Directed Criminal Networks: Temporal Analysis and Disruption
Abstract
:1. Introduction
1.1. Related Work in Criminal Network Analysis
1.1.1. Disruption Analysis
1.1.2. Temporal Analysis
1.2. Contribution of the Manuscript
2. Materials and Methods
2.1. Order
2.2. Size
2.3. Density
2.4. Degree Centrality
2.5. Betweenness Centrality
2.6. Harmonic Closeness Centrality
2.7. Degree Centralization
2.8. Betweenness Centralization
2.9. Global Efficiency
2.10. Degree Entropy
2.11. Average Clustering Coefficient
2.12. Assortativity
2.13. Number of Strongly Connected Components
2.14. Order of the Largest Strongly Connected Component
3. Network Diagnostics
3.1. Dataset and Software
3.2. Temporal Analysis
3.3. Analysis of the Time-Averaged Network
3.4. Discussion of the Results
4. Attacking Criminal Networks
4.1. Methodology
4.2. Results
4.3. Discussion of the Results
5. Concluding Remarks
5.1. Contribution
5.2. Future Work
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sparrow, M.K. The application of network analysis to criminal intelligence: An assessment of the prospects. Soc. Netw. 1991, 13, 251–274. [Google Scholar] [CrossRef]
- Cavallaro, L.; Ficara, A.; De Meo, P.; Fiumara, G.; Catanese, S.; Bagdasar, O.; Song, W.; Liotta, A. Disrupting resilient criminal networks through data analysis: The case of Sicilian Mafia. PLoS ONE 2020, 15, e0236476. [Google Scholar] [CrossRef]
- Musciotto, F.; Miccichè, S. Effective strategies for targeted attacks to the network of Cosa Nostra affiliates. EPJ Data Sci. 2022, 11, 11. [Google Scholar] [CrossRef]
- Bouchard, M. On the Resilience of Illegal Drug Markets. Glob. Crime 2007, 8, 325–344. [Google Scholar] [CrossRef]
- Bright, D.A. Disrupting and Dismantling Dark Networks: Lessons from Social Network Analysis and Law Enforcement Simulations. In Illuminating Dark Networks, 1st ed.; Gerdes, L.M., Ed.; Cambridge University Press: Cambridge, UK, 2015; pp. 39–51. [Google Scholar] [CrossRef]
- Bright, D.; Greenhill, C.; Britz, T.; Ritter, A.; Morselli, C. Criminal network vulnerabilities and adaptations. Glob. Crime 2017, 18, 424–441. [Google Scholar] [CrossRef]
- Wood, G. The structure and vulnerability of a drug trafficking collaboration network. Soc. Netw. 2017, 48, 1–9. [Google Scholar] [CrossRef]
- Krebs, V. Uncloaking Terrorist Networks. First Monday 2002, 7, 941. [Google Scholar] [CrossRef]
- Carley, K.M. Estimating vulnerabilities in large covert networks. In Proceedings of the 2004 International Symposium on Command and Control Research and Technology, Evidence Based Research, Vienna, VA, USA, 14–16 September 2004. [Google Scholar]
- Cunningham, D.; Everton, S.F. Dark Network Resilience in a Hostile Environment: Optimizing Centralization and Density. Criminol. Crim. Justice Law Soc. 2015, 16, 1–20. [Google Scholar]
- Su, Z.; Ren, K.; Zhang, R.; Tan, S.Y. Disrupting Terrorist Networks Based on Link Prediction: A Case Study of the 9–11 Hijackers Network. IEEE Access 2019, 7, 61689–61696. [Google Scholar] [CrossRef]
- Eiselt, H. Destabilization of terrorist networks. Chaos Solitons Fractals 2018, 108, 111–118. [Google Scholar] [CrossRef]
- Lindelauf, R.; Hamers, H.; Husslage, B. Cooperative game theoretic centrality analysis of terrorist networks: The cases of Jemaah Islamiyah and Al Qaeda. Eur. J. Oper. Res. 2013, 229, 230–238. [Google Scholar] [CrossRef]
- Nie, T.; Guo, Z.; Zhao, K.; Lu, Z.M. Using mapping entropy to identify node centrality in complex networks. Phys. A Stat. Mech. Its Appl. 2016, 453, 290–297. [Google Scholar] [CrossRef]
- Ai, X. Node Importance Ranking of Complex Networks with Entropy Variation. Entropy 2017, 19, 303. [Google Scholar] [CrossRef]
- De Andrade, R.L.; Rêgo, L.C.; Coelho Da Silva, T.L.; De Macêdo, J.A.F.; Silva, W.C. Energy disruptive centrality with an application to criminal network. Commun. Nonlinear Sci. Numer. Simul. 2021, 99, 105834. [Google Scholar] [CrossRef]
- Xu, J.; Chen, H. The topology of dark networks. Commun. ACM 2008, 51, 58–65. [Google Scholar] [CrossRef]
- Lindelauf, R.; Borm, P.; Hamers, H. Understanding Terrorist Network Topologies and Their Resilience against Disruption; Operations Research; Springer: Vienna, Austria, 2009; pp. 61–72. [Google Scholar]
- De Seranno, S. Using Social Network Analysis to Unravel Illicit Drug Supply Networks: A Systematic Literature Review. Maklu 2023, 7, 129–152. [Google Scholar]
- Ahmadi, Z.; Nguyen, H.H.; Zhang, Z.; Bozhkov, D.; Kudenko, D.; Jofre, M.; Calderoni, F.; Cohen, N.; Solewicz, Y. Inductive and transductive link prediction for criminal network analysis. J. Comput. Sci. 2023, 72, 102063. [Google Scholar] [CrossRef]
- Ribeiro, H.V.; Lopes, D.D.; Pessa, A.A.; Martins, A.F.; Da Cunha, B.R.; Gonçalves, S.; Lenzi, E.K.; Hanley, Q.S.; Perc, M. Deep learning criminal networks. Chaos Solitons Fractals 2023, 172, 113579. [Google Scholar] [CrossRef]
- Morselli, C.; Giguère, C.; Petit, K. The efficiency/security trade-off in criminal networks. Soc. Netw. 2007, 29, 143–153. [Google Scholar] [CrossRef]
- Freeman, M.E. Pushing the Envelope of Pedagogical Gaming: Dark Networks. Political Sci. Politics 2017, 50, 1083–1088. [Google Scholar] [CrossRef]
- Dempsey, D. Social Network Analytics in Policing and Security: Efficacy and Ethical Considerations. 2021. Available online: https://www.westmidlands-pcc.gov.uk/wp-content/uploads/2021/10/2021-07-21-EC-Agenda-Item-2-Social-Network-Analysis-Primer.pdf?x95272 (accessed on 9 January 2024).
- Duijn, P.A.C.; Kashirin, V.; Sloot, P.M.A. The Relative Ineffectiveness of Criminal Network Disruption. Sci. Rep. 2014, 4, 4238. [Google Scholar] [CrossRef]
- Duxbury, S.W.; Haynie, D.L. Criminal network security: An agent-based approach to evaluating network resilience*. Criminology 2019, 57, 314–342. [Google Scholar] [CrossRef]
- Ficara, A.; Curreri, F.; Fiumara, G.; De Meo, P.; Liotta, A. Covert Network Construction, Disruption, and Resilience: A Survey. Mathematics 2022, 10, 2929. [Google Scholar] [CrossRef]
- Agreste, S.; Catanese, S.; De Meo, P.; Ferrara, E.; Fiumara, G. Network structure and resilience of Mafia syndicates. Inf. Sci. 2016, 351, 30–47. [Google Scholar] [CrossRef]
- Catanese, S.; Meo, P.D.; Fiumara, G. Resilience in criminal networks. AAPP Cl. Sci. Fis. Mat. Nat. 2016, 94, A1. [Google Scholar] [CrossRef]
- Duxbury, S.; Haynie, D.L. The responsiveness of criminal networks to intentional attacks: Disrupting darknet drug trade. PLoS ONE 2020, 15, e0238019. [Google Scholar] [CrossRef] [PubMed]
- Diviak, T. Structural resilience and recovery of a criminal network after disruption: A simulation study. J. Exp. Criminol. 2023. [Google Scholar] [CrossRef]
- Morselli, C.; Petit, K. Law-Enforcement Disruption of a Drug Importation Network. Glob. Crime 2007, 8, 109–130. [Google Scholar] [CrossRef]
- Bright, D.A.; Delaney, J.J. Evolution of a drug trafficking network: Mapping changes in network structure and function across time. Glob. Crime 2013, 14, 238–260. [Google Scholar] [CrossRef]
- Bright, D.; Koskinen, J.; Malm, A. Illicit Network Dynamics: The Formation and Evolution of a Drug Trafficking Network. J. Quant. Criminol. 2019, 35, 237–258. [Google Scholar] [CrossRef]
- Ozgul, F.; Erdem, Z. Deciding Resilient Criminal Networks. In Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015 (ASONAM ’15), New York, NY, USA, 25–28 August 2015; pp. 1368–1372. [Google Scholar] [CrossRef]
- Berlusconi, G. Come at the king, you best not miss: Criminal network adaptation after law enforcement targeting of key players. Glob. Crime 2022, 23, 44–64. [Google Scholar] [CrossRef]
- Wasserman, S.; Faust, K. Social Network Analysis: Methods and Applications, 1st ed.; Cambridge University Press: Cambridge, UK, 1994. [Google Scholar] [CrossRef]
- Newman, M.E.J. Networks, 2nd ed.; Oxford University Press: Oxford, UK; New York, NY, USA, 2018. [Google Scholar]
- Freeman, L.C. Centrality in social networks conceptual clarification. Soc. Netw. 1978, 1, 215–239. [Google Scholar] [CrossRef]
- Grassi, R.; Calderoni, F.; Bianchi, M.; Torriero, A. Betweenness to assess leaders in criminal networks: New evidence using the dual projection approach. Soc. Netw. 2019, 56, 23–32. [Google Scholar] [CrossRef]
- Rochat, Y. Closeness Centrality Extended to Unconnected Graphs: The Harmonic Centrality Index; ASNA: Zurich, Switzerland, 2009. [Google Scholar]
- Gil, J.; Schmidt, S. The origin of the Mexican network of power. In Proceedings of the International Social Network Conference, Evanston, IL, USA, 25–27 July 1996; pp. 22–25. [Google Scholar]
- Borgatti, S.P. Identifying sets of key players in a social network. Comput. Math. Organ. Theory 2006, 12, 21–34. [Google Scholar] [CrossRef]
- Borgatti, S.P.; Everett, M.G.; Freeman, L.C. Ucinet for Windows: Software for Social Network Analysis; Analytic Technologies: Harvard, MA, USA, 2002; Volume 6, pp. 12–15. [Google Scholar]
- Latora, V.; Marchiori, M. Efficient Behavior of Small-World Networks. Phys. Rev. Lett. 2001, 87, 198701. [Google Scholar] [CrossRef]
- Gutfraind, A. Optimizing Topological Cascade Resilience Based on the Structure of Terrorist Networks. PLoS ONE 2010, 5, e13448. [Google Scholar] [CrossRef]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Saramäki, J.; Kivelä, M.; Onnela, J.P.; Kaski, K.; Kertész, J. Generalizations of the clustering coefficient to weighted complex networks. Phys. Rev. E 2007, 75, 027105. [Google Scholar] [CrossRef]
- Antoniou, I.E.; Tsompa, E.T. Statistical Analysis of Weighted Networks. Discret. Dyn. Nat. Soc. 2008, 2008, 375452. [Google Scholar] [CrossRef]
- Fagiolo, G. Clustering in complex directed networks. Phys. Rev. E 2007, 76, 026107. [Google Scholar] [CrossRef]
- Morselli, C. Inside Criminal Networks; Studies of Organized Crime; Springer: New York, NY, USA, 2009; Volume 8. [Google Scholar] [CrossRef]
- Newman, M.E.J. Mixing patterns in networks. Phys. Rev. E 2003, 67, 026126. [Google Scholar] [CrossRef]
- Pigorsch, U.; Sabek, M. Assortative mixing in weighted directed networks. Phys. A Stat. Mech. Its Appl. 2022, 604, 127850. [Google Scholar] [CrossRef]
- Spyropoulos, A.Z.; Bratsas, C.; Makris, G.C.; Ioannidis, E.; Tsiantos, V.; Antoniou, I. Investigation of Terrorist Organizations Using Intelligent Tools: A Dynamic Network Analysis with Weighted Links. Mathematics 2022, 10, 1092. [Google Scholar] [CrossRef]
- Spyropoulos, A.Z.; Bratsas, C.; Makris, G.C.; Ioannidis, E.; Tsiantos, V.; Antoniou, I. Entropy and Network Centralities as Intelligent Tools for the Investigation of Terrorist Organizations. Entropy 2021, 23, 1334. [Google Scholar] [CrossRef]
- Oliver, K.; Crossley, N.; Edwards, G.; Koskinen, J.; Everett, M.; Broccatelli, C. Covert Networks: Structures, Processes and Types; Unpublished Manuscript; University of Manchester: Manchester, UK, 2014; pp. 4–13. [Google Scholar]
- Sageman, M. Understanding Terror Networks; University of Pennsylvania Press: Philadelphia, PA, USA, 2004. [Google Scholar] [CrossRef]
- Arquilla, J.; Ronfeldt, D. The Advent of Netwar; RAND Corporation: Santa Monica, CA, USA, 1996. [Google Scholar] [CrossRef]
- Arquilla, J.; David Ronfeldt, E. Networks and Netwars: The Future of Terror, Crime, and Militancy; RAND Corporation: Santa Monica, CA, USA, 2001. [Google Scholar] [CrossRef]
- Schneider, C.M.; Moreira, A.A.; Andrade, J.S.; Havlin, S.; Herrmann, H.J. Mitigation of malicious attacks on networks. Proc. Natl. Acad. Sci. USA 2011, 108, 3838–3841. [Google Scholar] [CrossRef]
- Lou, Y.; Wang, L.; Chen, G. Structural Robustness of Complex Networks: A Survey of A Posteriori Measures [Feature]. IEEE Circuits Syst. Mag. 2023, 23, 12–35. [Google Scholar] [CrossRef]
- Roberts, N.; Everton, S. Monitoring and Disrupting Dark Networks: A Bias Toward the Center and What It Costs Us. In Eradicating Terrorism from the Middle East: Policy and Administrative Approaches; Dawoody, A.R., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 29–42. [Google Scholar] [CrossRef]
- Ficara, A.; Curreri, F.; Fiumara, G.; De Meo, P. Human and Social Capital Strategies for Mafia Network Disruption. Trans. Info. For. Sec. 2023, 18, 1926–1936. [Google Scholar] [CrossRef]
- Roberts, N.; Everton, S.F. Strategies for Combating Dark Networks. J. Soc. Struct. 2011, 12, 1–32. [Google Scholar] [CrossRef]
Months | Number of Interventions | Seizures |
---|---|---|
2 | - | - |
4 | - | - |
6 | - | - |
8 | 1 | Hashish: 300 kg |
10 | - | - |
12 | 3 | Cocaine: 15 kg, 15 kg, 2 kg |
14 | 1 | Hashish: 401 kg |
16 | 1 | Cocaine: 9 kg |
18 | 2 | Hashish: 500 kg, Cocaine: 2 kg |
20 | 1 | Hashish: 2200 kg |
22 | 2 | Cocaine: 12 kg, 15 kg |
Indicator | Value |
---|---|
Order (Section 2.1) | 110 |
Size (Section 2.2) | 295 |
Density (Section 2.3) | 0.025 |
In-Degree Centralization (Section 2.7) | 0.3206 |
Out-Degree Centralization (Section 2.7) | 0.4795 |
In-Strength Centralization (Section 2.7) | 0.1456 |
Out-Strength Centralization (Section 2.7) | 0.1775 |
Betweenness Centralization (Section 2.8) | 0.5363 |
Global efficiency (Section 2.9) | 0.1688 |
In-Degree Entropy (Section 2.10) | 0.8509 |
Out-Degree Entropy (Section 2.10) | 0.7746 |
Average clustering coefficient (Section 2.11) | 0.03 |
Number of strongly connected components (Section 2.13) | 45 |
(Section 2.14) | 66 |
Assortativity | Standard Deviation | |
---|---|---|
Undirected | −0.36 | 0.03 |
Undirected Weighted | −0.37 | 0.05 |
in-in | −0.38 | 0 |
in-out | −0.34 | 0.04 |
out-in | −0.36 | 0.03 |
out-out | −0.36 | 0.61 |
weighted in-in | −0.33 | 0.07 |
weighted in-out | −0.33 | 0.24 |
weighted out-in | −0.32 | 0.35 |
weighted out-out | −0.34 | 0.14 |
Centrality | R | Threshold |
---|---|---|
In-Harmonic | 0.2127 | 14 |
Out-Harmonic | 0.2082 | 12 |
Betweenness | 0.1936 | 11 |
In-Degree | 0.2042 | 10 |
Out-Degree | 0.1530 | 15 |
In-Strength | 0.1554 | 19 |
Out-Strength | 0.1739 | 15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anastasiadis, E.K.; Antoniou, I. Directed Criminal Networks: Temporal Analysis and Disruption. Information 2024, 15, 84. https://doi.org/10.3390/info15020084
Anastasiadis EK, Antoniou I. Directed Criminal Networks: Temporal Analysis and Disruption. Information. 2024; 15(2):84. https://doi.org/10.3390/info15020084
Chicago/Turabian StyleAnastasiadis, Efstathios Konstantinos, and Ioannis Antoniou. 2024. "Directed Criminal Networks: Temporal Analysis and Disruption" Information 15, no. 2: 84. https://doi.org/10.3390/info15020084
APA StyleAnastasiadis, E. K., & Antoniou, I. (2024). Directed Criminal Networks: Temporal Analysis and Disruption. Information, 15(2), 84. https://doi.org/10.3390/info15020084