
Citation: Tseng, C.-Y.; Cheng, T.-H.;

Chang, C.-H. A Novel Approach to

Boosting Programming Self-Efficacy:

Issue-Based Teaching for Non-CS

Undergraduates in Interdisciplinary

Education. Information 2024, 15, 820.

https://doi.org/10.3390/

info15120820

Academic Editors: Petros Lameras,

Sylvester Arnab and Panagiotis

Petridis

Received: 18 November 2024

Revised: 12 December 2024

Accepted: 17 December 2024

Published: 20 December 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

A Novel Approach to Boosting Programming Self-Efficacy:
Issue-Based Teaching for Non-CS Undergraduates
in Interdisciplinary Education
Chih-Yi Tseng 1,* , Tsang-Hsiang Cheng 2 and Chih-Hung Chang 3

1 College of Humanities and Social Sciences, Feng Chia University, Taichung 40724, Taiwan
2 Department of Business Administration, Southern Taiwan University of Science and Technology,

Tainan 71005, Taiwan; cts@stust.edu.tw
3 Department of Applied Mathematics, National University of Kaohsiung, Kaohsiung 81148, Taiwan;

chchang@nuk.edu.tw
* Correspondence: chihytseng@o365.fcu.edu.tw

Abstract: This study examines the impact of issue-based teaching (IBT) on programming self-
efficacy among non-Computer Science students. Grounded in social cognitive theory, the research
investigates how IBT influences learning satisfaction and project success compared to traditional
metrics. This study employed a mixed-methods approach, combining the quantitative analysis of
student performance and self-efficacy measures with qualitative feedback from learning portfolios
and project reports. The findings indicate that programming self-efficacy is a stronger predictor of
learning satisfaction and project success than traditional performance metrics like grades. For novice
programmers, IBT effectively enhances self-efficacy, positively influencing goal identification and
performance. This cascade effect highlights the importance of fostering self-efficacy in programming
education for non-technical students. Qualitative analysis reveals that IBT contributes to students’
sense of achievement, motivation, and learning satisfaction, encouraging them to view programming
as a practical problem-solving tool. This study concludes that IBT offers an effective approach to
enhancing interdisciplinary and STEAM education, recommending that educators focus on building
self-efficacy through issue-based, learner-centered approaches.

Keywords: interdisciplinary education; issue-based teaching; programming; self-efficacy

1. Introduction

The rapid advancement of Artificial Intelligence (AI) and the increasing demand for
interdisciplinary competencies have significantly transformed the landscape of modern
education and professional development. This paradigm shift necessitates a reevaluation
of traditional educational approaches, particularly in the realm of programming education
for non-Computer Science (non-CS) students. As AI technologies become integral to
application software design and development, there is a pressing need for educational
approaches that transcend traditional single-discipline training. Recognizing programming
as a fundamental skill for navigating the digital economy, many countries have begun
integrating programming education into interdisciplinary curricula.

In Taiwan, however, programming courses are predominantly confined to Computer
Science (CS) departments, often neglecting the needs of non-CS students who may struggle
to see the relevance of programming to their fields. This gap highlights the urgent need for
innovative teaching methods that engage non-CS students and integrate programming with
diverse subjects to enhance interdisciplinary thinking. This study addresses this critical
issue by exploring whether issue-based teaching (IBT), an instructional approach that
engages students by connecting learning to real-world issues relevant to their experiences
and interests, can effectively enhance programming self-efficacy among non-CS students.

Information 2024, 15, 820. https://doi.org/10.3390/info15120820 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info15120820
https://doi.org/10.3390/info15120820
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0002-1092-5176
https://orcid.org/0009-0006-1379-8092
https://orcid.org/0000-0001-7352-5148
https://doi.org/10.3390/info15120820
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info15120820?type=check_update&version=2

Information 2024, 15, 820 2 of 17

Programming self-efficacy, defined as an individual’s belief in their ability to success-
fully perform programming tasks and solve coding problems, is a crucial factor in this
context, given its significant impact on learning outcomes, particularly for non-CS students
who may lack confidence in their programming abilities. This study specifically focuses
on programming self-efficacy as a crucial factor, given its significant impact on learning
outcomes, particularly for non-CS students who may lack confidence in their programming
abilities. By examining how IBT influences programming self-efficacy, goal identification,
and learning satisfaction among non-CS students, this research aims to provide valuable
insights for interdisciplinary programming education and offer a foundation for developing
innovative teaching methodologies.

Given the challenges and opportunities presented by the current landscape of program-
ming education for non-CS students, this study aims to address several critical questions
that emerge from the aforementioned context.

1. To what extent does issue-based teaching (IBT) influence the programming self-efficacy
of non-CS students?

2. To what extent does IBT enhance the connection between programming skills and
real-world applications for non-CS students?

3. What are the effects of IBT on these variables, programming self-efficacy, goal align-
ment, and learning satisfaction within a non-CS context?

This study aims to contribute to the field of programming education in several signifi-
cant ways. Firstly, it seeks to expand our understanding of how IBT impacts programming
self-efficacy among non-CS students, addressing a critical gap in the literature. Secondly,
it endeavors to provide empirical evidence on the effectiveness of IBT in enhancing the
connection between programming skills and real-world applications for students from
diverse academic backgrounds. Lastly, this research aims to elucidate the interrelationships
between programming self-efficacy, goal alignment, and learning satisfaction within the
context of IBT, potentially offering valuable insights for curriculum design and pedagogical
approaches in interdisciplinary programming education.

2. Literature Review
2.1. Issue-Based Teaching

Issue-based teaching (IBT) is an instructional approach that engages students by
connecting learning to real-world issues relevant to their experiences and interests. For
instance, in a Python programming course designed for non-CS students, the instructor
introduced a “COVID-19 case analysis” topic. By connecting programming with a relevant
current issue, this approach effectively engaged students. This method encourages crit-
ical thinking, collaboration, and active participation, making learning more meaningful
and applicable. Hahn [1] originally described IBT as utilizing themes that resonate with
learners to ignite interest and facilitate discussions that link these themes to specific subject
knowledge, fostering reflection and action.

Recent studies have highlighted the effectiveness of IBT in promoting interdisciplinary
learning and enhancing student engagement. For instance, Corlu et al. [2] noted that
integrating IBT within STEM education not only addresses complex problems but also
cultivates creativity and innovative problem-solving skills across disciplines. Bybee [3]
emphasized the importance of selecting topics that align with societal needs, as demon-
strated in Finland, where schools have replaced traditional subject-based teaching with IBT,
effectively integrating various subjects such as economics, history, and literature.

Furthermore, the recent literature suggests that IBT can significantly improve students’
motivation and self-efficacy. According to Tsai et al. [4], IBT encourages students to
take ownership of their learning by allowing them to choose issues they are passionate
about, thereby enhancing their engagement and commitment to the learning process.
This approach is particularly beneficial in programming education, where students often
struggle to see the relevance of coding skills in their fields.

Information 2024, 15, 820 3 of 17

In the context of programming education, combining IBT with coding instruction
can foster computational thinking and problem-solving abilities. As noted by Kafai and
Burke [5], engaging students in meaningful projects related to real-world issues helps de-
mystify programming concepts and enhances their confidence in applying these skills. This
study posits that IBT not only improves programming self-efficacy among non-CS students
but also promotes critical skills necessary for success in an increasingly digital world.

In summary, for interdisciplinary students with non-information technology back-
grounds, IBT can achieve innovation in programming education in the following three aspects:

1. Dynamic flexibility to enhance learning motivation: IBT offers dynamic topic flexibil-
ity, enabling the connection of programming issues with students’ experiences and
interests, thereby stimulating learning motivation.

2. Integration with real-world social issues and applications: Programming topics can
be integrated with diverse real-world problems, fostering interdisciplinary thinking.
This is particularly crucial in the ongoing development of AI applications across
multiple domains.

3. Enhancement of active learning: Under IBT, educators can encourage students to take
control of their active learning process by choosing topics they are passionate about;
for instance, granting students the autonomy to select project directions enhances
engagement and commitment.

2.2. Computer Programming Self-Efficacy

Computer programming self-efficacy refers to an individual’s belief in their ability to
successfully perform programming tasks and solve coding problems. Grounded in Ban-
dura’s [6] Social Cognitive Theory, self-efficacy is a crucial determinant of motivation and
performance across various domains, including education and computer skills training [7].
Bandura posited that self-efficacy influences not only the choice of activities but also the
effort and persistence individuals exhibit when faced with challenges.

Recent studies have expanded on this foundational concept, illustrating its significance
in programming education. For example, Tsai et al. [4] found that students with higher
programming self-efficacy are more likely to engage in complex programming tasks and
demonstrate improved performance outcomes. This aligns with the findings by Li and
Chen [8], who reported that self-efficacy positively correlates with goal alignment and
learning satisfaction among programming students.

Askar and Davenport [9] conducted a seminal study examining factors influencing
Java programming self-efficacy among engineering students. Their research revealed
that prior programming experience significantly predicted self-efficacy, aligning with Ban-
dura’s [6] social cognitive theory. Interestingly, gender differences had minimal impact on
programming self-efficacy. For novice programmers, self-efficacy was particularly sensitive
to achievement during the initial learning stages, emphasizing the importance of early
success in programming courses. These findings provide valuable insights into program-
ming self-efficacy development, offering a foundation for understanding how factors such
as prior experience, gender, and early achievements influence students’ beliefs in their
programming abilities, with important implications for designing effective programming
instruction, particularly for non-CS majors and novice programmers.

Recent studies [10,11] have highlighted the unique challenges faced by non-CS stu-
dents when learning programming, which is particularly relevant to our research on
issue-based teaching (IBT) for non-CS majors. These students often encounter significant
barriers due to their lack of relevant background knowledge, resulting in a steeper learning
curve compared to their CS counterparts. Non-CS students frequently struggle to connect
programming concepts to their primary field of study, leading to a perceived lack of rel-
evance and diminished motivation. Furthermore, the lower intrinsic motivation among
non-CS students to learn programming, coupled with the technical nature of programming
courses, can lead to frustration and disengagement [12,13]. These challenges underscore the
importance of tailored approaches, such as the issue-based teaching method proposed in

Information 2024, 15, 820 4 of 17

our study, to create more effective and engaging learning experiences for non-CS students
in programming courses.

The research conducted by Gao et al. [13] further emphasizes the significance of
programming self-efficacy, particularly for non-CS students. Their study demonstrates that
programming self-efficacy serves as a more crucial predictor of students’ programming
learning performance, surpassing even prior learning experiences. This finding underscores
the necessity of cultivating self-efficacy in programming education, especially for students
from non-CS backgrounds.

However, the current literature on programming self-efficacy and IBT reveals significant
research gaps. Firstly, studies have predominantly focused on Computer Science majors,
neglecting the unique challenges faced by non-CS students in programming education.
Secondly, while IBT has been explored in various educational contexts, its impact on pro-
gramming self-efficacy, particularly among non-CS students, remains largely unexamined.
Mudambi and Zhao [14] highlight that despite IBT’s potential benefits in enhancing student
engagement, its application and effects in programming education are understudied.

These research gaps underscore the need for investigating the effectiveness of IBT in
enhancing programming self-efficacy among non-CS students, especially given the increasing
importance of programming skills across diverse disciplines. This study aims to address these
gaps by exploring how IBT can effectively improve programming self-efficacy among non-CS
students and provide valuable insights for interdisciplinary programming education.

2.3. Goal Alignment and Learning Satisfaction

Goal alignment refers to the process by which students set, pursue, and achieve
educational objectives that resonate with their personal interests and academic aspirations.
According to Locke and Latham [15], goal alignment is crucial for enhancing motivation
and improving performance outcomes. Bandura [16] further asserts that self-efficacy plays
a significant role in this alignment, as students who believe in their capabilities are more
likely to set challenging goals and persist in achieving them.

Recent research has reinforced the connection between goal alignment, self-efficacy,
and learning satisfaction. Lim and Kim [17] conducted a study involving 200 Computer
Science students that demonstrated a positive relationship between self-efficacy and goal
alignment in programming tasks. Their findings indicated that students with higher self-
efficacy not only set more ambitious goals but also reported greater satisfaction with their
learning experiences. This aligns with the work of Li and Chen [8], who found that clear
goal-setting enhances learning satisfaction, leading to improved academic performance.

Learning satisfaction is defined as the degree to which students feel fulfilled and con-
tent with their educational experiences. It encompasses emotional responses to the learning
process, including feelings of achievement, engagement, and relevance [18]. Research by
Uçar and Sungur [19] highlights that students who experience higher levels of satisfaction
are more likely to engage deeply with the material, leading to better retention of knowledge
and skills.

In programming education, fostering goal alignment through effective teaching strate-
gies can significantly impact students’ learning satisfaction. For instance, when educators
implement IBT, they encourage students to connect programming tasks with real-world
issues that matter to them. This relevance not only motivates students but also helps them
set meaningful goals aligned with their interests. As noted by Mudambi and Zhao [14],
such alignment can alleviate anxiety associated with programming, enhancing overall
satisfaction with the learning experience.

Moreover, research indicates that when students perceive a strong connection between
their goals and the curriculum, they are more likely to invest effort into their studies. This
dynamic is particularly relevant for non-CS students who may initially struggle to see the
value of programming in their fields. By integrating IBT into programming instruction,
educators can create an environment where students feel empowered to set personal goals
that align with both their academic pursuits and real-world applications.

Information 2024, 15, 820 5 of 17

This study aims to elucidate the interrelationships among IBT, programming self-efficacy,
goal alignment, and learning satisfaction within the context of non-CS students. Specifically,
we hypothesize that IBT enhances programming self-efficacy, which in turn positively influ-
ences goal alignment and learning satisfaction. By examining these relationships, we address
our research questions on how IBT impacts programming self-efficacy and its subsequent
effects on learning outcomes. Understanding these interactions is crucial for developing
effective pedagogical strategies in interdisciplinary programming education.

3. Research Methods
3.1. Instructional Design

This study employs an issue-based instructional design framework aimed at enhancing
programming self-efficacy among non-CS students. The instructional design is structured to
facilitate active learning through real-world issues that resonate with students’ experiences
and interests. As illustrated in Table 1, the teaching process begins with discussions
centered on relevant issues, guiding students to set specific programming goals before
introducing Python coding.

Table 1. Examples of frameworks for issue-based programming instruction.

Topic—Healthy Diet Topic—Oppa Face

- Discussion: discuss the importance of healthy dining
options on campus.

- Goals: determine how to use appropriate data types to
store calorie information; design a structure to store basic
vendor information, including vendor distance and
product purchase calculations.

- Coding Skills: understand and use Python data types
(integers, strings, Booleans); lists, dictionaries, tuples, and
sets; proficiency in using variables and various operations.

- Discussion: explore face-swapping apps that can predict
future appearances or recreate past looks.

- Goals: develop a feature to calculate facial similarity;
build an app for recognizing emotions (joy, anger, sorrow,
happiness); design an app for whitening effects and selfie
retouching.

- Coding Skills: master the skill of installing external
packages, such as the image library Pillow.

Topic—COVID-19 Analysis Topic—Chatbot AI Support

- Discussion: discuss the global spread of COVID-19 and its
impact on daily life.

- Goals: develop a mask map app to display nearby
locations where masks are available; analyze COVID-19
case numbers.

- Coding Skills: use Python to handle Web APIs, web data,
and open data; learn to use the “requests” library to make
HTTP requests and access Web APIs.

- Discussion: create an emotional support AI app that
gauges moods and tells jokes.

- Goals: develop a chatbot for emotional support; design an
interactive storytelling AI.

- Coding Skills: use Python for semantic applications and
chatbot development; design a voice memo program and
a memo-taking chatbot.

Given that our target audience consists of Python beginners from various depart-
ments with non-CS backgrounds, in topic formulation for IBT, a systematic approach was
employed to ensure relevance and educational value. The systematic criteria used included:

1. Relevance to current events or student experiences: topics such as COVID-19 analysis
and healthy diet enhance student engagement.

2. Potential for real-world application: examples include AI chatbots and face-swapping
apps, demonstrating practical utility.

3. Interdisciplinary connections: students from different fields can link programming to
their studies; for instance, Western Languages students might focus on “English learning”,
while Environmental Science students could explore “carbon emission calculations”.

This approach aims to ensure that the programming tasks are accessible, engaging,
and relevant to the students’ diverse academic backgrounds and interests. This aligns with
recent findings by Tsai et al. [4], which suggest that contextualized learning significantly
enhances student motivation and the retention of programming concepts.

The instructional activities follow a systematic progression, as outlined in Table 2,
which includes the following six steps. This instructional design not only enhances pro-

Information 2024, 15, 820 6 of 17

gramming skills but also promotes logical thinking, problem-solving abilities, and interdis-
ciplinary integration [14]. By employing issue-based teaching methods, this study aims to
create a learner-centered environment that alleviates anxiety associated with programming
tasks while fostering deeper engagement with the subject matter.

Table 2. Steps of issue-based programming instruction.

Teaching Steps Explanation

1. Issues and Problem Discussion
Select topics that evoke shared experiences, such as current events (e.g., COVID-19), air
quality, or popular applications (e.g., facial recognition, AI chatbots). Engage students
in discussions and problem formulation to boost motivation and interest in learning.

2. Introduction to Programming
Goals, Process, and
Demonstration of Examples

After defining the problem through discussion, outline the programming objectives
and processes. Provide demonstrations of relevant Python code examples to illustrate
key concepts.

3. Comprehensive Application
and Design Thinking

Gradually deepen and expand the topics and programming objectives each week.
Encourage students to integrate their knowledge creatively to solve problems, regularly
prompting them with questions to inspire innovative topic designs.

4. Python Teaching
and Coding Exercises

Sequentially teach Python fundamentals, including data types (integers, strings,
Booleans), lists, dictionaries, tuples, and sets, as well as Python libraries, Web APIs, web
data handling, open data access, and web scraping techniques.

5. Topic Assignments
and Project Implementation

Apply weekly Python lessons to new assignments that encourage students to extrapolate
and modify their work. Students should compile completed projects into personal
portfolios for peer review, integrating feedback from these reviews into their final
grade assessment.

6. Optimization Suggestions
and Ratings

Provide constructive feedback during project presentations. Use the revised versions
of projects as the basis for evaluation to ensure continuous improvement.

3.2. Research Model

Based on the literature review, a comprehensive research model is proposed, as il-
lustrated in Figure 1. This model encompasses several key constructs: programming
self-efficacy (PSE), programming goal identification (PGI), and self-satisfaction with learn-
ing outcomes (SLO). Additionally, previous programming performance (PPP) is evaluated
through assignments and mid-term project grades, while current programming perfor-
mance (CPP) is assessed via final project grades. The proposed hypotheses are as follows:

Information 2024, 15, x FOR PEER REVIEW 7 of 18

Figure 1. The research model.

H1: Higher previous programming performance (PPP) (e.g., assignment scores, mid-term project
grades) is positively associated with higher programming self-efficacy (PSE). Bandura [6] posited
that successful past performance enhances self-efficacy beliefs, suggesting that students who per-
form well in earlier tasks will feel more confident in their programming abilities.

H2: Higher programming self-efficacy (PSE) is positively correlated with higher programming goal
identification (PGI). Usher and Pajares [20] found that students with greater self-efficacy in sci-
ence learning demonstrate stronger alignment with their learning goals, indicating that a similar
relationship may exist in programming contexts.

H3: Higher programming self-efficacy (PSE) leads to greater self-satisfaction with learning out-
comes (SLO). Doménech-Betoret et al. [21] identified self-efficacy as a critical factor influencing
satisfaction, suggesting that students who believe in their capabilities are more likely to feel satisfied
with their learning experiences.

H4: Higher programming self-efficacy (PSE) results in improved current programming perfor-
mance (CPP). This aligns with findings from Compeau and Higgins [7] and Webster and Martoc-
chio [22], who consistently demonstrated a positive relationship between self-efficacy and perfor-
mance in computer skills training.

H5: Higher programming goal identification (PGI) is associated with increased self-satisfaction
with learning outcomes (SLO). Ames [23] found a significant positive correlation between goal
identification and satisfaction, suggesting that students who set clear goals are more likely to feel
fulfilled by their learning process.

H6: Higher programming goal identification (PGI) leads to better current programming perfor-
mance (CPP). Research by Kim and Kwon [24] indicates that individuals with well-defined goals
achieve superior performance outcomes, supporting this hypothesis.

H7: Higher current programming performance (CPP) positively influences self-satisfaction with
learning outcomes (SLO). Recent findings by Li and Chen [8] suggest that students who perform
well in programming tasks tend to report higher levels of satisfaction regarding their educational
experiences.

Figure 1. The research model.

Information 2024, 15, 820 7 of 17

H1: Higher previous programming performance (PPP) (e.g., assignment scores, mid-term project
grades) is positively associated with higher programming self-efficacy (PSE). Bandura [6] posited
that successful past performance enhances self-efficacy beliefs, suggesting that students who perform
well in earlier tasks will feel more confident in their programming abilities.

H2: Higher programming self-efficacy (PSE) is positively correlated with higher programming
goal identification (PGI). Usher and Pajares [20] found that students with greater self-efficacy in
science learning demonstrate stronger alignment with their learning goals, indicating that a similar
relationship may exist in programming contexts.

H3: Higher programming self-efficacy (PSE) leads to greater self-satisfaction with learning outcomes
(SLO). Doménech-Betoret et al. [21] identified self-efficacy as a critical factor influencing satisfaction,
suggesting that students who believe in their capabilities are more likely to feel satisfied with their
learning experiences.

H4: Higher programming self-efficacy (PSE) results in improved current programming performance
(CPP). This aligns with findings from Compeau and Higgins [7] and Webster and Martocchio [22],
who consistently demonstrated a positive relationship between self-efficacy and performance in
computer skills training.

H5: Higher programming goal identification (PGI) is associated with increased self-satisfaction
with learning outcomes (SLO). Ames [23] found a significant positive correlation between goal
identification and satisfaction, suggesting that students who set clear goals are more likely to feel
fulfilled by their learning process.

H6: Higher programming goal identification (PGI) leads to better current programming perfor-
mance (CPP). Research by Kim and Kwon [24] indicates that individuals with well-defined goals
achieve superior performance outcomes, supporting this hypothesis.

H7: Higher current programming performance (CPP) positively influences self-satisfaction with
learning outcomes (SLO). Recent findings by Li and Chen [8] suggest that students who perform well
in programming tasks tend to report higher levels of satisfaction regarding their educational experiences.

This research model underscores the interconnectedness of self-efficacy, goal align-
ment, and performance outcomes within the context of issue-based teaching for non-CS
students. By examining these relationships, this study aims to provide insights into how
enhancing programming self-efficacy can lead to improved academic performance and
satisfaction among learners.

3.3. Research Subjects

This study was conducted in a course titled Python Basis Programming, offered at a
university in Taiwan. The course was open exclusively to undergraduate students from
non-CS majors. A total of 120 students enrolled in the course (two classes). This targeted
sample is essential for examining how issue-based teaching (IBT) influences programming
self-efficacy, specifically within a single institution. Prior to this study, these students had
limited exposure to programming concepts, making them ideal candidates for assessing
the impact of IBT on their self-efficacy and overall learning experience.

Among them, 117 students completed the study questionnaire. After removing miss-
ing data and outliers using the z-score method, 98 valid samples were obtained, with
approximately 40% male and 60% female. Our sample represents a substantial portion
(81.67%) of the 120 students initially enrolled. The majority of students were from the
College of Humanities and Social Sciences (No. 46, 47%), followed by the College of
Management (No. 29, 30%), collectively accounting for 77% of the sample. Other par-
ticipants were from the College of Science (No. 13, 13%), the College of Engineering

Information 2024, 15, 820 8 of 17

(No. 9, 9%), and the College of Law (No. 1, 1%). The subjects represented a broader non-CS
student population.

3.4. Construct Measurement

To effectively evaluate the constructs within this study, a well-defined measurement
framework was developed as a questionnaire in Appendix A. As seen in Table 3, each
construct is measured using validated instruments, ensuring reliability and validity in
the data collection process. The measurement instruments were pre-tested with a small
group of students to ensure clarity and appropriateness before full implementation. Data
collected through these instruments were analyzed using statistical methods to explore the
relationships among the constructs, thereby providing insights into how IBT influences
programming self-efficacy and related outcomes.

Table 3. Construct measurement and definition.

Construct Measurement Definition Measurement Instrument

Programming
Self-Efficacy (PSE)

Assesses students’ confidence in performing specific
programming tasks using a 7-point Likert scale

(1 = not confident at all, 7 = very confident).

Computer Self-Efficacy Scale (modified
from Compeau and Higgins [7])

Programming Goal
Identification (PGI)

Evaluates students’ ability to identify and articulate
their programming goals in relation to course

objectives, rated on a 7-point Likert scale.

Goal-setting Questionnaire (modified
from Locke and Latham [15])

Self-Satisfaction with Learning
Outcomes (SLO)

Measures students’ perceived satisfaction with their
learning experiences in the course using a 7-point

Likert scale.

Satisfaction Scale (modified from Uçar
and Sungur [19])

Previous Programming
Performance (PPP)

Quantified through students’ grades prior to the
study, serving as an objective measure of past

performance.

Grades from assignments
and mid-term projects

Current Programming
Performance (CPP)

Assessed based on the final project grades received
by participants at the conclusion of the course,

reflecting overall performance after instruction.
Final project grades

4. Analysis
4.1. Quantitative Analysis

Table 4 presents the descriptive statistics and reliability test results for each construct.
The internal consistency (Cronbach’s α) values for all constructs exceed the threshold
level of 0.7 [25], indicating a good level of reliability for the scales used in this study.
Additionally, Table 4 preliminarily demonstrates the benefits of IBT methods. PSE scored
the highest at 6.52, followed by SLO at 5.40 and PGI at 4.87, all of which are above moderate
levels (7-point scale). The average score for regular assignments and mid-term project
grades (previous programming performance) was 88.43, while the final project grade
(programming performance) improved to 91.13. This indicates that issue-based teaching
methods effectively enhance non-CS students’ programming self-efficacy, goal achievement,
and programming performance.

Table 4. Descriptive statistics and reliability test results.

Construct Variable Mean Standard Deviation Cronbach’s α

PPP 88.43 8.25 #
CPP 91.13 4.48 #
PSE 6.52 1.57 0.93
SLO 5.40 0.86 0.91
PGI 4.87 1.09 0.83

Note: PPP and CPP are formative constructs and do not have Cronbach’s α values.

Subsequently, exploratory factor analysis was conducted to assess the reliability and
validity of the construct items, as shown in Table 5. Using principal component analysis

Information 2024, 15, 820 9 of 17

and varimax rotation, all item loadings exceeded 0.5 and were lower on other constructs,
indicating adequate convergent validity among the three constructs. Table 6 presents
the results for the correlation coefficients, discriminant validity, and composite reliability
among the three constructs. The square root of the average variance extracted (AVE)
was above 0.7, surpassing the 0.5 threshold [26]; additionally, the composite reliability
Cronbach’s α values for all constructs were above 0.80, meeting the threshold of 0.7 [26],
indicating that the assessment questionnaire possesses sufficient convergent validity and
discriminant validity.

Table 5. Exploratory factor analysis results.

PSE SLO PGI
PSE5 0.843 −0.073 0.173
PSE4 0.832 0.029 0.100
PSE6 0.820 0.148 0.255
PSE7 0.809 0.133 0.277
PSE9 0.788 0.037 −0.093
PSE3 0.748 0.251 0.003
PSE8 0.734 0.193 0.173

PSE10 0.718 0.080 0.074
PSE1 0.716 0.281 −0.041
PSE2 0.679 0.299 −0.018
SLO3 0.144 0.918 0.087
SLO1 0.119 0.909 0.046
SLO2 0.250 0.857 0.030
SLO4 0.138 0.750 0.276
PGI1 0.135 0.094 0.889
PGI2 0.131 0.136 0.877
PGI4 0.120 −0.004 0.736
PGI3 −0.007 0.113 0.653

Table 6. Correlation coefficients, discriminant validity, and composite reliability test results.

CONSTRUCT
VARIABLE

COMPOSITE
RELIABILITY

PPP CPP PSE SLO PGI

PPP # #
CPP # −0.04 #
PSE 0.94 −0.03 0.17 0.77
SLO 0.92 −0.12 0.06 0.53 ** 0.86
PGI 0.87 0.17 0.18 0.22 * 0.21 0.80

Formative construct; ** p < 0.01, * p < 0.05 (two-tailed). Diagonal bold values represent the square root of the average
variance extracted (AVE).

Two important findings emerge from Table 6. First, when IBT methods are introduced
to non-CS learners, there is a significant positive correlation between their programming
self-efficacy and self-satisfaction with learning outcomes (β = 0.53 **, p < 0.01). Second, a
significant positive correlation is also observed between their programming self-efficacy
and programming goal identification (β = 0.22 *, p < 0.05).

Given the instructional nature of this study’s IBT experiment within the context of a
specific course, the sample size (n = 98) was relatively small, yet approaching the recom-
mended minimum threshold [27]. Consequently, partial least squares structural equation
modeling (PLS-SEM) was deemed appropriate for model evaluation and hypothesis test-
ing [28–30]. The assessment of the local model fit was conducted through examination
of R² values, path coefficients, and their respective significance levels utilizing bootstrap-
ping procedures with 5000 resamples. Notably, the model accounted for 21.1% of the
variance in self-satisfaction with learning outcomes (SLO) (Figure 2), indicating moderate
explanatory power.

Information 2024, 15, 820 10 of 17Information 2024, 15, x FOR PEER REVIEW 11 of 18

Figure 2. Model testing results. *: t-value > 1.96, p < 0.05 (two-tailed); ***: t-value > 3.291, p <
0.001 (two-tailed).

Table 7. Hypothesis testing results.

 Hypothesis Result

H1 Higher previous programming performance (PPP) is positively associated
with higher programming self-efficacy (PSE).

NS.

H2
Higher programming self-efficacy (PSE) is positively correlated with

higher programming goal identification (PGI). S.

H3
Higher programming self-efficacy (PSE) leads to greater self-satisfaction

with learning outcomes (SLO). S.

H4 Higher programming self-efficacy (PSE) results in improved current
programming performance (CPP).

NS.

H5 Higher programming goal identification (PGI) is associated with
increased self-satisfaction with learning outcomes (SLO). NS.

H6
Higher programming goal identification (PGI) leads to better current

programming performance (CPP). S.

H7 Higher current programming performance (CPP) positively influences
self-satisfaction with learning outcomes (SLO).

S.

Note: NS.—Not supported. S.—Supported.

4.2. Students’ Feedback Analysis
This study additionally collected students’ feedback from their learning portfolios

and project reports. The qualitative analyses were designed to explore several key areas:
perceptions of issue-based teaching, impact on programming self-efficacy, and learning
satisfaction. These themes were selected as they directly align with the study’s core objec-
tives of examining the effects of IBT on non-CS students’ programming self-efficacy and
its impact on learning satisfaction. This approach allows for a comprehensive exploration
of how IBT influences students’ learning experiences and outcomes in programming ed-
ucation.

4.2.1. Perceptions of Issue-Based Teaching
Student 1: “At the beginning of the semester, programming seemed like an abstract

concept far removed from my daily life. However, as the course progressed, I discovered
its accessibility and practical applications. The instructor’s issue-based teaching ap-
proach was instrumental in bridging the gap between theory and practice, enabling me
to grasp programming concepts and apply them to solve real-world problems”.

Figure 2. Model testing results. *: t-value > 1.96, p < 0.05 (two-tailed); ***: t-value > 3.291, p < 0.001
(two-tailed).

The results of the hypothesis testing, illustrated in Figure 2 and detailed in Table 7,
reveal three key findings. First, the model accounts for 21.1% of the variance in self-
satisfaction with learning outcomes (SLO) among non-CS learners, demonstrating strong
predictive power. Second, programming self-efficacy (PSE) had the strongest impact on self-
satisfaction with learning outcomes (H3, β = 0.359 ***, t = 3.581, p < 0.001), even surpassing
grades in current programming performance (CPP) on SLO (H7, β = 0.197 *, t = 2.137,
p < 0.05). Third, although PSE did not directly influence CPP (H4, β = 0.016, t = 0.216,
p > 0.05), it significantly impacted programming goal identification (PGI) (H2, β = 0.247 *,
t = 2.567, p < 0.05), which in turn positively affected CPP (H6, β = 0.224 *, t = 1.952, p < 0.05).
This indicates that for non-CS students new to Python programming, IBT effectively boosts
programming self-efficacy and confidence in achieving programming goals (H2), leading
to improved current programming performance (H6) and greater satisfaction with learning
outcomes (H7).

Table 7. Hypothesis testing results.

Hypothesis Result

H1 Higher previous programming performance (PPP) is positively associated
with higher programming self-efficacy (PSE). NS.

H2 Higher programming self-efficacy (PSE) is positively correlated with
higher programming goal identification (PGI). S.

H3 Higher programming self-efficacy (PSE) leads to greater self-satisfaction
with learning outcomes (SLO). S.

H4 Higher programming self-efficacy (PSE) results in improved current
programming performance (CPP). NS.

H5 Higher programming goal identification (PGI) is associated with increased
self-satisfaction with learning outcomes (SLO). NS.

H6 Higher programming goal identification (PGI) leads to better current
programming performance (CPP). S.

H7 Higher current programming performance (CPP) positively influences
self-satisfaction with learning outcomes (SLO). S.

Note: NS.—Not supported. S.—Supported.

4.2. Students’ Feedback Analysis

This study additionally collected students’ feedback from their learning portfolios
and project reports. The qualitative analyses were designed to explore several key areas:
perceptions of issue-based teaching, impact on programming self-efficacy, and learning sat-
isfaction. These themes were selected as they directly align with the study’s core objectives

Information 2024, 15, 820 11 of 17

of examining the effects of IBT on non-CS students’ programming self-efficacy and its im-
pact on learning satisfaction. This approach allows for a comprehensive exploration of how
IBT influences students’ learning experiences and outcomes in programming education.

4.2.1. Perceptions of Issue-Based Teaching

Student 1: “At the beginning of the semester, programming seemed like an abstract
concept far removed from my daily life. However, as the course progressed, I discovered
its accessibility and practical applications. The instructor’s issue-based teaching approach
was instrumental in bridging the gap between theory and practice, enabling me to grasp
programming concepts and apply them to solve real-world problems”.

Student 2: “The flexibility offered by the instructor in allowing us to select topics that
resonated with our interests was a game-changer. This approach empowered me to design
my own project, tailoring it to a context I found engaging. As the course unfolded, I was
able to adapt the programming examples taught in class to my chosen subject, making the
learning process both relevant and rewarding”.

Student feedback demonstrates that IBT plays a pivotal role in enhancing learning
motivation and fostering design thinking among non-CS students. The approach offers
two key benefits: First, practical application—IBT enables students to apply programming
concepts to real-world problems, thereby increasing their understanding of its practical
value. This approach transforms programming from an abstract concept into a tangible
tool for problem-solving, making it more accessible and relevant to students’ experiences.
Second, personal engagement—by encouraging students to address personally interesting
problems, IBT motivates them to actively explore and develop their programming skills.
This self-directed approach not only deepens their understanding of programming concepts
but also cultivates critical problem-solving abilities.

As a result, IBT positions students as active agents in their own learning journey.
Through this process, students gradually build confidence in their programming abilities,
develop a deeper appreciation for the subject, and acquire valuable skills that extend
beyond the classroom. The approach effectively bridges the gap between theoretical
knowledge and practical application, making programming more engaging and meaningful
for non-CS students.

4.2.2. Impact on Programming Self-Efficacy

Student 3: “This course has not only fulfilled my long-standing desire to acquire in-
terdisciplinary and practical skills but has also ignited a passion for embracing new
challenges. It has exceeded my expectations in bridging the gap between theory and
real-world application”.

Student 4: “I’ve noticed a significant improvement in my problem-solving approach. When
encountering errors, I now calmly analyze the source, which has made me more attentive
during coding. This process has gradually cultivated a more methodical and confident
approach to overcoming programming challenges”.

Student 5: “The instructor’s perspective resonated with me—while engineers excel at
designing functions, we, as humanities professionals, bring a unique creative dimension to
programming. This insight has helped me appreciate the value of my background in this
technical field”.

Student 6: “My perception of programming languages has completely transformed. What
once seemed intimidating now appears accessible and intriguing. This newfound confidence
has sparked a desire to explore and learn additional programming languages in the future”.

Student 7: “The course has inspired me to set ambitious goals for my programming
journey. I’m now planning to delve into C++ and Java, with a focus on developing
personal websites and applications. This represents a significant shift in my career
aspirations and skill set”.

Information 2024, 15, 820 12 of 17

The student responses collectively demonstrate the effectiveness of IBT in program-
ming education for non-CS students. IBT has successfully enhanced motivation and
engagement with programming, improved problem-solving skills and resilience, fostered
appreciation for interdisciplinary perspectives, transformed perceptions of programming
accessibility, and inspired long-term learning goals and career considerations. These quali-
tative outcomes align closely with the study’s quantitative findings, reinforcing the positive
impact of IBT on programming self-efficacy, goal identification, and satisfaction with
learning outcomes among non-CS students. The approach has not only made program-
ming more accessible and relevant but has also empowered students to see its broader
applications in their respective fields, potentially influencing their future academic and
career paths.

4.2.3. Learning Satisfaction

Student 8: “Achieving the desired outcome instilled in me a tremendous sense of accom-
plishment and ignited my passion for programming”.

Student 9: “The ability to apply my newfound knowledge to produce tangible results
brought an indescribable sense of achievement”.

Student 10: “Connecting programming to real-life topics has been the greatest motivator
in my learning journey. The joy I felt upon completing my own program and proudly
demonstrating the app I built to my friends was unparalleled”.

Student 11: “Acquiring a new skill outside my major field has given me an incredible
sense of accomplishment, especially the feeling of creating something from scratch”.

Student 12: “Developing a program on a topic I’m passionate about feels both innovative
and deeply fulfilling”.

Student 13: “The moment I completed the program, I was overwhelmed with excitement;
the sense of achievement was immeasurable”.

The IBT method has proven highly effective in fostering interest and engagement
in programming among non-CS students. By enabling learners to achieve concrete goals
through real-world problem-solving, IBT significantly enhances the learning experience.
This approach integrates programming with everyday topics, demonstrating its real-world
relevance and appeal, which in turn makes the subject more accessible and engaging for
students from diverse academic backgrounds. One of the key strengths of IBT lies in
its ability to cultivate a sense of personal achievement and boost motivation. Students
experience a profound sense of accomplishment when completing self-directed projects,
and the tangible outcomes of their work significantly enhance their learning motivation.
This approach not only helps students develop technical skills but also nurtures a sense of
pride and creativity, making the learning process more rewarding and meaningful.

Furthermore, IBT promotes cross-disciplinary development by helping students rec-
ognize the value of programming skills beyond their primary field of study. This approach
encourages learners to appreciate the potential for interdisciplinary applications, broad-
ening their perspectives and preparing them for the increasingly interconnected nature
of modern professional environments. In conclusion, the IBT method offers a comprehen-
sive approach to programming education that goes beyond technical skill development,
fostering a more holistic and engaging learning experience for non-CS students.

5. Discussion
5.1. Issue-Based Practice in Enhancing Programming Self-Efficacy

As quantitative findings, the empirical results and student feedback demonstrate
that for non-CS learners, our research model demonstrates strong explanatory power
for self-satisfaction with learning outcomes, accounting for 21.1% of the variance. The
primary influencing factors are programming self-efficacy (H3, β = 0.359 ***, t = 3.581)
and current programming performance (H7, β = 0.197 *, t = 2.137). Notably, current

Information 2024, 15, 820 13 of 17

programming performance is positively impacted by programming self-efficacy, mediated
through programming goal identification (H2, β = 0.247 *, t = 2.567; H6, β = 0.224 *,
t = 1.952; r² = 5.2%). This finding suggests that engaging students in projects on topics they
find personally relevant or interesting can effectively stimulate self-efficacy and lead to
high levels of self-satisfaction.

As qualitative insights, analysis of student feedback indicates that IBT significantly
enhanced programming self-efficacy among non-CS students. Numerous students reported
that IBT enabled them to apply programming concepts to real-world problems, thereby
strengthening their understanding and confidence in these skills. This pedagogical ap-
proach not only fostered students’ learning motivation but also encouraged them to select
project topics aligned with their personal interests. Such autonomy resulted in a more active
exploration of programming concepts. Moreover, students consistently reported increased
composure and organization when approaching problem-solving tasks, suggesting that
IBT effectively cultivated their problem-solving abilities and self-assurance.

This teaching method allowed students to perceive programming not as an abstract
concept, but as a practical tool applicable within their respective fields. Overall, IBT not
only elevated students’ programming self-efficacy but also promoted their interest in
coding and the establishment of long-term learning objectives, demonstrating its potential
in interdisciplinary education. These findings offer valuable insights for interdisciplinary
programming education, suggesting that educators should prioritize cultivating students’
self-efficacy through issue-oriented, learner-centered pedagogical strategies, rather than
solely relying on traditional performance metrics.

5.2. Self-Efficacy’s Role in Learning Satisfaction

As quantitative findings, in the context of IBT, programming self-efficacy emerges
as the strongest predictor of self-satisfaction with learning outcomes (H3, β = 0.359 ***,
t = 3.581), surpassing even the impact of current programming performance (final project
grade) (H7, β = 0.197 *, t = 2.137). This result underscores the significant benefit of allowing
students to choose and work on topics of interest, particularly for non-CS learners. It
suggests that the process of personally solving self-defined topics and problems can provide
a greater sense of accomplishment than traditional grade-based assessments.

Moreover, as qualitative insights, student feedback indicates that IBT is highly effective
in enhancing programming self-efficacy and learning satisfaction among non-CS students.
Numerous students reported that the opportunity to select and solve problems of personal
interest provided them with a profound perceived achievement and fulfillment (e.g., stu-
dents 8, 10, and 12). These responses clearly demonstrate that IBT, by allowing students
to choose topics of interest and personally address challenges, can offer a greater sense of
accomplishment than traditional grade-based assessments. This approach not only elevates
students’ self-efficacy but also significantly enhances their learning satisfaction, which
aligns with the quantitative analysis results indicating that programming self-efficacy is
the strongest predictor of learning satisfaction.

These findings align with and extend Bandura’s [6] social cognitive theory, particularly in
the context of programming education for non-CS students. The strong relationship between
programming self-efficacy and learning satisfaction demonstrates how mastery experiences,
provided through IBT, can significantly enhance students’ belief in their capabilities.

5.3. Past Performance and Self-Efficacy

Interestingly, this study found that past programming performance (e.g., previous
assignments and midterm project scores) does not significantly impact programming self-
efficacy (H1, β = 0.159, t = 1.712). Student feedback indicates that issue-based teaching
enables students to choose topics of interest and apply their knowledge in assignments,
fostering a sense of ownership and relevance. Furthermore, self-efficacy in programming
is dynamically shaped by multiple factors, including instructional emphasis on practical
relevance [31]. Our study demonstrates that IBT, by allowing students to select personally

Information 2024, 15, 820 14 of 17

meaningful topics, enhances engagement and motivation to achieve self-determined pro-
gramming objectives. This approach appears to be more effective in building self-efficacy
than relying on past performance metrics. Moreover, our finding that programming self-
efficacy is a stronger predictor of learning satisfaction than traditional performance metrics
aligns with Tsai et al.‘s [4] work, which found that self-efficacy significantly impacted pro-
gramming performance. However, our study extends this by demonstrating the particular
importance of self-efficacy for non-CS students in an IBT context.

5.4. Practical Implication for Programming Education

This study investigates the impact of IBT on programming self-efficacy among non-CS
students, offering several significant contributions to the field of programming education.

Implications for Research Question 1: This study demonstrates that IBT significantly
enhances programming self-efficacy among non-CS students. The empirical results in-
dicate that IBT effectively cultivates students’ confidence in their programming abilities,
particularly for those from non-technical backgrounds. Our research demonstrates that IBT
is highly effective in enhancing programming self-efficacy among non-CS students. This
study reveals that programming self-efficacy is a stronger predictor of learning satisfaction
and project success than traditional performance metrics such as grades. This finding un-
derscores the importance of fostering self-efficacy in programming education, particularly
for students from non-technical backgrounds.

Implications for Research Question 2: This study demonstrates that IBT significantly
enhances the connection between programming skills and real-world applications for
non-CS students. The empirical evidence suggests that IBT effectively bridges the gap
between theoretical programming concepts and their practical implementation in real-
world scenarios, particularly for students from non-technical backgrounds. Our research
provides valuable insights into the effectiveness of IBT as a pedagogical approach. By
allowing students to work on projects related to their interests and real-world issues,
IBT not only enhances motivation and engagement but also helps students overcome
their apprehensions about programming. This approach proves particularly beneficial
for non-CS students, fostering deeper engagement with the subject matter and promoting
interdisciplinary thinking. IBT is particularly effective in fostering self-efficacy among non-
CS students. The issue-based approach enables these students to connect programming
concepts with real-world problems they find personally relevant, thereby enhancing their
confidence in their programming abilities. This method proves especially beneficial for
students from non-technical backgrounds, as it provides a contextual framework that
makes programming more accessible and meaningful to their diverse academic pursuits.

Implications for Research Question 3: This study demonstrates that IBT exerts beneficial
effects on the interrelationships among programming self-efficacy, goal alignment, and
learning satisfaction within a non-CS context. The empirical evidence suggests that IBT
facilitates positive interactions between these variables, enhancing the overall learning
experience for students from non-technical backgrounds. The result highlights the mediat-
ing role of programming goal identification between self-efficacy and performance. While
programming self-efficacy does not directly influence current programming performance,
it significantly impacts goal identification, which in turn positively affects performance.
This cascade effect emphasizes the importance of helping students set clear, achievable
goals in their programming journey.

5.5. Theoretical Contributions to Programming Education

This study offers several significant theoretical contributions to the field of program-
ming education:

1. Novel theoretical framework: This research advances a novel theoretical framework
for understanding how issue-based teaching (IBT) enhances programming self-efficacy
among non-Computer Science students. This framework provides a foundation for

Information 2024, 15, 820 15 of 17

exploring the relationships between innovative pedagogical approaches and learning
outcomes within interdisciplinary contexts.

2. Extension of existing theories: Our findings extend Bandura’s [6] social cognitive
theory by demonstrating how IBT can provide mastery experiences and vicarious
learning opportunities that enhance self-efficacy in programming education. This
extension is particularly relevant for non-CS students in interdisciplinary settings.

3. Integration of self-efficacy and goal alignment: This study elucidates the interplay
between programming self-efficacy, goal alignment, and learning satisfaction within
the context of IBT. This integrated perspective offers new insights into the mechanisms
by which innovative teaching methods can impact learning outcomes.

4. Contextualization for non-CS students: While previous research has explored problem-
based learning for non-CS students, our study is unique in its focus on issue-based
teaching specifically for this population. Our findings suggest that IBT may be
particularly effective for building self-efficacy in non-CS students by allowing them
to connect programming concepts to personally relevant real-world issues.

5. Implications for future research: This theoretical framework lays the groundwork
for future studies exploring the long-term impacts of IBT on students’ career choices
and professional development in programming and related fields. It also provides a
basis for investigating how this approach can be scaled and adapted across different
educational contexts and disciplines.

These theoretical contributions not only advance our understanding of programming
education for non-CS students but also offer valuable insights into curriculum design and
pedagogical approaches in interdisciplinary education.

6. Conclusions and Limitations

This study provides valuable insights into programming education, particularly within
interdisciplinary contexts. The findings demonstrate that issue-based teaching (IBT) sig-
nificantly enhances programming self-efficacy among non-Computer Science students.
The results indicate that programming self-efficacy is a stronger predictor of learning
satisfaction and project success than traditional performance metrics. IBT effectively con-
nects programming skills with real-world applications by allowing students to choose
topics of interest. Furthermore, programming goal identification mediates the relationship
between self-efficacy and performance, highlighting the importance of helping students
set clear, achievable goals. These findings suggest that educators should prioritize culti-
vating students’ self-efficacy through issue-oriented, learner-centered approaches rather
than solely relying on traditional performance metrics. However, this study has several
limitations. The research was conducted at a single university, potentially limiting the gen-
eralizability of the results. Future research directions could include investigating how this
approach can be scaled and adapted across different educational contexts and disciplines,
exploring how IBT affects students with diverse learning styles and backgrounds, and
providing a more comprehensive understanding of IBT’s effectiveness in interdisciplinary
programming education.

Author Contributions: Conceptualization, C.-Y.T.; methodology, C.-Y.T.; validation, C.-Y.T., T.-H.C.
and C.-H.C.; formal analysis, C.-Y.T.; writing—original draft preparation, C.-Y.T.; writing—review
and editing, C.-Y.T., T.-H.C. and C.-H.C. All authors have read and agreed to the published version of
the manuscript.

Funding: The first author is partially supported by the National Ministry of Education, ROC (project
number: PGE1122499, PGE107043).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Data sharing is not applicable to this article.

Information 2024, 15, 820 16 of 17

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A Questionnaire

· Programming Self-Efficacy

1. I can use Python even if no one is available to show me how.
2. I can use Python even if I have never had experience with similar programs.
3. I can use Python as long as I have examples to refer to.
4. I can use Python if someone demonstrates it to me once before I try.
5. I can use Python as long as I have someone to ask when I encounter problems.
6. I can use Python if someone teaches me how to use it at the start.
7. I can use Python if I have plenty of time to complete tasks with it.
8. I can use Python as long as it has online help functions.
9. I can use Python if someone briefly shows me how to operate it first.
10. If I have experience with similar programs, I can use a new programming

language like Python.

· Self-Satisfaction with Learning Outcomes

1. I am satisfied with the results I have achieved in my learning so far.
2. I am pleased with the outcomes I have achieved in my learning so far.
3. I feel good about the results I have achieved in my learning so far.
4. I find the results I have achieved in my learning so far to be valuable.

· Programming Goal Identification

1. The programming goals I have set are impossible to achieve.
2. It seems unrealistic to achieve the programming goals I have set.
3. The programming goals I have set may need to be adjusted depending on progress.
4. To be honest, I don’t really care whether I achieve the programming goals I have set.

References
1. Hahn, C.L. Research on issues-centered social studies. In Handbook on Teaching Social Issues (NCSS Bulletin 93); Evans, R.W., Saxe,

D.W., Eds.; National Council for the Social Studies: Washington, DC, USA, 1996; pp. 25–41.
2. Corlu, M.S.; Capraro, R.M.; Capraro, M.M. Introducing STEM education: Implications for educating our teachers for the age of

innovation. Educ. Sci. 2014, 39, 74–85.
3. Bybee, R.W. The Case for STEM Education: Challenges and Opportunities; National Science Teachers Association: Arlington, VA,

USA, 2013.
4. Tsai, M.J.; Wang, C.Y.; Hsu, P.F. Developing the computer programming self-efficacy scale for computer literacy education.

J. Educ. Comput. Res. 2019, 56, 1345–1360. [CrossRef]
5. Kafai, Y.B.; Burke, Q. The importance of design in learning. In Design, Make, Play: Growing the Next Generation of STEM Innovators;

Honey, M., Kanter, D.E., Eds.; Routledge: New York, NY, USA, 2014; pp. 1–20.
6. Bandura, A. Social Foundations of Thought and Action: A Social Cognitive Theory; Prentice-Hall: Englewood Cliffs, NJ, USA, 1986.
7. Compeau, D.R.; Higgins, C.A. Computer self-efficacy: Development of a measure and initial test. MIS Q. 1995, 19, 189–211.

[CrossRef]
8. Li, Y.; Chen, X. The impact of goal alignment on learning satisfaction in higher education: A focus on programming courses.

Comput. Educ. 2021, 162, 104090.
9. Askar, P.; Davenport, D. An investigation of factors related to self-efficacy for Java programming among engineering students.

Turk. Online J. Educ. Technol. 2009, 8, 26–32.
10. Ismail, N.Z.; Razak, M.R. The challenges of learning programming subject in online distance learning (ODL) environment at

UiTM Pahang. GADING J. Sci. Technol. 2021, 4, 27–31.
11. Singh, S. Identifying Learning Challenges faced by Novice/Beginner Computer Programming Students: An Action Research

Approach. In Proceedings of the 6th Software Engineering Education Workshop (SEED 2022), CEUR Workshop Proceedings,
Virtual, Japan, 6 December 2022; Volume 3330.

12. Chen, G.; Guo, W. Emotional intelligence can make a difference: The impact of principals’ emotional intelligence on teaching
strategy mediated by instructional leadership. Educ. Manag. Adm. Lead. 2019, 47, 927–947. [CrossRef]

13. Gao, Y.; Wang, S.; Chen, X. The role of programming self-efficacy in predicting programming performance among non-CS majors.
Comput. Educ. 2022, 179, 104468.

14. Mudambi, R.; Zhao, M. Enhancing student engagement through issue-based teaching: Implications for programming education.
Educ. Train. 2022, 64, 415–429.

https://doi.org/10.1177/0735633117746747
https://doi.org/10.2307/249688
https://doi.org/10.1177/1741143218781066

Information 2024, 15, 820 17 of 17

15. Locke, E.A.; Latham, G.P. A Theory of Goal Setting & Task Performance; Prentice-Hall: Englewood Cliffs, NJ, USA, 1990.
16. Bandura, A. Social cognitive theory of self-regulation. Organ. Behav. Hum. Decis. Process. 1991, 50, 248–287. [CrossRef]
17. Lim, C.; Kim, H. The relationship between goal setting, self-efficacy, and programming performance: A study of computer science

students. J. Educ. Comput. Res. 2020, 58, 765–785.
18. Ramsden, P. A performance indicator of teaching quality in higher education: The Course Experience Questionnaire. Stud. High.

Educ. 1991, 16, 129–150. [CrossRef]
19. Uçar, S.; Sungur, S. The role of learning satisfaction in predicting academic performance: A study on STEM education. Int. J.

STEM Educ. 2017, 4, 12.
20. Usher, E.L.; Pajares, F. Sources of self-efficacy in school: Critical review of the literature and future directions. Rev. Educ. Res. 2008,

78, 751–796. [CrossRef]
21. Doménech-Betoret, F.; Abellán-Roselló, L.; Gómez-Artiga, A. Self-Efficacy, Satisfaction, and Academic Achievement: The Mediator

Role of Students’ Expectancy-Value Beliefs. Front. Psychol. 2017, 8, 1193. [CrossRef]
22. Webster, J.; Martocchio, J.J. The differential effects of software training previews on training outcomes. J. Manag. 1995, 21, 757–787.

[CrossRef]
23. Ames, C. Classrooms: Goals, structures, and student motivation. J. Educ. Psychol. 1992, 4, 261–271. [CrossRef]
24. Kim, K.J.; Kwon, B.D. The effects of achievement goals on self-regulated learning, flow, and achievement in an online game-based

learning environment. J. Educ. Comput. Res. 2012, 46, 233–254.
25. Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E.; Tatham, R.L. Multivariate Data Analysis, 6th ed.; Pearson Prentice Hall: Upper

Saddle River, NJ, USA, 2006.
26. Chin, W.W. The partial least squares approach to structural equation modeling. In Modern Methods for Business Research;

Marcoulides, G.A., Ed.; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 1998; pp. 295–336.
27. Kock, N.; Hadaya, P. Minimum sample size estimation in PLS-SEM: The inverse square root and gamma-exponential methods.

Inf. Syst. J. 2018, 28, 227–261. [CrossRef]
28. Hair, J.F.; Hult, G.T.M.; Ringle, C.M.; Sarstedt, M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM);

Sage: Thousand Oaks, CA, USA, 2017.
29. Hair, J.F.; Risher, J.J.; Sarstedt, M.; Ringle, C.M. When to use and how to report the results of PLS-SEM. Eur. Bus. Rev. 2019, 31,

2–24. [CrossRef]
30. Rigdon, E.E.; Ringle, C.M.; Sarstedt, M. Structural modeling of heterogeneous data with partial least squares. Rev. Mark. Res.

2010, 7, 255–296.
31. Abdunabi, R.; Hbaci, I.; Nyambe, T. Predicting perceived programming self-efficacy for information system students. In Proceedings

of the ISCAP Conference, Albuquerque, NM, USA, 1–4 November 2023; Colorado State University: Fort Collins, CO, USA, 2023.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/0749-5978(91)90022-L
https://doi.org/10.1080/03075079112331382944
https://doi.org/10.3102/0034654308321456
https://doi.org/10.3389/fpsyg.2017.01193
https://doi.org/10.1177/014920639502100409
https://doi.org/10.1037/0022-0663.84.3.261
https://doi.org/10.1111/isj.12131
https://doi.org/10.1108/EBR-11-2018-0203

	Introduction
	Literature Review
	Issue-Based Teaching
	Computer Programming Self-Efficacy
	Goal Alignment and Learning Satisfaction

	Research Methods
	Instructional Design
	Research Model
	Research Subjects
	Construct Measurement

	Analysis
	Quantitative Analysis
	Students’ Feedback Analysis
	Perceptions of Issue-Based Teaching
	Impact on Programming Self-Efficacy
	Learning Satisfaction

	Discussion
	Issue-Based Practice in Enhancing Programming Self-Efficacy
	Self-Efficacy’s Role in Learning Satisfaction
	Past Performance and Self-Efficacy
	Practical Implication for Programming Education
	Theoretical Contributions to Programming Education

	Conclusions and Limitations
	Appendix A
	References

