
Citation: Bulla, L.; Midolo, A.;

Mongiovì, M.; Tramontana, E.

EX-CODE: A Robust and Explainable

Model to Detect AI-Generated Code.

Information 2024, 15, 819. https://

doi.org/10.3390/info15120819

Academic Editor: Rodolfo Delmonte

Received: 20 November 2024

Revised: 13 December 2024

Accepted: 15 December 2024

Published: 20 December 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

EX-CODE: A Robust and Explainable Model to Detect
AI-Generated Code
Luana Bulla , Alessandro Midolo , Misael Mongiovì and Emiliano Tramontana *

Dipartimento di Matematica e Informatica, University of Catania, 95125 Catania, Italy;
luana.bulla@phd.unict.it (L.B.); alessandro.midolo@unict.it (A.M.); misael.mongiovi@unict.it (M.M.)
* Correspondence: tramontana@dmi.unict.it; Tel.: +39-095-7383008

Abstract: Distinguishing whether some code portions were implemented by humans or generated
by a tool based on artificial intelligence has become hard. However, such a classification would
be important as it could point developers towards some further validation for the produced code.
Additionally, it holds significant importance in security, legal contexts, and educational settings,
where upholding academic integrity is of utmost importance. We present EX-CODE, a novel and
explainable model that leverages the probability of the occurrence of some tokens, within a code
snippet, estimated according to a language model, to distinguish human-written from AI-generated
code. EX-CODE has been evaluated on a heterogeneous real-world dataset and stands out for its
ability to provide human-understandable explanations of its outcomes. It achieves this by uncovering
the features that for a snippet of code make it classified as human-written code (or AI-generated code).

Keywords: ChatGPT; code classification; CodeBERT; explainability; XAI

1. Introduction

The last few years have witnessed a significant increase in the use of artificial intelli-
gence (AI) to assist software developers. Large language models (LLMs) have shown to be
very effective in generating code snippets, resulting in a growing interest in the integration
of AI-based tools in development environments [1]. However, recent studies have unveiled
some limits for AI-generated code and highlighted the need for prudence in employing AI
tools in the development process [2,3], e.g., AI-generated code was shown to have more
vulnerabilities than human-produced code [4].

Identifying AI-generated code snippets can help prioritise code reviews to ensure code
quality. For this, an automatic solution determining the origin of code snippets becomes
a priority. For assisting the detection of AI-generated code, the proposed approach has
been specifically devised to use standard transformer architectures for supervised text
classification. Although detectors for AI-generated text exist, such approaches exhibit
low performance on code-related tasks compared to natural language processing [5–9].
Moreover, while some previous app assessed the probability that a text (or code) was
AI-generated, they cannot explain the outcome, hence making it hard for the user to
interpret the result and therefore diminishing the confidence of the user in the provided
assessment [10–12].

Providing explanations for the outcomes of AI-based systems is a desirable property [13].
Explanations help users understand the system’s model, maintain it, and use it effectively.
They also assist users in debugging the model to prevent and rectify incorrect conclusions [14].
Furthermore, explainable models have been shown to increase user trust and situation
awareness [15]. In contrast, many machine learning (ML) systems are black-box models that
do not reveal the reason for some results, making them difficult for humans to understand
and assess. This is due to a trade-off between the model’s performance and its explainabil-
ity [16]. Previous studies have primarily focused on improving system performance, often
neglecting transparency [10,17].

Information 2024, 15, 819. https://doi.org/10.3390/info15120819 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info15120819
https://doi.org/10.3390/info15120819
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0003-1165-853X
https://orcid.org/0000-0002-9575-8054
https://orcid.org/0000-0003-0528-5490
https://orcid.org/0000-0002-7169-659X
https://doi.org/10.3390/info15120819
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info15120819?type=check_update&version=1

Information 2024, 15, 819 2 of 17

In light of these considerations, we present the Explainable Code Detection (EX-CODE)
system, an innovative model that leverages the inherent statistical properties of code to
distinguish between human-written and AI-generated snippets. EX-CODE leverages token
probabilities originated from CodeBert [18], a pre-trained language model specifically
designed for code analysis, to extract meaningful features. Such features capture key
characteristics of source code, including variable naming conventions, code control flow
structures, and function usage patterns. The extracted features are then aggregated and
used to train a logistic regression model for classifying code snippets either as human-
written or AI-generated. To test our approach, we introduce the CodeMix dataset, a novel
resource consisting of 518 real-world Java code snippets paired with their corresponding
AI-generated versions. CodeMix aims to bridge the gap between existing datasets and
real-world scenarios, fostering the development of more robust and generalisable AI code-
classification models.

EX-CODE’s strength lies in its ability to adhere to the principles of explainable artificial
intelligence (XAI) by providing insights into its classification process. Besides classifying
code snippets as AI-generated or human-written, it highlights the most influential factors
for the provided classification outcome. This breakdown helps users understand the
specific code constructs that impact the model’s reasoning, driving trust and user adoption.

The main contribution of this paper can be summarised as follows.

• We present EX-CODE, a novel model that leverages inherent statistical code properties
for accurately distinguishing between human-written and AI-generated code snippets.

• EX-CODE adheres to XAI principles, providing insights into its classification process.
It can categorise code snippets and underline the most influential factors for each
provided classification result, fostering trust and user adoption.

• To advance AI-generated code detection research, we introduce the CodeMix dataset,
which consists of 518 pairs of real-world Java code snippets and corresponding AI-
generated versions. CodeMix aims to address existing resource limitations by incor-
porating real-world scenarios and advancing research into robust and generalisable
AI-generated code detection models.

The paper is organised as follows. Section 2 provides an overview of the current
state-of-the-art methods for AI-generated code detection, highlighting the advantages and
limitations of existing approaches. Section 3 details our EX-CODE model, explaining its
components and functionalities. Section 4 introduces the novel CodeMix dataset specifically
designed for AI-generated code detection research. Section 5 presents the experimental
setting and EX-CODE model results, and shows the assessment of the impact of each
feature and the explainability of the model. Section 6 discusses key findings from the
previous sections, exploring the significance of the model’s outcomes and providing useful
insights. Section 7 draws our conclusions.

2. Related Works

AI-generated content has become increasingly popular arousing widespread interest
across several domains in the scientific community. Notably, AI-generated content detection
has been tackled by numerous researchers. However, detecting AI-generated code remains
an ongoing challenge with relatively little work in this area. This task is considered more
challenging than the task of detecting AI-generated text due to the inherent complexity of
code syntax. Unlike a natural language, which can exhibit a degree of variability while
maintaining coherence, code must adhere strictly to syntactic rules [19].

One such effort, GPTSniffer [10], introduced an ML-based approach to distinguish
whether a portion of code was generated by ChatGPT. The approach consisted of the
fine-tuning of CodeBERT [18], a BERT model pre-trained on code snippets, for this specific
task, by using a hybrid dataset of AI and human-generated code. Although the results indi-
cated high accuracy on code snippets from the same training source, the model exhibited
diminished accuracy when confronted with code from other sources.

Information 2024, 15, 819 3 of 17

This highlights that the model tends to overfit the training set, showing limited
generalisability. Furthermore, the lack of transparency in the classification process, as an
outcome is made solely by CodeBERT without elucidating contributing factors, underscores
the need for improved explainability. Conversely, our approach aims at expressing the
reasons for the given outcome, hence highlighting the code portion that most significantly
influences the outcome.

DetectCodeGPT [17] is a zero-shot method to detect AI-generated code. Such a model
used stylistic tokens, such as white spaces or newline characters, automatically inserted
into the source code, to distinguish between human and AI patterns. The analysis of
such patterns allowed the model to effectively reveal whether a code fragment was AI-
generated. This model showed higher accuracy than GPTSniffer; however, it can take as
the input a maximum length of 512 tokens per analysed code, significantly reducing its
applicability on different domains. Additionally, the outcomes lack explanations, provid-
ing users with a black-box decision process. Similarly, DetectGPT4Code [20] explores a
training-free method for identifying code generated by large language models, such as
GPT-4 and GPT-3.5. Traditional text detection methods fail on code because of its unique
statistical patterns. Although these approaches emphasize performance improvements in
distinguishing between human-written code and AI-generated code, they lack mechanisms
for providing insight into the basis of their detections. In contrast, our method offers a
comprehensive report that highlights the specific code segments most influential in the
detection process, thereby enhancing explainability and transparency.

Other strategies used watermarking techniques: the embedding of unique markers
into the code [19,21,22]. By detecting these markers, machine-generated code can be identi-
fied; however, marker embedding requires changing the generation model, which is not
always possible. Therefore, such approaches are mostly useful to address concerns related
to code licensing and plagiarism. Additionally, watermarking may not be compatible
with all programming languages, potentially causing syntax errors. The effectiveness
of detection is further compromised if markers can be easily altered or removed during
code optimisation or refactoring. Lastly, watermarking can introduce performance over-
head, which may be undesirable in production environments, leading to a preference for
alternative detection strategies.

A straightforward application of machine-generated text detection to code was inves-
tigated by Pan et al. [9], who conducted an empirical study to evaluate the performance
of text AI-detectors on source code snippets. The observed disparities between natural
language and programming language led to a diminished detection rate, highlighting the
necessity for specialised models tailored to detect machine-generated code.

One of the leading text AI-detectors is GPTZero [5], a tool that checks whether a
document was written by an LLM. Similarly, some approaches use perturbation techniques
with a zero-shot method [6,7,23] to alter the text by randomly masking some of its portions
and then recover it using a different LLM. Nevertheless, the perturbation procedure is both
time- and resource-expensive.

Several training-based methods were proposed [8,24,25] to detect machine-generated
text by accurately training models to this specific task, showing good performances in
in-distribution scenarios. Nonetheless, these approaches often suffer from limited generali-
sation capabilities, requiring access to the training data of the target model, which are not
always available.

In [26], the authors proposed the Distribution-Aligned LLMs Detection framework
to improve the detection of AI-generated text in black-box settings, where internal model
details are unavailable. Yang et al. [27] introduced a training-free method for identifying
GPT-generated text. The approach, called Divergent N-Gram Analysis (DNA-GPT), takes
advantage of the differences in how humans and machines produce text.

Information 2024, 15, 819 4 of 17

In general, the approaches for natural language text discussed above show poor
performance in machine-generated code detection [9,10]. This may stem from the fact that
these models were trained on natural language texts, which are significantly different from
programming language data, which follow strict rules and conventions. Consequently,
these models may struggle to adapt to the distinct linguistic patterns inherent in code. Wang
et al. [28] endeavoured to address this limitation by fine-tuning some of these models within
specific code domains, achieving a significant improvement in performance. However,
their findings also revealed a propensity for low generalisation when tested on data outside
their training distribution, a challenge shared by GPTSniffer.

3. Proposed Approach

Our approach relies on the ability of LLMs to estimate the likelihood of a token occur-
rence based on contextual information from a specific training corpus. Generative models
leverage this ability to generate content token by token, sampling each one according to the
model’s probability estimation, conditioned to the previous sequence of tokens. Drawing
from this, we estimate the probability of a fragment of text by aggregating the probabilities
assigned to its individual tokens. Hence, a model trained on human-written code would
tend to assign higher probabilities to tokens corresponding to code implemented by a
human compared to an AI-generated code. In contrast, an AI-model generating code
follows a training process that includes a careful selection of sources and subsequent tuning
steps, e.g., Reinforcement Learning from Human Feedback (RLHF) [29]. As a result, the
probabilities of a sequence of tokens estimated by a model trained on human-written code
tend to diverge when applied to AI-generated code.

Figure 1 shows the overall architecture of our classifier. It takes as input a code snippet
and returns the probability that this snippet was created by AI or human. The three
main parts are (1) probability estimation, (2) feature extraction, and (3) logistic regression.
We discuss the first part in Section 3.1, outlining a strategy for using CodeBERT [18],
a BERT-based model fine-tuned for code, to estimate the probability of each token in
the analysed code snippet. Section 3.2 reports the second part of our architecture, where
probabilities computed in the first part are separated into four groups, representing different
aspects of code structure and composition. The last part of our architecture, detailed in
Section 3.3, employs logistic regression on the previously extracted features to perform
a binary classification task (AI vs. human). Logistic regression models the probability
distribution of the output classes by applying a logistic function to a linear combination
of the input features. The outcome of logistic regression is inherently explainable since its
dependence on the input features is naturally described by the sign and magnitude of the
learned coefficients.

3.1. Probability Estimation

Language models estimate the probability of a sequence of tokens by multiplying the
conditional probabilities of each token given the previous ones in the sequence. This is a
key aspect of how transformer decoders work (e.g., GPT [30]), which are based on unidi-
rectional self-attention. However, popular medium-size language models that are capable
of handling code are based on bidirectional encoder architectures, such as BERT [31]. We
exclude more sophisticated and opaque LLMs (e.g., LLama2, Mistral and GPT-3.5) [32–34]
since we do not have control over their training methodology [35], and likely their gen-
eration process diverges from the human one due to sophisticated input data selection
strategies and other fine-tuning steps, e.g., RLHF. As a result, such models cannot be
directly used for the task of estimating the probability of token sequences, as they are not
designed for unidirectional, autoregressive generation.

Information 2024, 15, 819 5 of 17

Figure 1. The proposed classifier, when a code fragment is given as input, follows a three-stage
process: (1) token probability estimation, (2) feature extraction, and (3) logistic regression. Then, it
determines whether the code was human-written or AI-generated.

We adopted CodeBERT, a BERT-based model [31], pre-trained on the CodeSearch-
Net dataset [36], that encompasses both natural language and programming languages.
More specifically, we employed the Masked Language Modeling (MLM) technique and
trained CodeBERT (https://huggingface.co/microsoft/codebert-base-mlm, accessed on
4 November 2024) using an MLM objective where certain tokens in the input sequence
were substituted by gaps (special “<mask>” tokens), and the goal was to determine the
original tokens based on the surrounding context. We employed this model for token prob-
ability estimation by adopting a unidirectional approach that replaces one token at a time
by <mask> and considered the probability distribution estimated on the corresponding
token [37]. Our probability computation was performed sequentially. We processed a token
of the input code snippet at a time and extracted the probability returned by the model
for that token, indicating the likelihood of the specified token being in that exact position
considering the context of the code.

Algorithm 1 outlines all the steps involved in the generative unidirectional approach.
A snippet of code is the input of the procedure. The first step is to apply the tokeniser to the
code and initialise the sequence list that will be passed to the model and the probs list that
will contain all the probabilities extracted from each token. Next, for each token derived
from the tokeniser applied to the input code, the following procedure is executed: firstly,
the size of the sequence is checked since CodeBERT takes as input a maximum number of
512 tokens. When the sequence exceeds this limit, we shift the whole sequence to the left to
remove older tokens and make room for new tokens. Secondly, the <mask> token is added
to the sequence, which is then passed as input to the run_model function. This function
executes the model and returns the probability of the actual token t passed as a second
parameter, which is added to the probs list. Finally, the <mask> token in the sequence is
replaced with the actual token to prepare the sequence for the next step.

https://huggingface.co/microsoft/codebert-base-mlm

Information 2024, 15, 819 6 of 17

Algorithm 1 Generative unidirectional probability estimation

Require: code ̸= null
tokens← tokenizer(code)
sequence← []
probs← []
for t in tokens do

if sequence.size ≥ 512 then
sequence← shi f t_to_le f t(sequence)

end if
prob← run_model(sequence + <mask>, t)
probs.append(prob)
sequence.append(t)

end for

3.2. Feature Extraction

The source code inherently carries a wealth of information aimed at controlling the
execution of specific tasks, while also aiding humans comprehend its behaviour and
structure. This information encompasses all the parts that constitute source code, including
indentation [38], naming conventions [39], comments [40] and instructions [41]. Such
parts, while making the source code unique, also highlight the style and the experience of
its developer.

To systematically characterise source code based on its structure and content, we
group tokens into four distinct sets. We defineN as the set of Names, Σ as the set of Special
Tokens, Γ as the set of Comments, and P as the set of all remaining tokens (Others), each
having the following meaning.

• N contains all the tokens that are identifiers used in the input code for classes, methods
and variables. Such names were extracted beforehand using a parser, which was
Javaparser [42] in our case, as it provides support to inspect the source code and collect
relevant data.

• Σ represents all tokens associated with indentation, including spaces, new lines, tabs,
and curly brackets. Such data can increase the comprehension of the program and
define the programming style of the code.

• Γ contains all the tokens that are comments found in the source code, both single-
line and multi-line ones, e.g., we have selected all the strings located after the “//”
symbol or enclosed within “/* */” symbols, since the analysed code is in Java pro-
gramming language.

• P collects all the remaining tokens inside the source code, such as Java language
keywords (i.e., if, for, while, etc.), numbers, strings, the names of types provided in
the standard Java library, round and square brackets, and punctuation.

Once the four sets of tokens in the source code were passed to the model to determine
the probability for each token in the set, an aggregation function was applied to each set to
consolidate all the probabilities for the tokens belonging to the same set into a single feature.

We have used three different aggregation functions: sum, avg, scaled_sum, defined
as follows.

sum(S) = ∑
t∈S

p(t) (1)

avg(S) = ∑t∈S p(t)
n

(2)

scaled_sum(S) = ∑t∈S p(t)√
n

(3)

where p(t) is the probability associated with token t, and S is one among the previously
defined set of tokens N , Σ, Γ or P.

Information 2024, 15, 819 7 of 17

Each function above gives a score. The obtained scores represent three single features
of the source code, and they are applied to each of the four token sets. This results in a
total of twelve scores, each representing a different facet of the code’s composition and
semantics in relation to the CodeBERT model. These scores collectively identify the code as
unique based on its characteristics.

3.3. Logistic Regression

The classification task was performed through logistic regression (LR), a statistical
method commonly used for binary classification. LR leverages a set of predictor variables to
predict the presence or absence of a particular outcome or characteristic [43]. Unlike linear
regression, it is more suitable for models where the dependent variable is dichotomous [44].
The logistic function was defined as:

P(Y = 1|X) =
1

1 + e−(β0+β1X1+β2X2+...+βnXn)

where P(Y = 1|X) is the probability of the dependent variable being labelled as 1 given the
values of the independent variables; thus, β0, β1, . . . , βn are the coefficients of the model
and X1, X2, . . . , Xn are the values of the independent variables.

In our model, the dependent variable distinguishes between “human” and “AI”,
indicating which category the classified code snippet most likely belongs to, where 1 is AI
and 0 is human. The independent variables consist of the twelve features extracted by the
previous step (Section 3.2).

An empty Comment (Γ) set, which would result when the analysed code has no
comments, could significantly impact analyses, leading to biased estimates of the inves-
tigated associations [45]. To address this issue, we have replaced all missing values with
the average value of the respective class, e.g., a human-written code without comments
would have the average value of comments features assigned. Assigning the average value
allows us to mitigate the impact of missing values while maintaining balanced values of
the features for the code with comments. Since this approach standardises the feature
according to the same class distribution, we add a binary feature called “Comment”, which
is set to 0 if the source code does not present any comments, and 1 otherwise. This prevents
the risk that the LR treats the code snippets without comments in the same manner as those
with comments.

The coefficients β were estimated using maximum likelihood estimation, typically
by minimising the negative log-likelihood function. Once the coefficients were estimated,
the model could be used to predict the probability of the outcome for new data. These
coefficients represent the weight that each independent variable, i.e., the feature, contributes
to the final prediction. Analysing these coefficients provides insights into which features
have a major impact on the classification, e.g., higher coefficients related to comments
highlight substantial differences between human and AI-generated code. Therefore, the
analysis of these coefficients offers a deeper understanding of the reasons behind each
outcome, showing the distinctions between the two classes.

We train the LR algorithm with the liblinear solver, the L2 regularisation, 10,000 maximum
number of iterations to facilitate convergence, the inverse of regularisation strength (‘C’ value)
equals to 1.0, the tolerance for stopping criteria (tol) equals to 1 × 10−4 (default value) and the
class_weight set to None, meaning that all classes are weighted equally.

3.4. Model Variants

To better convey the effectiveness of our EX-CODE approach, we explored the impact
of different classification strategies on performance. We examined three variations imple-
mented in our framework: unidirectional (PAD), unidirectional (MASK), and bidirectional
strategies. The unidirectional (PAD) strategy progressively masks tokens starting from the
beginning and moving toward the end of the code (see Section 3.1), and remove (padding)
downstream tokens. This sequential masking simulates the generation performed by many

Information 2024, 15, 819 8 of 17

AI models, where tokens are produced one by one [37] based on previous content. By
replacing the current token with <mask> and removing downstream tokens, the model is
forced to infer the probability distribution for the <mask> token from the upstream context.
The remaining tokens of the input are filled with the special <pad> token, a standard
technique called padding which is interpreted by the encoder as if the <mask> token is the
last of the sequence.

The unidirectional (MASK) strategy is similar to the previous one; however, it fills the
remaining tokens with other <mask> tokens. This multi-masking approach compels the
model to consider that the sequence has remaining tokens and to grasp the overall context
length which might help for an accurate prediction.

The bidirectional strategy leverages the strengths of BERT’s bidirectional pre-training.
It employs the close task concept, intermittently masking tokens and providing the entire
context to the model [31]. This approach relies on BERT’s ability to understand the relation-
ships between words regardless of their order. As the model predicts each masked token,
it gains additional information from the surrounding context, enhancing its accuracy in
estimating the probability distribution of single tokens.

4. CodeMix Dataset

We have assembled a new dataset consisting of code snippets gathered from GitHub
Gists (https://gist.github.com/discover, accessed on 4 November 2024). Within GitHub, a
Gist allows users to share snippets of code quickly and easily, without the need to create
a full repository. Gists are often used for different purposes, e.g., education and learning,
software development and open-source contribution, among others. We chose these for
two main reasons: firstly, the platform is used by both novices and experienced developers.
This guarantees a wider spectrum of programming styles, topics covered, and fields of
applications. The presence of a heterogeneous dataset helps our model to better generalise
with code from different domains, thereby reducing the risk of overfitting the training data.
Secondly, since CodeBert was trained on the CodeSearchNet dataset [36], we ensured that
the code used in our experiments had not been used for training CodeBert, making the
experimental evaluation reliable.

We have collected 518 code snippets written in Java. To generate the respective AI
versions, we have queried ChatGPT with two different sessions. In the first session, we set
the context of the model by providing the following prompt: “You are a software engineer
skilled in describing code functionality without using class, method, and variable names.
Please provide a description of the following code’s behaviour in simple terms”. For each
code snippet, we then asked: “Can you please describe what this code does without using
class, method, and variable names?”. The output of ChatGPT is a brief description of the
code’s functionalities. Since names are used as features in our model, we instruct ChatGPT
to omit them to preserve the generality of the descriptions. In the second session, we set
the ChatGPT’s context with the following prompt: “You are a software engineer skilled
in writing Java source code from functionalities’ description”. For each description of a
snippet of code, we then asked “Can you please generate a Java code according to this
description?”. ChatGPT returned a code snippet implementing the functionalities described
in the text passed as input.

By employing two distinct sessions, we ensure that ChatGPT referred to the code
passed as input for the description, and then it separately had just the description available
to generate the corresponding code. As a result, we obtained a balanced dataset consisting
of 1036 snippets of code, evenly split between those generated by an AI and those written
by a human. This dataset forms the basis of our experiments.

5. Evaluation

We evaluated the effectiveness of the EX-CODE model by testing it both on the CodeMix
dataset (see Section 4) and on Nguyen et al. dataset [10], which included 1484 code snippets,
divided into human-written (i.e., 738) and machine-generated (i.e., 746) code snippets.

https://gist.github.com/discover

Information 2024, 15, 819 9 of 17

The Nguyen et al. dataset is structured into unpaired and paired snippet categories,
delineated by two distinct data collection methodologies. The unpaired category includes
code generated by ChatGPT, prompted with queries spanning a broad spectrum of program-
ming tasks (i.e., 137 snippets), alongside human-written snippets sourced from GitHub
Gist (i.e., 137 snippets). These snippets have no direct correlation, mirroring real-world
scenarios. In contrast, paired snippets exhibit a coupled structure, juxtaposing human-
written (i.e., 601 snippets) and AI-generated code (i.e., 609 snippets). Here, each code
snippet sourced from a Java programming book’s solution repository was associated with
code generated by ChatGPT, which leverages the task descriptions provided in the book
and aligns them with human-authored scripts. The real-world examples for the dataset
in [10] represent just 18% of the total number of snippets, while the remaining 82% are the
snippets from the Java programming book. This significant disproportion underscores the
predominantly quantity of code which is human-written. Conversely, the CodeMix dataset
contains 1036 snippets from Github gists, which introduce greater heterogeneity in the data.
This variety brings CodeMix data closer to the distribution of real-world data.

Our evaluation strategy takes a multi-faceted approach, considering both overall
model performance and the effectiveness of different methodological approaches. We
also conduct an in-depth analysis to enhance the model’s interpretability and reliability.
Specifically, Section 5.1 evaluates the EX-CODE model’s ability to discriminate between
machine-generated and human-written code. Section 5.2 shows the performance of different
methodological strategies (crf. Section 3.4) to identify the most effective approach for the
EX-CODE model. Section 5.3 presents an in-depth analysis to unveil the key factors
influencing EX-CODE’s classification decisions. This enhances the model’s interpretability
and reliability, aligning with the principles of XAI [14].

5.1. Overall Performance

To evaluate the performance of the EX-CODE approach in distinguishing between
human-written and AI-generated code, we assessed the model both on the Nguyen et al. [10]
and CodeMix datasets.

Table 1 presents the overall performance of EX-CODE using the Nguyen et al. dataset,
in terms of precision, recall, and F1-score. EX-CODE is effective at distinguishing between
AI-generated and human-written code, with balanced precision, recall, and F1-scores across
both categories. There is a slightly higher precision for AI-generated code (0.83) compared
to human-written code (0.76), and a higher recall for human-written code (0.86) compared
to AI-generated code (0.72). Finally, the macro and weighted averages being identical (0.80
for precision, 0.79 for recall and F1-score) depends on the fact that the two classes (AI and
human) are well balanced in the dataset.

Table 1. EX-CODE performance in discriminating between AI-generated and human-written code.
“Macro average” represents the arithmetic average, while in “Weighted average”, the values are
weighted by support. The model was trained and tested on the dataset in [10].

Label Precision Recall F1-Score Support

AI 0.83 0.72 0.77 138
Human 0.76 0.86 0.81 146

Macro average 0.80 0.79 0.79 284
Weighted average 0.80 0.79 0.79 284

Table 2 presents the overall performance of EX-CODE when using the CodeMix dataset
in terms of precision, recall, and F1-score. EX-CODE shows a strong ability to identify AI-
generated code, with a high recall (0.87), suggesting that the model is effective at detecting
AI-generated samples. There is a higher precision for human-written code (0.82) compared
to AI-generated code (0.75). Conversely, the higher recall for AI-generated code (0.87)

Information 2024, 15, 819 10 of 17

compared to human-written code (0.67) suggests that the model has a slight bias towards
predicting AI-generated code.

Table 2. EX-CODE performance in distinguishing AI-generated from human-written code. The
model was trained and tested on our CodeMix dataset.

Label Precision Recall F1-Score Support

AI 0.75 0.87 0.81 111
Human 0.82 0.67 0.74 97

Macro average 0.79 0.77 0.77 208
Weighted average 0.78 0.79 0.77 208

In summary, the model is effective on both datasets, with balanced precision, recall,
and F1-scores. The macro and weighted averages are consistent, indicating stable per-
formance. These results highlight the models’ robustness and effectiveness in different
contexts, while also pointing to areas for potential improvement, particularly in balancing
precision and recall for both AI-generated and human-written code.

5.2. Probability Estimation Strategies

To assess the influence of the different probability estimation approaches detailed in
Section 3.4, we trained three distinct variants of EX-CODE, each incorporating a different
strategy: unidirectional (PAD), unidirectional (MASK), and bidirectional. The unidirec-
tional (PAD) approach replaces one token at a time with <mask> and removes downstream
tokens, reproducing the generative models’ step-by-step text generation process. In ad-
dition, the unidirectional (MASK) strategy sets <mask> as the downstream tokens. The
bidirectional approach, leveraging BERT’s bidirectional nature, replaces the <mask> one
token at a time and leaves all surrounding code unchanged.

Table 3 presents a comprehensive evaluation of these strategies in terms of weighted
precision, recall and F1-score. We trained and tested each variant on the Nguyen et al.
dataset to provide a thorough analysis of their performance. The unidirectional (PAD)
model demonstrates the highest precision, recall, and F1-score among the three variants.
This suggests that masking tokens individually and reproducing the generative models’
step-by-step text generation process is highly effective for identifying AI-generated code.
The high precision indicates that the model is effective at correctly identifying AI-generated
code without many false positives. The high recall shows that it can identify most of
the AI-generated code instances. The unidirectional (MASK) model performs the worst
among the three variants. This approach, which hides multiple tokens simultaneously but
reveals them sequentially, seems to struggle with accurately identifying AI-generated code.
The poor performance may be due to the model’s difficulty in predicting all downstream
tokens, which could adversely affect the estimation of the first <mask> token probability
distribution. The bidirectional model, leveraging BERT’s bidirectional nature, performs
better than the unidirectional (MASK) model but not as well as the unidirectional (PAD)
model. This approach, which replaces with <mask> only one token at a time while leaving
the code context unmasked, shows a balanced performance. The precision and recall are
relatively high, indicating that this model can effectively identify AI-generated code with
fewer errors compared to the unidirectional (MASK) model.

Table 3. Evaluation of the EX-CODE probability estimation strategies in terms of weighted precision,
recall, and F1-score. We train and test each strategy on the dataset in [10].

Model Precision Recall F1-Score

Unidirectional (PAD) 0.80 0.79 0.79
Unidirectional (MASK) 0.64 0.61 0.58

Bidirectional 0.73 0.70 0.69

Information 2024, 15, 819 11 of 17

In summary, the unidirectional (PAD) approach appears to be the most effective strat-
egy for this task, likely because it closely mimics the generative process of AI-generated
code, allowing the model to better understand and predict the patterns. The unidirectional
(MASK) approach may be less effective due to the complexity introduced by masking
multiple tokens simultaneously, which might confuse the model and lead to less accurate
predictions. The bidirectional approach benefits from BERT’s ability to consider the con-
text from both directions, making it a stronger performer, though not as effective as the
unidirectional (PAD) approach in this specific task. These observations suggest that for
tasks involving the identification of AI-generated code, methods that closely replicate the
generative process (like unidirectional (PAD)) may offer superior performance. Based on
this evaluation, we select the unidirectional (PAD) strategy as a primary choice for our
EX-CODE approach.

5.3. Features Analysis

This section describes and evaluates the explainable aspect of the proposed EX-CODE
model. As previously discussed in Section 3.2, the model extracts four different features
from the code: (i) comments, single and multi-line; (ii) names of classes, methods and
variables; (iii) Special Tokens, as indentation elements (i.e., spaces, newlines, tabs, curly
brackets); (iv) other, instruction identifiers, numbers, strings, types, brackets, punctuation.
Each feature characterises the code, which may exhibit different traits depending on
whether it was generated by an AI model or written by a human. By analysing these
features, the model distinguishes between human-written and AI-generated code.

The logistic regression step (see Section 3.3) assigns a coefficient β f to each feature
f , which represents the contribution that the feature has to the final prediction. Given a
prediction, we are able to define the score of each feature (f) as:

score(f) = (β f × value f) + (β0/12) (4)

where β f represents the weight assigned by the logistic regressor to the feature, value f is
the actual value of the aggregated feature (see Section 3.2) and β0 is the intercept computed
by the logistic regressor. We distributed the intercept across our 12 features so that the
regressor falls on the decision boundary when all scores are zero.

We computed twelve scores, one for each aggregated feature (i.e., sum, average, and
scaled_sum for each of the four features), which were then combined to yield four final
scores corresponding to ‘Other’, ‘Special Tokens’, ‘Names’, and ‘Comments’. Finally, the
relative contribution of each score was computed as a percentage of the total. For every
prediction made by the model, we generated a plot showing the distribution of each feature
relative to the final prediction, distinguishing contributions in favour of AI-generated from
contributions in favour of human-written. Positive values indicate features associated with
human traits, while negative values indicate features associated with AI traits. Additionally,
the plot displays the model’s probability for both AI and human-written code.

Figure 2 illustrates the plot for the code provided in Listing 1. This AI-generated code
was correctly classified as such, with a probability of 81.45%. The key features influencing
this classification were ‘Names’ and ‘Comments’, both of which have notable negative
(towards AI-generated) contributions to the overall prediction, with scores of −0.32 and
−0.35, respectively. Upon closer inspection of Listing 1, we see that the only comment in
the code is “Getters and setters”. This comment was identified as AI-generated, which
is consistent with how LLMs typically produce comments. In this case, the comment
seems to serve only as an introduction to the functions, without providing any meaningful
detail. Interestingly, while the ‘Names’ and ‘Comments’ features strongly indicate AI
characteristics, the ‘Special Tokens’ feature lean toward more human-like traits. This is
likely due to how the AI handles spaces and indentation. The patterns of spacing, tabbing,
and overall formatting in this case resemble code written by a human developer, suggesting
that although the content reflects AI generation, the structural formatting mimics human
coding practices.

Information 2024, 15, 819 12 of 17

Figure 2. Contribution of each feature for the prediction of an AI-generated code (where ST represents
Special Tokens). The analysed file is shown in Listing 1. The estimated probability that the code is
AI-generated is 81.45%, whereas the probability that the code is written by human is 18.55%.

Listing 1. An extract of the AI-generated code that the model has correctly classified as AI.

public PersonData(int id, String name , String email) {
this.id = id;
this.name = name;
this.email = email;

}

// Getters and setters
public int getId() {

return id;
}

Figure 3 shows the plot for the code in Listing 2, which was written by a human. The
model correctly classified the code as human-written, with a high probability (96.39%).
The most influential feature in this prediction is the ‘Special Tokens’ (ST) feature, with a
positive contribution of 0.66, indicating that the patterns of spaces, newlines, and other
formatting elements are characteristic of human-written code. The only feature with a
negative score is ‘Names’, though its contribution is minor, having a value of −0.13. Upon
examining the code in Listing 2, the formatting and indentation reflect a human coding
style, as human-written code tends to be more compact, with consistent use of indentation
and less reliance on excessive whitespace between lines. Instead, AI models often insert
more whitespace to make the code visually cleaner, following a more rigid, template-like
structure. Human developers, however, frequently follow conventions that are shaped
by practical experience and efficiency, leading to code that may appear more condensed.
Additionally, the use of parentheses and indentation within the code suggests a more
organic and intuitive structure, which is typical of human-written code. This differs from
AI-generated code, where indentation is often applied in a more formulaic manner. Another
key difference is the nature of the comments. In human-written code, comments are often
more nuanced and context-dependent. As observed in Listing 2, the comments require
a deeper understanding of the code’s purpose and context to fully grasp its meaning.
In contrast, AI-generated comments are usually more straightforward and functional,
often describing the code at a surface level without providing deeper insights. Instead,
human developers often write comments that assume a certain level of familiarity with the

Information 2024, 15, 819 13 of 17

surrounding code or the broader project, making them less explicit but more integrated
into the development process.

Figure 3. The weight of each feature for the prediction of human-written code (where ST represents
Special Tokens). The analysed file is listed in Listing 2. The probability that the code is written by
human is 96.39%, whereas the probability that the code is generated by an AI model is 3.61%.

Listing 2. An extract of the human-written code that the model has correctly classified as human.

static void dangerous(List <String >... stringLists) {
List <Integer > intList = List.of(42);
Object [] objects = stringLists;
objects [0] = intList; // Heap pollution occurs
String s = stringLists [0]. get(0); // ClassCastException

}

6. Discussion

EX-CODE interpretability goes beyond simple feature analysis, extending to iden-
tifying key factors that drive predictions during inference. The model categorises code
elements, highlights the most significant ones, and transparently attributes them to AI or
human origin. This process enhances explainability, enabling users to gain a deeper grasp
of the model’s rationale behind its predictions.

In our analysis, we scrutinise the factors that influence EX-CODE’s decision-making,
focusing on four primary categories: Comments, Names, Special Tokens, and Others.
Among these, comments stand out as the most telling feature for distinguishing human-
written from AI-generated code. This distinction points to a notable divergence in how
comments are handled by humans versus AI systems. Through qualitative analysis, we
found that human-written comments tend to be more comprehensive, providing structured,
detailed explanations in natural language. These comments often serve as guides, explain-
ing the purpose of the code, assumptions made, and other critical details. In contrast,
AI-generated comments frequently serve as placeholders. They often provide only surface-
level descriptions, summarising what the code does without offering deeper insights into
the logic or design choices. The result is that AI-written code, while functional, may lack
the contextual richness found in human-authored comments.

Additionally, the way the model interprets naming conventions reveals interesting
patterns. AI systems generally prefer simple, unambiguous names that prioritise clarity,
avoiding any creative or domain-specific nuances that human developers might employ.
Humans, by contrast, often choose more personalised or contextual names that reflect

Information 2024, 15, 819 14 of 17

their understanding of the problem domain. This highlights a subtle difference: while AI
seeks clarity and directness, human developers balance functional clarity with creativity,
potentially drawing on domain knowledge or personal coding habits.

EX-CODE’s interpretability not only reveals the key features behind its predictions but
also highlights broader patterns in the nature of AI versus human-written code, particularly
in the use of comments and naming conventions. This depth of analysis fosters a deeper
understanding of how different coding approaches influence model outcomes, reinforcing
the explainability of EX-CODE.

Validity Treats

This work introduces a robust and explainable model to distinguish between human-
written and AI-generated code. However, several considerations must be addressed to
ensure the approach’s effectiveness.

Firstly, the dataset labelling is inherently accurate since we know its origin beforehand.
For code hosted on GitHub, there is a possibility that ChatGPT may have encountered
it before. Nevertheless, this does not necessarily bias our study, as ChatGPT generates
code rather than retrieving specific snippets, incorporating its unique and recognisable
elements such as imports, formatting, and other code-style features. Additionally, we
experimented with various prompts, both with and without prior context, to generate code
that resembles what a novice programmer might produce. Despite these efforts, there
may still be more sophisticated methods to circumvent the proposed approach behind
EX-CODE. For example, advanced prompt engineering or the use of different AI models
could potentially bypass the detection mechanisms we have in place.

Secondly, the findings of this paper may apply only to the datasets used. We diversified
the data by collecting them from different sources to simulate real-world scenarios. This
included code from various repositories and different types of projects to ensure a broad
representation. In our evaluation, we focused on method definitions rather than entire
software projects, which allowed us to isolate specific coding styles and patterns. Although
CodeBERT imposes a limit of 500 tokens, this limit did not impact the size of the code
snippet given as input, as we focused on methods, and additionally, we employed a sliding
window. With proper training, EX-CODE can be adapted to function at the project level,
analysing entire codebases for AI-generated content. By employing a sliding window
having a size of 500 tokens on the code, we can input significantly longer code to the
model without altering our methodology. Moreover, we could employ the above approach
for each method, then aggregate the scores collected and give a final result for the whole
code. Finally, to avoid introducing additional variables, we focused on Java code. Other
programming languages could be investigated as CodeBERT supports several of them. In
this case, while the whole approach remains unchanged, a specific parser for each language
would be needed.

Lastly, in this study, the LLM behind AI-generated code was ChatGPT. A direction for
future research would be to test EX-CODE with code generated by other LLMs. This would
involve analysing whether the findings of this study apply to code produced by different
LLMs. By doing so, we could assess the generalisability and robustness of EX-CODE across
various AI-generated code sources, potentially uncovering new insights and enhancing the
model’s effectiveness in diverse coding environments.

7. Conclusions

This work introduced EX-CODE, a robust and explainable model for detecting AI-
generated code. EX-CODE leverages the probabilities that CodeBERT provides for a
missing token in a given context to identify patterns that distinguish human-written from
AI-generated code. Therefore, EX-CODE relies on the statistical properties of text (and
programming code) to accurately classify code snippets. By adhering to the principles of
explainable AI, EX-CODE provides accurate classifications for a given snippet and offers
transparency in its classification goal, as it tells which feature has contributed more to the

Information 2024, 15, 819 15 of 17

outcome. This transparency is crucial for fostering its adoption among users in various
critical domains.

Our comprehensive assessment of EX-CODE, using the novel CodeMix dataset,
demonstrated its effectiveness and robustness. The insights gained from this research
contribute to the broader field of AI code detection, highlighting the importance of explain-
ability and the need for reliable datasets that reflect real-world scenarios.

Author Contributions: Conceptualization, A.M. and E.T.; methodology, L.B., A.M. and M.M.; soft-
ware, A.M.; validation, L.B., A.M., M.M. and E.T.; formal analysis, A.M., M.M. and E.T.; resources,
L.B. and A.M.; data curation, L.B. and A.M.; writing—original draft preparation, L.B., A.M. and M.M.;
writing—review and editing, E.T.; visualization, A.M.; supervision, E.T.; project administration, E.T.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data reporting the results is contained within the article. The snippets
of code used for the experiments are part of ongoing study and requests to access them will be
avaluated by the authors.

Acknowledgments: The authors acknowledge the support of the University of Catania PIACERI
Project “TEAMS”.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Fan, A.; Gokkaya, B.; Harman, M.; Lyubarskiy, M.; Sengupta, S.; Yoo, S.; Zhang, J.M. Large Language Models for Software

Engineering: Survey and Open Problems. In Proceedings of the IEEE/ACM International Conference on Software Engineering:
Future of Software Engineering (ICSE-FoSE), Melbourne, Australia, 14–20 May 2023; pp. 31–53. [CrossRef]

2. Pearce, H.; Ahmad, B.; Tan, B.; Dolan-Gavitt, B.; Karri, R. Asleep at the keyboard? Assessing the security of github copilot’s
code contributions. In Proceedings of the Symposium on Security and Privacy (SP), San Francisco, CA, USA, 22–26 May 2022;
pp. 754–768. [CrossRef]

3. Barrett, C.; Boyd, B.; Bursztein, E.; Carlini, N.; Chen, B.; Choi, J.; Chowdhury, A.R.; Christodorescu, M.; Datta, A.; Feizi, S.; et al.
Identifying and Mitigating the Security Risks of Generative AI. Found. Trends Priv. Secur. 2023, 6, 1–52. [CrossRef]

4. Bang, Y.; Cahyawijaya, S.; Lee, N.; Dai, W.; Su, D.; Wilie, B.; Lovenia, H.; Ji, Z.; Yu, T.; Chung, W.; et al. A Multitask,
Multilingual, Multimodal Evaluation of ChatGPT on Reasoning, Hallucination, and Interactivity. In Proceedings of the
International Joint Conference on Natural Language Processing and the 3rd Conference of the Asia-Pacific Chapter of the
Association for Computational Linguistics (Volume 1: Long Papers), Nusa Dua, Bali, Indonesia, 1–4 November 2023; Association
for Computational Linguistics: Kerrville, TX, USA, 2023; pp. 675–718. [CrossRef]

5. Tian, E.; Cui, A. GPTZero: Towards detection of AI-generated text using zero-shot and supervised methods. GPTZero 2024
Available online: https://gptzero.me (accessed on 4 November 2024).

6. Mitchell, E.; Lee, Y.; Khazatsky, A.; Manning, C.D.; Finn, C. DetectGPT: Zero-shot machine-generated text detection using
probability curvature. In Proceedings of the International Conference on Machine Learning (ICML), Honolulu, HI, USA,
23–29 July 2023.

7. Su, J.; Zhuo, T.Y.; Wang, D.; Nakov, P. Detectllm: Leveraging log rank information for zero-shot detection of machine-generated
text. arXiv 2023, arXiv:2306.05540.

8. Zhan, H.; He, X.; Xu, Q.; Wu, Y.; Stenetorp, P. G3detector: General gpt-generated text detector. arXiv 2023, arXiv:2305.12680.
9. Pan, W.H.; Chok, M.J.; Wong, J.L.S.; Shin, Y.X.; Poon, Y.S.; Yang, Z.; Chong, C.Y.; Lo, D.; Lim, M.K. Assessing AI Detectors in

Identifying AI-Generated Code: Implications for Education. arXiv 2024, arXiv:2401.03676.
10. Nguyen, P.T.; Di Rocco, J.; Di Sipio, C.; Rubei, R.; Di Ruscio, D.; Di Penta, M. GPTSniffer: A CodeBERT-based classifier to detect

source code written by ChatGPT. J. Syst. Softw. 2024, 214, 112059. [CrossRef]
11. Saranya, A.; Subhashini, R. A systematic review of Explainable Artificial Intelligence models and applications: Recent develop-

ments and future trends. Decis. Anal. J. 2023, 7, 100230. [CrossRef]
12. Hassija, V.; Chamola, V.; Mahapatra, A.; Singal, A.; Goel, D.; Huang, K.; Scardapane, S.; Spinelli, I.; Mahmud, M.; Hussain, A.

Interpreting black-box models: A review on explainable artificial intelligence. Cogn. Comput. 2024, 16, 45–74. [CrossRef]
13. Confalonieri, R.; Coba, L.; Wagner, B.; Besold, T.R. A historical perspective of explainable Artificial Intelligence. WIREs Data Min.

Knowl. Discov. 2021, 11, e1391. [CrossRef]
14. Angelov, P.P.; Soares, E.A.; Jiang, R.; Arnold, N.I.; Atkinson, P.M. Explainable artificial intelligence: An analytical review. WIREs

Data Min. Knowl. Discov. 2021, 11, e1424. [CrossRef]

http://doi.org/10.1109/ICSE-FoSE59343.2023.00008
http://dx.doi.org/10.1109/SP46214.2022.9833571
http://dx.doi.org/10.1561/3300000041
http://dx.doi.org/10.18653/v1/2023.ijcnlp-main.45
https://gptzero.me
http://dx.doi.org/10.1016/j.jss.2024.112059
http://dx.doi.org/10.1016/j.dajour.2023.100230
http://dx.doi.org/10.1007/s12559-023-10179-8
http://dx.doi.org/10.1002/widm.1391
http://dx.doi.org/10.1002/widm.1424

Information 2024, 15, 819 16 of 17

15. Atakishiyev, S.; Salameh, M.; Yao, H.; Goebel, R. Explainable artificial intelligence for autonomous driving: A comprehensive
overview and field guide for future research directions. IEEE Access 2024, 12, 101603–101625. [CrossRef]

16. Minh, D.; Wang, H.X.; Li, Y.F.; Nguyen, T.N. Explainable artificial intelligence: A comprehensive review. Artif. Intell. Rev. 2022,
55, 3503–3568. [CrossRef]

17. Shi, Y.; Zhang, H.; Wan, C.; Gu, X. Between Lines of Code: Unraveling the Distinct Patterns of Machine and Human Programmers.
arXiv 2024, arXiv:2401.06461.

18. Feng, Z.; Guo, D.; Tang, D.; Duan, N.; Feng, X.; Gong, M.; Shou, L.; Qin, B.; Liu, T.; Jiang, D.; et al. Codebert: A pre-trained model
for programming and natural languages. arXiv 2020, arXiv:2002.08155.

19. Lee, T.; Hong, S.; Ahn, J.; Hong, I.; Lee, H.; Yun, S.; Shin, J.; Kim, G. Who wrote this code? watermarking for code generation.
arXiv 2023, arXiv:2305.15060.

20. Yang, X.; Zhang, K.; Chen, H.; Petzold, L.; Wang, W.Y.; Cheng, W. Zero-Shot Detection of Machine-Generated Codes. arXiv 2023,
arXiv:2310.05103. [CrossRef]

21. Sun, Z.; Du, X.; Song, F.; Li, L. CodeMark: Imperceptible Watermarking for Code Datasets against Neural Code Completion
Models. In Proceedings of the ACM Joint European Software Engineering Conference and Symposium on the Foundations of
Software Engineering (ESEC/FSE), San Francisco, CA, USA, 3–9 December 2023; pp. 1561–1572. [CrossRef]

22. Li, B.; Zhang, M.; Zhang, P.; Sun, J.; Wang, X. Resilient Watermarking for LLM-Generated Codes. arXiv 2024, arXiv:2402.07518.
23. Bao, G.; Zhao, Y.; Teng, Z.; Yang, L.; Zhang, Y. Fast-detectgpt: Efficient zero-shot detection of machine-generated text via

conditional probability curvature. arXiv 2023, arXiv:2310.05130.
24. Tian, Y.; Chen, H.; Wang, X.; Bai, Z.; Zhang, Q.; Li, R.; Xu, C.; Wang, Y. Multiscale positive-unlabeled detection of ai-generated

texts. arXiv 2023, arXiv:2305.18149.
25. Chen, Y.; Kang, H.; Zhai, V.; Li, L.; Singh, R.; Ramakrishnan, B. Gpt-sentinel: Distinguishing human and chatgpt generated

content. arXiv 2023, arXiv:2305.07969.
26. Zeng, C.; Tang, S.; Yang, X.; Chen, Y.; Sun, Y.; Li, Y.; Chen, H.; Cheng, W.; Xu, D. DALD: Improving Logits-based Detector without

Logits from Black-box LLMs. arXiv 2024, arXiv:2406.05232. [CrossRef]
27. Yang, X.; Cheng, W.; Wu, Y.; Petzold, L.; Wang, W.Y.; Chen, H. DNA-GPT: Divergent N-Gram Analysis for Training-Free Detection

of GPT-Generated Text. arXiv 2023, arXiv:2305.17359. [CrossRef]
28. Wang, J.; Liu, S.; Xie, X.; Li, Y. Evaluating AIGC detectors on code content. arXiv 2023, arXiv:2304.05193.
29. Ouyang, L.; Wu, J.; Jiang, X.; Almeida, D.; Wainwright, C.; Mishkin, P.; Zhang, C.; Agarwal, S.; Slama, K.; Ray, A.; et al. Training

language models to follow instructions with human feedback. Adv. Neural Inf. Process. Syst. 2022, 35, 27730–27744.
30. Achiam, J.; Adler, S.; Agarwal, S.; Ahmad, L.; Akkaya, I.; Aleman, F.L.; Almeida, D.; Altenschmidt, J.; Altman, S.; Anadkat, S.;

et al. Gpt-4 technical report. arXiv 2023, arXiv:2303.08774. [CrossRef]
31. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding.

arXiv 2018, arXiv:1810.04805.
32. Touvron, H.; Martin, L.; Stone, K.; Albert, P.; Almahairi, A.; Babaei, Y.; Bashlykov, N.; Batra, S.; Bhargava, P.; Bhosale, S.; et al.

Llama 2: Open foundation and fine-tuned chat models. arXiv 2023, arXiv:2307.09288.
33. Mistral. Frontier AI in Your Hands. Available online: https://mistral.ai (accessed on 4 November 2024).
34. OpenAI. GPT 3.5 Turbo. Available online: https://openai.com/blog/gpt-3-5-turbo-fine-tuning-and-api-updates (accessed on

4 November 2024).
35. Liesenfeld, A.; Lopez, A.; Dingemanse, M. Opening up ChatGPT: Tracking openness, transparency, and accountability in

instruction-tuned text generators. In Proceedings of the International Conference on Conversational User Interfaces, Eindhoven,
The Netherlands, 19–21 July 2023; pp. 1–6.

36. Husain, H.; Wu, H.H.; Gazit, T.; Allamanis, M.; Brockschmidt, M. CodeSearchNet challenge: Evaluating the state of semantic
code search. arXiv 2019, arXiv:1909.09436.

37. Gokul, Y.; Ramalingam, M.; Chemmalar, S.G.; Supriya, Y.; Gautam, S.; Praveen, K.R.M.; Deepti, R.G.; Rutvij, H.J.; Prabadevi,
B.; Weizheng, W.; et al. Generative Pre-trained Transformer: A Comprehensive Review on Enabling Technologies, Potential
Applications, Emerging Challenges, and Future Directions. arXiv 2023, arXiv:2305.10435.

38. Bauer, J.; Siegmund, J.; Peitek, N.; Hofmeister, J.C.; Apel, S. Indentation: Simply a Matter of Style or Support for Program
Comprehension? In Proceedings of the IEEE/ACM International Conference on Program Comprehension (ICPC), Montreal, QC,
Canada, 25 May 2019; pp. 154–164. [CrossRef]

39. Alsuhaibani, R.S.; Newman, C.D.; Decker, M.J.; Collard, M.L.; Maletic, J.I. On the Naming of Methods: A Survey of Professional
Developers. In Proceedings of the International Conference on Software Engineering (ICSE), Madrid, Spain, 22–30 May 2021;
pp. 587–599. [CrossRef]

40. Steidl, D.; Hummel, B.; Juergens, E. Quality analysis of source code comments. In Proceedings of the International Conference on
Program Comprehension (ICPC), San Francisco, CA, USA, 20–21 May 2013; pp. 83–92. [CrossRef]

41. Kuhn, A.; Ducasse, S.; Gîrba, T. Semantic clustering: Identifying topics in source code. Inf. Softw. Technol. 2007, 49, 230–243.
[CrossRef]

42. Smith, N.; Van Bruggen, D.; Tomassetti, F. Javaparser: Visited; Leanpub: Victoria, BC, Canada, 2017.
43. Hosmer, D.W., Jr.; Lemeshow, S.; Sturdivant, R.X. Applied Logistic Regression; John Wiley & Sons: Hoboken, NJ, USA, 2013.

http://dx.doi.org/10.1109/ACCESS.2024.3431437
http://dx.doi.org/10.1007/s10462-021-10088-y
http://dx.doi.org/10.48550/arXiv.2310.05103
http://dx.doi.org/10.1145/3611643.3616297
http://dx.doi.org/10.48550/arXiv.2406.05232
http://dx.doi.org/10.48550/arXiv.2305.17359
http://dx.doi.org/10.48550/arXiv.2303.08774
https://mistral.ai
https://openai.com/blog/gpt-3-5-turbo-fine-tuning-and-api-updates
http://dx.doi.org/10.1109/ICPC.2019.00033
http://dx.doi.org/10.1109/ICSE43902.2021.00061
http://dx.doi.org/10.1109/ICPC.2013.6613836
http://dx.doi.org/10.1016/j.infsof.2006.10.017

Information 2024, 15, 819 17 of 17

44. Kurt, I.; Ture, M.; Kurum, A.T. Comparing performances of logistic regression, classification and regression tree, and neural
networks for predicting coronary artery disease. Expert Syst. Appl. 2008, 34, 366–374. [CrossRef]

45. Donders, A.R.T.; van der Heijden, G.J.; Stijnen, T.; Moons, K.G. Review: A gentle introduction to imputation of missing values. J.
Clin. Epidemiol. 2006, 59, 1087–1091. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.eswa.2006.09.004
http://dx.doi.org/10.1016/j.jclinepi.2006.01.014

	Introduction
	Related Works
	Proposed Approach
	Probability Estimation
	Feature Extraction
	Logistic Regression
	Model Variants

	CodeMix Dataset
	Evaluation
	Overall Performance
	Probability Estimation Strategies
	Features Analysis

	Discussion
	Conclusions
	References

