Performance of 4 Pre-Trained Sentence Transformer Models in the Semantic Query of a Systematic Review Dataset on Peri-Implantitis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset
2.2. Data Pre-Processing
2.3. Models
- (1)
- sentence-transformers/all-MiniLM-L6-v2. This model is based on the nreimers/MiniLM-L6-H384-uncased model and was further fine-tuned using a dataset of 1 billion sentence pairs. The embeddings’ length is 384. (https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2 (accessed on 15 January 2024))
- (2)
- sentence-transformers/all-MiniLM-L12-v2. This model is based on the microsoft/MiniLM-L12-H384-uncased model and was further fine-tuned using a dataset of 1 billion sentence pairs. The embeddings’ length is 384. (https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2 (accessed on 15 January 2024))
- (3)
- sentence-transformers/all-mpnet-base-v2. The model underwent pretraining on the microsoft/mpnet-base model and was subsequently fine-tuned on a dataset consisting of 1 billion sentence pairs. The embeddings’ length is 768. (https://huggingface.co/sentence-transformers/all-mpnet-base-v2 (accessed on 15 January 2024))
- (4)
- sentence-transformers/all-distilroberta-v1. The model underwent pretraining on the distilroberta-base model and was subsequently fine-tuned on a dataset consisting of 1 billion sentence pairs. The embeddings’ length is 768. (https://huggingface.co/sentence-transformers/all-distilroberta-v1 (accessed on 15 January 2024))
2.4. Sentence Encoding
model = SentenceTransformer(model_name)
embeddings = model.encode(sentences)
- Column name
- authors 6089 non-null object
- title 6109 non-null object
- journal 6106 non-null object
- abstract 6110 non-null object
- year 6110 non-null int64
- volume 5623 non-null object
- issue 4984 non-null float64
- pages 5426 non-null object
2.5. Semantic Text Similarity and Semantic Search
3. Results
3.1. Sentence Encoding
3.2. Semantic Text Similarity in the QT Corpus
3.3. Semantic Text Similarity of the Whole Dataset to FQs
3.4. Semantic Query
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
- FQ1 target articles
- Porous titanium granules in the treatment of peri-implant osseous defects-a 7-year follow-up study
- Reconstruction of Peri-implant Osseous Defects: A Multicenter Randomized Trial
- Porous titanium granules in the surgical treatment of peri-implant osseous defects: a randomized clinical trial
- D-PLEX500: a local biodegradable prolonged release doxycycline-formulated bone graft for the treatment for peri-implantitis. A randomized controlled clinical study
- Surgical treatment of peri-implantitis with or without a deproteinized bovine bone mineral and a native bilayer collagen membrane: A randomized clinical trial
- Effectiveness of enamel matrix derivative on the clinical and microbiological outcomes following surgical regenerative treatment of peri-implantitis. A randomized controlled trial
- Surgical treatment of peri-implantitis using enamel matrix derivative, an RCT: 3- and 5-year follow-up
- Surgical treatment of peri-implantitis lesions with or without the use of a bone substitute-a randomized clinical trial
- Peri-implantitis - Reconstructive Surgical Therapy
- FQ2 target articles
- A Regenerative Approach to the Successful Treatment of Peri-implantitis: A Consecutive Series of 170 Implants in 100 Patients with 2- to 10-Year Follow-up
- Surgical approach combining implantoplasty and reconstructive therapy with locally delivered antibiotic in the treatment of peri-implantitis: A prospective clinical case series
- Regenerative surgical treatment of peri-implantitis using either a collagen membrane or concentrated growth factor: A 12-month randomized clinical trial
- Clinical and radiographic outcomes of a surgical reconstructive approach in the treatment of peri-implantitis lesions: A 5-year prospective case series
- Regenerative surgical therapy for peri-implantitis using deproteinized bovine bone mineral with 10% collagen, enamel matrix derivative and Doxycycline-A prospective 3-year cohort study
- Surgical treatment of peri-implantitis defects with two different xenograft granules: A randomized clinical pilot study
- Surgical therapy of single peri-implantitis intrabony defects, by means of deproteinized bovine bone mineral with 10% collagen
- Reconstructive treatment of peri-implantitis infrabony defects of various configurations: 5-year survival and success
- Reconstructive surgical therapy of peri-implantitis bone defects
- A single-centre randomized controlled clinical trial on the adjunct treatment of intra-bony defects with autogenous bone or a xenograft: results after 12 months
- Impact of bone defect morphology on the outcome of reconstructive treatment of peri-implantitis
- Evaluation of Photodynamic Therapy in Treatment of Peri-implantitis
- Submerged healing following surgical treatment of peri-implantitis: a case series
- Long-term stability of surgical bone regenerative procedures of peri-implantitis lesions in a prospective case-control study over 3 years
- Surgical treatment of peri-implantitis using a bone substitute with or without a resorbable membrane: a 5-year follow-up
Appendix B
References
- Haddaway, N.R.; Pullin, A.S. The Policy Role of Systematic Reviews: Past, Present and Future. Springer Sci. Rev. 2014, 2, 179–183. [Google Scholar] [CrossRef]
- Sackett, D.L.; Rosenberg, W.M.C.; Gray, J.A.M.; Haynes, R.B.; Richardson, W.S. Evidence Based Medicine. BMJ Br. Med. J. 1996, 313, 170. [Google Scholar] [CrossRef]
- Landhuis, E. Scientific Literature: Information Overload. Nature 2016, 535, 457–458. [Google Scholar] [CrossRef] [PubMed]
- Boell, S.K.; Cecez-Kecmanovic, D. Literature Reviews and the Hermeneutic Circle. Aust. Acad. Res. Libr. 2010, 41, 129–144. [Google Scholar] [CrossRef]
- Needleman, I.G. A Guide to Systematic Reviews. J. Clin. Periodontol. 2002, 29, 6–9. [Google Scholar] [CrossRef] [PubMed]
- Dickersin, K.; Scherer, R.; Lefebvre, C. Systematic Reviews: Identifying Relevant Studies for Systematic Reviews. BMJ 1994, 309, 1286–1291. [Google Scholar] [CrossRef] [PubMed]
- Squires, J.E.; Valentine, J.C.; Grimshaw, J.M. Systematic Reviews of Complex Interventions: Framing the Review Question. J. Clin. Epidemiol. 2013, 66, 1215–1222. [Google Scholar] [CrossRef] [PubMed]
- Cooper, C.; Booth, A.; Varley-Campbell, J.; Britten, N.; Garside, R. Defining the Process to Literature Searching in Systematic Reviews: A Literature Review of Guidance and Supporting Studies. BMC Med. Res. Methodol. 2018, 18, 85. [Google Scholar] [CrossRef]
- Mateen, F.J.; Oh, J.; Tergas, A.I.; Bhayani, N.H.; Kamdar, B.B. Titles versus Titles and Abstracts for Initial Screening of Articles for Systematic Reviews. Clin. Epidemiol. 2013, 89–95. [Google Scholar] [CrossRef]
- Moons, K.G.M.; de Groot, J.A.H.; Bouwmeester, W.; Vergouwe, Y.; Mallett, S.; Altman, D.G.; Reitsma, J.B.; Collins, G.S. Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modelling Studies: The CHARMS Checklist. PLoS Med. 2014, 11, e1001744. [Google Scholar] [CrossRef]
- Parums, D.V. Review Articles, Systematic Reviews, Meta-Analysis, and the Updated Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 Guidelines. Med. Sci. Monit. 2021, 27, e934475. [Google Scholar] [CrossRef] [PubMed]
- Khalil, H.; Ameen, D.; Zarnegar, A. Tools to Support the Automation of Systematic Reviews: A Scoping Review. J. Clin. Epidemiol. 2022, 144, 22–42. [Google Scholar] [CrossRef] [PubMed]
- Marshall, I.J.; Noel-Storr, A.; Kuiper, J.; Thomas, J.; Wallace, B.C. Machine Learning for Identifying Randomized Controlled Trials: An Evaluation and Practitioner’s Guide. Res. Synth. Methods 2018, 9, 602–614. [Google Scholar] [CrossRef] [PubMed]
- Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. Bert: Pre-Training of Deep Bidirectional Transformers for Language Understanding. arXiv 2018, arXiv:1810.04805. [Google Scholar]
- van de Schoot, R.; de Bruin, J.; Schram, R.; Zahedi, P.; de Boer, J.; Weijdema, F.; Kramer, B.; Huijts, M.; Hoogerwerf, M.; Ferdinands, G. ASReview: Open Source Software for Efficient and Transparent Active Learning for Systematic Reviews. arXiv 2020, arXiv:2006.12166. [Google Scholar]
- Wang, S.; Zhou, W.; Jiang, C. A Survey of Word Embeddings Based on Deep Learning. Computing 2020, 102, 717–740. [Google Scholar] [CrossRef]
- Li, J.; Chen, X.; Hovy, E.; Jurafsky, D. Visualizing and Understanding Neural Models in NLP. arXiv 2015, arXiv:1506.01066. [Google Scholar]
- Singh, R.; Singh, S. Text Similarity Measures in News Articles by Vector Space Model Using NLP. J. Inst. Eng. (India) Ser. B 2021, 102, 329–338. [Google Scholar] [CrossRef]
- Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient Estimation of Word Representations in Vector Space. arXiv 2013, arXiv:1301.3781. [Google Scholar]
- Ayyadevara, V.K. Word2vec. In Pro Machine Learning Algorithms: A Hands-On Approach to Implementing Algorithms in Python and R; Apress: Berkeley, CA, USA, 2018; pp. 167–178. [Google Scholar]
- Boleda, G. Distributional Semantics and Linguistic Theory. Annu. Rev. Linguist 2020, 6, 213–234. [Google Scholar] [CrossRef]
- Jurafsky, D.; Martin, J.H. Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition; Pearson/Prentice Hall: Old Bridge, NJ, USA, 2021. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention Is All You Need. Adv. Neural. Inf. Process. Syst. 2017, 30. [Google Scholar]
- Reimers, N.; Gurevych, I. Sentence-Bert: Sentence Embeddings Using Siamese Bert-Networks. arXiv 2019, arXiv:1908.10084. [Google Scholar]
- Donos, N.; Calciolari, E.; Ghuman, M.; Baccini, M.; Sousa, V.; Nibali, L. The Efficacy of Bone Reconstructive Therapies in the Management of Peri-Implantitis. A Systematic Review and Meta-Analysis. J. Clin. Periodontol. 2023, 50, 285–316. [Google Scholar] [CrossRef] [PubMed]
- Andersen, H.; Aass, A.M.; Wohlfahrt, J.C. Porous Titanium Granules in the Treatment of Peri-Implant Osseous Defects—A 7-Year Follow-up Study. Int. J. Implant. Dent. 2017, 3, 50. [Google Scholar] [CrossRef] [PubMed]
- Jepsen, K.; Jepsen, S.; Laine, M.L.; Anssari Moin, D.; Pilloni, A.; Zeza, B.; Sanz, M.; Ortiz-Vigon, A.; Roos-Jansåker, A.M.; Renvert, S. Reconstruction of Peri-Implant Osseous Defects: A Multicenter Randomized Trial. J. Dent. Res. 2016, 95, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Wohlfahrt, J.C.; Lyngstadaas, S.P.; Rønold, H.J.; Saxegaard, E.; Ellingsen, J.E.; Karlsson, S.; Aass, A.M. Porous Titanium Granules in the Surgical Treatment of Peri-Implant Osseous Defects: A Randomized Clinical Trial. Int. J. Oral Maxillofac. Implant. 2012, 27. [Google Scholar]
- Emanuel, N.; Machtei, E.E.; Reichart, M.; Shapira, L. D-PLEX500: A Local Biodegradable Prolonged Release Doxycycline-Formulated Bone Graft for the Treatment for Peri-Implantitis. A Randomized Controlled Clinical Study. Quintessence Int. (Berl) 2020, 51, 546–553. [Google Scholar]
- Renvert, S.; Giovannoli, J.; Roos-Jansåker, A.; Rinke, S. Surgical Treatment of Peri-implantitis with or without a Deproteinized Bovine Bone Mineral and a Native Bilayer Collagen Membrane: A Randomized Clinical Trial. J. Clin. Periodontol. 2021, 48, 1312–1321. [Google Scholar] [CrossRef]
- Isehed, C.; Holmlund, A.; Renvert, S.; Svenson, B.; Johansson, I.; Lundberg, P. Effectiveness of Enamel Matrix Derivative on the Clinical and Microbiological Outcomes Following Surgical Regenerative Treatment of Peri-implantitis. A Randomized Controlled Trial. J. Clin. Periodontol. 2016, 43, 863–873. [Google Scholar] [CrossRef]
- Isehed, C.; Svenson, B.; Lundberg, P.; Holmlund, A. Surgical Treatment of Peri-implantitis Using Enamel Matrix Derivative, an RCT: 3-and 5-year Follow-up. J. Clin. Periodontol. 2018, 45, 744–753. [Google Scholar] [CrossRef]
- Renvert, S.; Roos-Jansåker, A.; Persson, G.R. Surgical Treatment of Peri-implantitis Lesions with or without the Use of a Bone Substitute—A Randomized Clinical Trial. J. Clin. Periodontol. 2018, 45, 1266–1274. [Google Scholar] [CrossRef] [PubMed]
- Nct Peri-Implantitis-Reconstructive Surgical Therapy. 2017. Available online: https://clinicaltrials.gov/show/NCT03077061 (accessed on 10 April 2022).
- Froum, S.J.; Froum, S.H.; Rosen, P.S. A Regenerative Approach to the Successful Treatment of Peri-Implantitis: A Consecutive Series of 170 Implants in 100 Patients with 2-to 10-Year Follow-Up. Int. J. Periodontics Restor. Dent. 2015, 35, 857. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez Regueiro, I.; Martinez Rodriguez, N.; Barona Dorado, C.; Sanz-Sánchez, I.; Montero, E.; Ata-Ali, J.; Duarte, F.; Martínez-González, J.M. Surgical Approach Combining Implantoplasty and Reconstructive Therapy with Locally Delivered Antibiotic in the Treatment of Peri-implantitis: A Prospective Clinical Case Series. Clin. Implant. Dent. Relat. Res. 2021, 23, 864–873. [Google Scholar] [CrossRef] [PubMed]
- Isler, S.C.; Soysal, F.; Ceyhanlı, T.; Bakırarar, B.; Unsal, B. Regenerative Surgical Treatment of Peri-implantitis Using Either a Collagen Membrane or Concentrated Growth Factor: A 12-month Randomized Clinical Trial. Clin. Implant. Dent. Relat. Res. 2018, 20, 703–712. [Google Scholar] [CrossRef] [PubMed]
- La Monaca, G.; Pranno, N.; Annibali, S.; Cristalli, M.P.; Polimeni, A. Clinical and Radiographic Outcomes of a Surgical Reconstructive Approach in the Treatment of Peri-implantitis Lesions: A 5-year Prospective Case Series. Clin. Oral Implant. Res. 2018, 29, 1025–1037. [Google Scholar] [CrossRef] [PubMed]
- Mercado, F.; Hamlet, S.; Ivanovski, S. Regenerative Surgical Therapy for Peri-implantitis Using Deproteinized Bovine Bone Mineral with 10% Collagen, Enamel Matrix Derivative and Doxycycline—A Prospective 3-year Cohort Study. Clin. Oral Implant. Res. 2018, 29, 583–591. [Google Scholar] [CrossRef] [PubMed]
- Polymeri, A.; Anssari-Moin, D.; van der Horst, J.; Wismeijer, D.; Laine, M.L.; Loos, B.G. Surgical Treatment of Peri-implantitis Defects with Two Different Xenograft Granules: A Randomized Clinical Pilot Study. Clin. Oral Implant. Res. 2020, 31, 1047–1060. [Google Scholar] [CrossRef]
- Roccuzzo, M.; Gaudioso, L.; Lungo, M.; Dalmasso, P. Surgical Therapy of Single Peri-implantitis Intrabony Defects, by Means of Deproteinized Bovine Bone Mineral with 10% Collagen. J. Clin. Periodontol. 2016, 43, 311–318. [Google Scholar] [CrossRef]
- Roccuzzo, M.; Mirra, D.; Pittoni, D.; Ramieri, G.; Roccuzzo, A. Reconstructive Treatment of Peri-implantitis Infrabony Defects of Various Configurations: 5-year Survival and Success. Clin. Oral Implant. Res. 2021, 32, 1209–1217. [Google Scholar] [CrossRef]
- Isrctn Reconstructive Surgical Therapy of Peri-Implantitis Bone Defects. 2019. Available online: https://www.isrctn.com/ISRCTN67095066 (accessed on 10 April 2022).
- Aghazadeh, A.; Rutger Persson, G.; Renvert, S. A Single-centre Randomized Controlled Clinical Trial on the Adjunct Treatment of Intra-bony Defects with Autogenous Bone or a Xenograft: Results after 12 Months. J. Clin. Periodontol. 2012, 39, 666–673. [Google Scholar] [CrossRef]
- Aghazadeh, A.; Persson, R.G.; Renvert, S. Impact of Bone Defect Morphology on the Outcome of Reconstructive Treatment of Peri-Implantitis. Int. J. Implant. Dent. 2020, 6, 33. [Google Scholar] [CrossRef] [PubMed]
- Nct Evaluation of Photodynamic Therapy in Treatment of Peri-Implantitis. 2022. Available online: https://clinicaltrials.gov/show/NCT05187663 (accessed on 10 April 2022).
- Roos-Jansåker, A.; Renvert, H.; Lindahl, C.; Renvert, S. Submerged Healing Following Surgical Treatment of Peri-implantitis: A Case Series. J. Clin. Periodontol. 2007, 34, 723–727. [Google Scholar] [CrossRef] [PubMed]
- Roos-Jansåker, A.; Lindahl, C.; Persson, G.R.; Renvert, S. Long-term Stability of Surgical Bone Regenerative Procedures of Peri-implantitis Lesions in a Prospective Case–Control Study over 3 Years. J. Clin. Periodontol. 2011, 38, 590–597. [Google Scholar] [CrossRef]
- Roos-Jansåker, A.; Persson, G.R.; Lindahl, C.; Renvert, S. Surgical Treatment of Peri-implantitis Using a Bone Substitute with or without a Resorbable Membrane: A 5-year Follow-up. J. Clin. Periodontol. 2014, 41, 1108–1114. [Google Scholar] [CrossRef] [PubMed]
- Randles, B.M.; Pasquetto, I.V.; Golshan, M.S.; Borgman, C.L. Using the Jupyter Notebook as a Tool for Open Science: An Empirical Study. In Proceedings of the 2017 ACM/IEEE Joint Conference on Digital Libraries (JCDL), Toronto, ON, Canada, 19–23 June 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–2. [Google Scholar]
- Petrelli, M.; Petrelli, M. Setting up Your Python Environment, Easily. In Introduction to Python in Earth Science Data Analysis: From Descriptive Statistics to Machine Learning; Springer: Berlin/Heidelberg, Germany, 2021; pp. 3–9. [Google Scholar]
- Sarica, S.; Luo, J. Stopwords in Technical Language Processing. PLoS ONE 2021, 16, e0254937. [Google Scholar] [CrossRef] [PubMed]
- Hunter, J.D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
- Waskom, M. Seaborn: Statistical Data Visualization. J. Open Source Softw. 2021, 6, 3021. [Google Scholar] [CrossRef]
- Wolf, T.; Debut, L.; Sanh, V.; Chaumond, J.; Delangue, C.; Moi, A.; Cistac, P.; Rault, T.; Louf, R.; Funtowicz, M. Transformers: State-of-the-Art Natural Language Processing. In Proceedings of the Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, Online, 16–20 November 2020; pp. 38–45. [Google Scholar]
- Lin, T.; Wang, Y.; Liu, X.; Qiu, X. A Survey of Transformers. AI Open 2022, 3, 111–132. [Google Scholar] [CrossRef]
- Khalili, A.; Ahmad, M. A Review of Cell Adhesion Studies for Biomedical and Biological Applications. Int. J. Mol. Sci. 2015, 16, 18149–18184. [Google Scholar] [CrossRef]
- Salloum, S.A.; Al-Emran, M.; Monem, A.A.; Shaalan, K. Using Text Mining Techniques for Extracting Information from Research Articles. In Intelligent Natural Language Processing: Trends and Applications; Springer: Berlin/Heidelberg, Germany, 2018; pp. 373–397. [Google Scholar]
- Thakur, K.; Kumar, V. Application of Text Mining Techniques on Scholarly Research Articles: Methods and Tools. New Rev. Acad. Librariansh. 2022, 28, 279–302. [Google Scholar] [CrossRef]
- Wang, J.; Dong, Y. Measurement of Text Similarity: A Survey. Information 2020, 11, 421. [Google Scholar] [CrossRef]
- Bisong, E. Google Colaboratory. In Building Machine Learning and Deep Learning Models on Google Cloud Platform: A Comprehensive Guide for Beginners; Bisong, E., Ed.; Apress: Berkeley, CA, USA, 2019; pp. 59–64. ISBN 978-1-4842-4470-8. [Google Scholar]
- Saif, H.; Fernandez, M.; He, Y.; Alani, H. On Stopwords, Filtering and Data Sparsity for Sentiment Analysis of Twitter; The Open University: Milton Keynes, UK, 2014. [Google Scholar]
- Kaur, J.; Buttar, P.K. A Systematic Review on Stopword Removal Algorithms. Int. J. Future Revolut. Comput. Sci. Commun. Eng. 2018, 4, 207–210. [Google Scholar]
- Messina, N.; Amato, G.; Esuli, A.; Falchi, F.; Gennaro, C.; Marchand-Maillet, S. Fine-Grained Visual Textual Alignment for Cross-Modal Retrieval Using Transformer Encoders. ACM Trans. Multimed. Comput. Commun. Appl. (TOMM) 2021, 17, 1–23. [Google Scholar] [CrossRef]
- Schofield, A.; Magnusson, M.; Mimno, D. Pulling out the Stops: Rethinking Stopword Removal for Topic Models. In Proceedings of the Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics, Valencia, Spain, 3–7 April 2017; pp. 432–436. [Google Scholar]
- Huang, X.; Lin, J.; Demner-Fushman, D. Evaluation of PICO as a Knowledge Representation for Clinical Questions. In Proceedings of the AMIA Annual Symposium Proceedings, Washington, DC, USA, 11–15 November 2006; American Medical Informatics Association: Bethesda, MD, USA, 2006; Volume 2006, p. 359. [Google Scholar]
- Bramer, W.M.; Rethlefsen, M.L.; Kleijnen, J.; Franco, O.H. Optimal Database Combinations for Literature Searches in Systematic Reviews: A Prospective Exploratory Study. Syst. Rev. 2017, 6, 245. [Google Scholar] [CrossRef]
- Ezugwu, A.E.; Ikotun, A.M.; Oyelade, O.O.; Abualigah, L.; Agushaka, J.O.; Eke, C.I.; Akinyelu, A.A. A Comprehensive Survey of Clustering Algorithms: State-of-the-Art Machine Learning Applications, Taxonomy, Challenges, and Future Research Prospects. Eng. Appl. Artif. Intell. 2022, 110, 104743. [Google Scholar] [CrossRef]
- Hamel, C.; Hersi, M.; Kelly, S.E.; Tricco, A.C.; Straus, S.; Wells, G.; Pham, B.; Hutton, B. Guidance for Using Artificial Intelligence for Title and Abstract Screening While Conducting Knowledge Syntheses. BMC Med. Res. Methodol. 2021, 21, 285. [Google Scholar] [CrossRef]
ID | Authors | Title | Ref. |
---|---|---|---|
1 | Andersen H., Aass AM. and Wohlfahrt, JC. | Porous titanium granules in the treatment of peri-implant osseous defects-a 7-year follow-up study | [26] |
2 | Jepsen K., Jepsen S., Laine, M. L., Anssari Moin D., Pilloni A., Zeza B., Sanz M., Ortiz-Vigon A., Roos-Jansaker AM., and Renvert S. | Reconstruction of Peri-implant Osseous Defects: A Multicenter Randomized Trial | [27] |
3 | Wohlfahrt JC., Lyngstadaas SP., Ronold HJ., Saxegaard EE., Jan Eirik KS., and Aass AM. | Porous titanium granules in the surgical treatment of peri-implant osseous defects: a randomized clinical trial | [28] |
4 | Emanuel N., Machtei EE., Reichart M., and Shapira, L. | D-PLEX500: a local biodegradable prolonged release doxycycline-formulated bone graft for the treatment for peri-implantitis. A randomized controlled clinical study | [29] |
5 | Renvert S., Giovannoli JL., Roos-Jansaker AM., and Rinke S. | Surgical treatment of peri-implantitis with or without a deproteinized bovine bone mineral and a native bilayer collagen membrane: A randomized clinical trial | [30] |
6 | Isehed C., Holmlun, A., Renvert S., Svenson B., Johansson I., and Lundberg P. | Effectiveness of enamel matrix derivative on the clinical and microbiological outcomes following surgical regenerative treatment of peri-implantitis. A randomized controlled trial | [31] |
7 | Isehed C., Svenson B., Lundberg P., and Holmlund A. | Surgical treatment of peri-implantitis using enamel matrix derivative, an RCT: 3- and 5-year follow-up | [32] |
8 | Renvert S., Roos-Jansaker AM., and Persson GR. | Surgical treatment of peri-implantitis lesions with or without the use of a bone substitute-a randomized clinical trial | [33] |
9 | Nct | Peri-implantitis-Reconstructive Surgical Therapy | [34] |
ID | Authors | Title | Ref. |
---|---|---|---|
1 | Froum SJ., Froum SH., and Rosen PS. | A Regenerative Approach to the Successful Treatment of Peri-implantitis: A Consecutive Series of 170 Implants in 100 Patients with 2- to 10-Year Follow-up | [35] |
2 | Gonzalez Regueiro I., Martinez Rodriguez N., Barona Dorado C., Sanz-Sanchez I., Montero E., Ata-Ali J., Duarte F., and Martinez-Gonzalez JM. | Surgical approach combining implantoplasty and reconstructive therapy with locally delivered antibiotic in the treatment of peri-implantitis: A prospective clinical case series | [36] |
3 | Isler SC., Soysal F., Ceyhanli T., Bakirarar B., and Unsal B. | Regenerative surgical treatment of peri-implantitis using either a collagen membrane or concentrated growth factor: A 12-month randomized clinical trial | [37] |
4 | La Monaca G., Pranno N., Annibali S., Cristalli MP., and Polimeni A. | Clinical and radiographic outcomes of a surgical reconstructive approach in the treatment of peri-implantitis lesions: A 5-year prospective case series | [38] |
5 | Mercado F., Hamlet S., and Ivanovski S. | Regenerative surgical therapy for peri-implantitis using deproteinized bovine bone mineral with 10% collagen, enamel matrix derivative and Doxycycline-A prospective 3-year cohort study | [39] |
6 | Polymeri A., Anssari-Moin D., van der Horst J., Wismeijer D., Laine ML., and Loos BG. | Surgical treatment of peri-implantitis defects with two different xenograft granules: A randomized clinical pilot study | [40] |
7 | Roccuzzo M., Gaudioso L., Lungo M., and Dalmasso P. | Surgical therapy of single peri-implantitis intrabony defects, by means of deproteinized bovine bone mineral with 10% collagen | [41] |
8 | Roccuzzo M., Mirra D., Pittoni D., Ramieri G., and Roccuzzo A. | Reconstructive treatment of peri-implantitis infrabony defects of various configurations: 5-year survival and success | [42] |
9 | Isrctn | Reconstructive surgical therapy of peri-implantitis bone defects | [43] |
10 | Aghazadeh A., Persson RG., and Renvert S. | A single-centre randomized controlled clinical trial on the adjunct treatment of intra-bony defects with autogenous bone or a xenograft: results after 12 months | [44] |
11 | Aghazadeh A., Persson, RG., and Renvert S. | Impact of bone defect morphology on the outcome of reconstructive treatment of peri-implantitis | [45] |
12 | Nct | Evaluation of Photodynamic Therapy in Treatment of Peri-implantitis | [46] |
13 | Roos-Jansaker AM., Renvert H., Lindahl C., and Renvert S. | Submerged healing following surgical treatment of peri-implantitis: a case series | [47] |
14 | Roos-Jansaker AM., Lindahl C., Persson RG., and Renvert S. | Long-term stability of surgical bone regenerative procedures of peri-implantitis lesions in a prospective case-control study over 3 years | [48] |
15 | Roos-Jansaker AM., Persson RG., Lindahl C., and Renvert S. | Surgical treatment of peri-implantitis using a bone substitute with or without a resorbable membrane: a 5-year follow-up | [49] |
all-MiniLM-L6-v2 | all-MiniLM-L12-v2 | all-Mpnet-Base-v2 | all-Distilroberta-v1 | |
---|---|---|---|---|
Local computer (no GPU) | 3–6 | 4–7 | 30–50 | 16–30 |
Cloud environment (CPU) | 0.16 | 0.12 | 1.4 | 0.75 |
Cloud environment (GPU) | 0.01 | 0.02 | 0.03 | 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galli, C.; Donos, N.; Calciolari, E. Performance of 4 Pre-Trained Sentence Transformer Models in the Semantic Query of a Systematic Review Dataset on Peri-Implantitis. Information 2024, 15, 68. https://doi.org/10.3390/info15020068
Galli C, Donos N, Calciolari E. Performance of 4 Pre-Trained Sentence Transformer Models in the Semantic Query of a Systematic Review Dataset on Peri-Implantitis. Information. 2024; 15(2):68. https://doi.org/10.3390/info15020068
Chicago/Turabian StyleGalli, Carlo, Nikolaos Donos, and Elena Calciolari. 2024. "Performance of 4 Pre-Trained Sentence Transformer Models in the Semantic Query of a Systematic Review Dataset on Peri-Implantitis" Information 15, no. 2: 68. https://doi.org/10.3390/info15020068
APA StyleGalli, C., Donos, N., & Calciolari, E. (2024). Performance of 4 Pre-Trained Sentence Transformer Models in the Semantic Query of a Systematic Review Dataset on Peri-Implantitis. Information, 15(2), 68. https://doi.org/10.3390/info15020068