users in
one event.

Our proposed solution adds a constant time-storage overhead with each medical
record, which is three integer values of encryption bit length. Additionally, each event block
consists of eight integers for traversability, three of which are for the active user and another
three for the passive user. The size of the signature and block ID may vary depending on
the signature algorithm and platform usage. It also requires maintaining an offchain index
that will have two entries for each block. Future research works may investigate whether it
is possible to accomplish the same objective with less storage overhead.

Our proposed system considers the trusted server as the only writer, whereas the other
users of the system are readers. However, if multiple registries participate in the system,
then there will be multiple writers. The only mechanism of verification in our proposed
system is a checksum and signature verification. The traversability of the blocks in the
blockchain cannot be verified by any entity because then that entity will also be able to
partition the blockchain into blocks associated with one particular user or the other. Also,
the verifier will be able to understand the sequence of events associated with any user
inside the system. This prompts another important problem that future work may address.

Author Contributions: Conceptualization, S.B. and D.M.; methodology, S.B.; formal analysis, S.B.;
writing and editing, S.B. and D.M. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the Research Council of Norway, grant number 288106.

Institutional Review Board Statement: Not applicable

Informed Consent Statement: Not applicable

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Acknowledgments: This article is a revised and expanded version of a paper entitled Secure
Traversable Event Logging for Responsible Identification of Vertically Partitioned Health Data,
which was presented at TrustCom, Exeter, UK, and 2023. This work is supported by the Research
Council of Norway, grant number 288106. We also acknowledge Jan F. Nygård from the Cancer
Registry of Norway (CRN) for discussing the internal operations of CRN regarding this problem.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Chatterjee , S.; Chattopadhyay, A.; Senapati, S.N.; Samanta, D.R.; Elliott, L.; Loomis, D.; Mery, L.; Panigrahi, P. Cancer

registration in India—Current scenario and future perspectives. Asian Pac. J. Cancer Prev. 2016, 17, 3687–3696. Available online:
https://pubmed.ncbi.nlm.nih.gov/27644602/ (accessed on 8 December 2024).

2. Laugesen, K.; Ludvigsson, J.F.; Schmidt, M.; Gissler, M.; Valdimarsdottir, U.A.; Lunde, A.; Sørensen, H.T. Nordic health
registry-based research: A review of health care systems and key registries. Clin. Epidemiol. 2021, 13, 533–554. [CrossRef]

3. Bouchardy, C.; Rapiti, E.; Benhamou, S. Cancer registries can provide evidence-based data to improve quality of care and prevent
cancer deaths. Ecancermedicalscience 2014, 8, 413. [CrossRef]

4. Pukkala, E.; Engholm, G.; Højsgaard Schmidt, L.K.; Storm, H.; Khan, S.; Lambe, M.; Pettersson, D.; Ólafsdóttir, E.; Tryggvadóttir,
L.; Hakanen, T.; et al. Nordic Cancer Registries–an overview of their procedures and data comparability. Acta Oncol. 2018,
57, 440–455. [CrossRef] [PubMed]

https://pubmed.ncbi.nlm.nih.gov/27644602/
http://doi.org/10.2147/CLEP.S314959
http://dx.doi.org/10.3332/ecancer.2014.413
http://dx.doi.org/10.1080/0284186X.2017.1407039
http://www.ncbi.nlm.nih.gov/pubmed/29226751

Information 2024, 15, 815 35 of 36

5. Chaudhry, K.; Luthra, U.K. Cancer Registration in India. Cancer 2002 , 14–26. Available online: https://mohfw.gov.in/sites/
default/files/Cancer%20Registration%20In%20India.pdf (accessed on 8 December 2024).

6. Bose, S.; Marijan, D. Secure Traversable Event logging for Responsible Identification of Vertically Partitioned Health Data. In
Proceedings of the IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom),
Exeter, UK, 1–3 November 2023; IEEE: Piscataway, NJ, USA, 2023. [CrossRef]

7. Bose, S.; Marijan, D. A Survey on Privacy of Health Data Lifecycle: A Taxonomy, Review, and Future Directions. arXiv 2023. .
[CrossRef]

8. Xia, Q.; Sifah, E.B.; Asamoah, K.O.; Gao, J.; Du, X.; Guizani, M. MeDShare: Trust-less Medical Data Sharing Among. IEEE Access
2017, 5, 14757–14767. [CrossRef]

9. Gajanayake, R.; Iannella, R.; Sahama, T. Privacy oriented access control for electronic health records. Electron. J. Health Inform.
2014, 8 , e15. Available online: https://eprints.qut.edu.au/63620/ (accessed on 8 December 2024).

10. Thummavet, P.; Vasupongayya, S. A novel personal health record system for handling emergency situations. In Proceedings of
the 2013 International Computer Science and Engineering Conference, ICSEC 2013, Nakhonpathom, Thailand, 4–6 September
2013; pp. 266–271. [CrossRef]

11. Jose, J.T.; Anju, S. Threshold Cryptography Based Secure Access Control for Electronic Medical Record in an Intensive Care Unit.
Int. J. Eng. Res. Technol. (IJERT) 2013, 2, 457–464.

12. Eskeland, S.; Oleshchuk, V.A. EPR Access Authorization of Medical Teams Based on Patient Consent; Gesellschaft für Informatik e.
V: Bonn, Germany, 2007; Volume P-118, pp. 11–21. Available online: https://subs.emis.de/LNI/Proceedings/Proceedings118
/article1928.html (accessed on 8 December 2024).

13. Shamir, A. How to share a secret. Commun. ACM 1979, 22, 11. [CrossRef]
14. Yuliana, M.; Darwito, H.A.; Sudarsono, A.; Yofie, G. Privacy and security of sharing referral medical record for health care system.

In Proceedings of the Proceeding—2016 2nd International Conference on Science in Information Technology, ICSITech 2016:
Information Science for Green Society and Environment, Balikpapan, Indonesia, 26–27 October 2016; pp. 232–237. [CrossRef]

15. Sudarsono, A.; Yuliana, M.; Darwito, H.A. A secure data sharing using identity-based encryption scheme for e-healthcare
system. In Proceedings of the Proceeding—2017 3rd International Conference on Science in Information Technology: Theory and
Application of IT for Education, Industry and Society in Big Data Era, ICSITech 2017, Bandung, Indonesia, 25–26 October 2017;
pp. 429–434. [CrossRef]

16. Liu, J.; Li, X.; Ye, L.; Zhang, H.; Du, X.; Guizani, M. BPDS: A Blockchain Based Privacy-Preserving Data Sharing for Electronic
Medical Records. In Proceedings of the 2018 IEEE Global Communications Conference, GLOBECOM 2018—Proceedings, Abu
Dhabi, United Arab Emirates, 9–13 December 2018. [CrossRef]

17. Ge, C.; Yin, C.; Liu, Z.; Fang, L.; Zhu, J.; Ling, H. A privacy preserve big data analysis system for wearable wireless sensor
network. Comput. Secur. 2020, 96, 101887. [CrossRef]

18. Yang, J.J.; Li, J.Q.; Niu, Y. A hybrid solution for privacy preserving medical data sharing in the cloud environment. Future Gener.
Comput. Syst. 2015, 43–44, 74–86. [CrossRef]

19. Domadiya, N.; Rao, U.P. Improving healthcare services using source anonymous scheme with privacy preserving distributed
healthcare data collection and mining scheme with privacy preserving distributed healthcare data. Computing 2021, 103, 155–177.
[CrossRef]

20. Li, H.; Guo, F.; Zhang, W.; Wang, J.; Xing, J. (a,k)-Anonymous Scheme for Privacy-Preserving Data Collection in IoT-based
Healthcare Services Systems. J. Med. Syst. 2018, 42, 56. [CrossRef] [PubMed]

21. Machanavajjhala, A.; Gehrke, J.; Kifer, D.; Venkitasubramaniam, M. L-diversity: Privacy beyond k-anonymity. In Proceedings of
the 22nd International Conference on Data Engineering (ICDE’06), Atlanta, GA, USA, 3–7 April 2006; IEEE: Piscataway, NJ, USA,
2006; p. 24. [CrossRef]

22. Li, N. t-Closeness: Privacy Beyond k-Anonymity and l-Diversity. In Proceedings of the 2007 IEEE 23rd International
Conference on Data Engineering, Istanbul, Turkey, 15 April 2006–20 April 2007; pp. 106–115. Available online: https:
//ieeexplore.ieee.org/document/4221659 (accessed on 8 December 2024).

23. Oh, S.R.; Seo, Y.D.; Lee, E.; Kim, Y.G. A comprehensive survey on security and privacy for electronic health data. Int. J. Environ.
Res. Public Health 2021, 18, 9668. [CrossRef]

24. Huang, H.; Zhu, P.; Xiao, F.; Sun, X.; Huang, Q. A blockchain-based scheme for privacy-preserving and secure sharing of medical
data. Comput. Secur. 2020, 99, 102010. [CrossRef]

25. Tian, H.; He, J.; Ding, Y. Medical Data Management on Blockchain with Privacy. J. Med. Syst. 2019, 43, 26. [CrossRef] [PubMed]
26. Panko, R. Mobile App Usage Statistics 2018. Available online: https://themanifest.com/app-development/blog/mobile-app-

usage-statistics (accessed on 8 December 2024).
27. Dennis, R.; Disso, J.P. An Analysis into the Scalability of Bitcoin and Ethereum. In Proceedings of the Third International Congress on

Information and Communication Technology; Yang, X.S., Sherratt, S., Dey, N., Joshi, A., Eds.; Springer: Singapore, 2019; pp. 619–627.
28. Diffie, W.; Hellman, M. New directions in cryptography. IEEE Trans. Inf. Theory 1976, 22, 644–654. [CrossRef]
29. Biham, E.; Boneh, D.; Reingold, O. Breaking generalized Diffie-Hellman modulo a composite is no easier than factoring. Inf.

Process. Lett. 1999, 70, 83–87. [CrossRef]

https://mohfw.gov.in/sites/default/files/Cancer%20Registration%20In%20India.pdf
https://mohfw.gov.in/sites/default/files/Cancer%20Registration%20In%20India.pdf
http://dx.doi.org/10.1109/TrustCom60117.2023.00213
http://dx.doi.org/10.48550/arXiv.2311.05404
http://dx.doi.org/10.1109/ACCESS.2017.2730843
https://eprints.qut.edu.au/63620/
http://dx.doi.org/10.1109/ICSEC.2013.6694791
https://subs.emis.de/LNI/Proceedings/Proceedings118/article1928.html
https://subs.emis.de/LNI/Proceedings/Proceedings118/article1928.html
http://dx.doi.org/10.1145/359168.359176
http://dx.doi.org/10.1109/ICSITech.2016.7852639
http://dx.doi.org/10.1109/ICSITech.2017.8257151
http://dx.doi.org/10.1109/GLOCOM.2018.8647713
http://dx.doi.org/10.1016/j.cose.2020.101887
http://dx.doi.org/10.1016/j.future.2014.06.004
http://dx.doi.org/10.1007/s00607-020-00847-0
http://dx.doi.org/10.1007/s10916-018-0896-7
http://www.ncbi.nlm.nih.gov/pubmed/29445952
http://dx.doi.org/10.1109/ICDE.2006.1
https://ieeexplore.ieee.org/document/4221659
https://ieeexplore.ieee.org/document/4221659
http://dx.doi.org/10.3390/ijerph18189668
http://dx.doi.org/10.1016/j.cose.2020.102010
http://dx.doi.org/10.1007/s10916-018-1144-x
http://www.ncbi.nlm.nih.gov/pubmed/30603816
https://themanifest.com/app-development/blog/mobile-app-usage-statistics
https://themanifest.com/app-development/blog/mobile-app-usage-statistics
http://dx.doi.org/10.1109/TIT.1976.1055638
http://dx.doi.org/10.1016/S0020-0190(99)00047-2

Information 2024, 15, 815 36 of 36

30. Bresson, E.; Chevassut, O.; Pointcheval, D. Provably Authenticated Group Diffie-Hellman Key Exchange—The Dynamic Case. In
Advances in Cryptology—ASIACRYPT 2001; Springer: Berlin/Heidelberg, Germany, 2001; pp. 290–309. [CrossRef]

31. Al-Kuwari, S.; Davenport, J.H.; Bradford, R.J. Cryptographic Hash Functions: Recent Design Trends and Security Notions.
Cryptol. ePrint Arch. 2011. Paper 2011/565. Available online: https://eprint.iacr.org/2011/565 (accessed on 8 December 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/3-540-45682-1_18
https://eprint.iacr.org/2011/565

	Introduction
	Related Work
	Problem Definition
	Storage Requirements
	Traversability Requirements
	Challenges

	Secure Ledger
	Securely Identifiable Vertical Partitioning
	Ledger Formulation
	Block Address
	Active Component
	Passive Component
	Genesis Blocks

	Sensitive Information Request
	Encrypting Block Contents

	Evaluation
	Adversarial Evaluation
	Adversarial Model
	Adversarial Attacks on Storage
	Adversarial Attacks on Ledger

	Experimental Evaluation
	Insertion Overhead
	Retrieval Overhead
	Traversal Overhead

	Discussion
	Limitations

	Conclusions
	References

