
Citation: Chatterjee, K.; Raju, M.;

Selvamuthukumaran, N.; Pramod, M.;

Krishna Kumar, B.; Bandyopadhyay,

A.; Mallik, S. HaCk: Hand Gesture

Classification Using a Convolutional

Neural Network and Generative

Adversarial Network-Based Data

Generation Model. Information 2024,

15, 85. https://doi.org/10.3390/

info15020085

Academic Editors: Haifeng Wang,

Norma B. Ojeda and Lu He

Received: 23 December 2023

Revised: 19 January 2024

Accepted: 26 January 2024

Published: 4 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Article

HaCk: Hand Gesture Classification Using a Convolutional
Neural Network and Generative Adversarial Network-Based
Data Generation Model
Kalyan Chatterjee 1 , M. Raju 1 , N. Selvamuthukumaran 1 , M. Pramod 1 , B. Krishna Kumar 1 ,
Anjan Bandyopadhyay 2 and Saurav Mallik 3,4,*

1 Department of Computer Science & Engineering, Nalla Malla Reddy Engineering College,
Hyderabad 500088, Telangana, India; kalyanchatterjee@ieee.org or kalyanchatterjee.cse@nmrec.edu.in (K.C.);
raju.cse@nmrec.edu.in (M.R.); selvamuthukumaran.cse@nmrec.edu.in (N.S.);
macherlapramod@gmail.com (M.P.); krishnakumar.cse@nmrec.edu.in (B.K.K.)

2 School of Computer Engineering, Kalinga Institute of Industrial Technology,
Bhubaneswar 751024, Odisha, India; anjan.bandyopadhyayfcs@kiit.ac.in

3 Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
4 Department of Pharmacology & Toxicology, The University of Arizona, Tucson, MA 85721, USA
* Correspondence: sauravmtech2@gmail.com or smallik@hsph.harvard.edu

Abstract: According to global data on visual impairment from the World Health Organization in 2010,
an estimated 285 million individuals, including 39 million who are blind, face visual impairments.
These individuals use non-contact methods such as voice commands and hand gestures to interact
with user interfaces. Recognizing the significance of hand gesture recognition for this vulnerable
population and aiming to improve user usability, this study employs a Generative Adversarial
Network (GAN) coupled with Convolutional Neural Network (CNN) techniques to generate a diverse
set of hand gestures. Recognizing hand gestures using HaCk typically involves a two-step approach.
First, the GAN is trained to generate synthetic hand gesture images, and then a separate CNN is
employed to classify gestures in real-world data. The evaluation of HaCk is demonstrated through a
comparative analysis using Leave-One-Out Cross-Validation (LOO CV) and Holdout Cross-Validation
(Holdout CV) tests. These tests are crucial for assessing the model’s generalization, robustness, and
suitability for practical applications. The experimental results reveal that the performance of HaCk
surpasses that of other compared ML/DL models, including CNN, FTCNN, CDCGAN, GestureGAN,
GGAN, MHG-CAN, and ASL models. Specifically, the improvement percentages for the LOO CV
Test are 17.03%, 20.27%, 15.76%, 13.76%, 10.16%, 5.90%, and 15.90%, respectively. Similarly, for the
Holdout CV Test, HaCk outperforms HU, ZM, GB, GB-ZM, GB-HU, CDCGAN, GestureGAN, GGAN,
MHG-CAN, and ASL models, with improvement percentages of 56.87%, 15.91%, 13.97%, 24.81%,
23.52%, 17.72%, 15.72%, 12.12%, 7.94%, and 17.94%, respectively.

Keywords: CNN; GAN; hand gesture; Holdout CV test; LOO CV test

1. Introduction

Generative Adversarial Networks (GANs) play a crucial role in diverse areas of data
science. One common hurdle in numerous data science projects revolves around insufficient
or imbalanced datasets. Addressing this challenge necessitates the availability of diverse
generators capable of producing data tailored to specific requirements.

In the context of hand gesture recognition (GR), a sizable dataset comprising diverse
hand gesture images is typically necessary. Conventional methods involve manual capture
through cameras or utilizing existing benchmark datasets online. In contrast, our proposed
HaCk system introduces an alternative by generating these gestures using a pretrained
generator. The resulting images exhibit variations in similarity, with each image in a specific

Information 2024, 15, 85. https://doi.org/10.3390/info15020085 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info15020085
https://doi.org/10.3390/info15020085
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0002-9787-3689
https://orcid.org/0009-0007-3444-6376
https://orcid.org/0000-0003-1052-1478
https://orcid.org/0009-0001-2238-4768
https://orcid.org/0009-0006-8103-780X
https://orcid.org/0000-0001-7670-2269
https://orcid.org/0000-0003-4107-6784
https://doi.org/10.3390/info15020085
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info15020085?type=check_update&version=2

Information 2024, 15, 85 2 of 27

category representing the same gesture from different perspectives. Consequently, a CNN
trained on this generated dataset can discern the inherent variations within each gesture.

The core concept of this study revolves around employing a dataset encompassing five
categories, each comprising 6600 images of a specific hand gesture. This dataset is expanded
via image augmentation techniques using an available online dataset. The GAN is trained
with this augmented dataset, empowering the generator to produce diverse hand gestures
in desired quantities. Subsequently, this generated dataset is utilized to train a CNN-based
classifier, facilitating the straightforward classification of various hand gestures.

1.1. Research Gap

Existing hand-based GR systems typically utilize real hand gesture images as the
training dataset. However, a limitation of this approach is the limited variation within the
dataset. As a result, the model cannot handle unfavorable scenarios, such as unusual hand
shapes, finger orientations, or cases where a person has only four fingers. Consequently,
models trained solely on real hand gesture images can be apparent in such situations. Aside
from that, we also identified the following limitations:

1. Limited Diversity in Generated Data: Many GAN-based data generation models
tend to produce synthetic data that closely resemble the training data. However,
these data need to enhance the diversity of generated hand gestures, ensuring that
the CNN classifier is robust in recognizing a more comprehensive range of gestures
and variations.

2. Small Imbalanced Dataset: Hand gesture datasets are often limited in size, lead-
ing to challenges in effectively training a CNN classifier. Addressing this gap may
involve investigating techniques for data augmentation and class imbalances in
generated datasets.

3. Generalization to Real-World Conditions: GAN-generated data may only par-
tially capture the complexity of real-world scenarios, such as lighting, background,
and noise variations.

4. Optimal Architectures and Hyperparameters: Identifying the most suitable CNN
architectures and hyperparameters for hand gesture recognition tasks using GAN-
generated data is an ongoing challenge.

5. Efficiency and Real-Time Processing: Real-time hand gesture recognition appli-
cations, such as sign language interpretation and gesture-based interfaces, require
efficient CNN models. One research gap involves developing CNN architectures that
balance accuracy and computational efficiency with real-time processing.

To overcome these challenges, we propose a solution in which we generate images of
hand gestures that closely resemble real ones but exhibit all possible variations. These gen-
erated images are combined with real samples to form a comprehensive dataset. By training
a CNN using this augmented dataset, the model gains the capability to handle the unusual
scenarios mentioned earlier. Also, this can improve such systems’ accuracy, robustness,
and applicability.

1.2. Motivation

The development of the Hand Gesture Classification Using a Convolutional Neural Network
and Generative Adversarial Network-Based Data Generation Model (HaCk) employed a com-
bination of Convolutional Neural Network (CNN) and Generative Adversarial Network
(GAN)-based data generation. The rationale behind this approach was to use the strengths
of CNNs for effective hand gesture classification while leveraging GANs for generating
synthetic data in order to enhance HaCk’s robustness and generalization capabilities.

By incorporating a CNN, the authors aimed to exploit the network’s ability to auto-
matically learn hierarchical features from input images, making it suitable for hand gesture
classification. Additionally, integrating a GAN-based data generation model allowed for
the creation of diverse and realistic synthetic hand gesture data. This synthetic data aug-

Information 2024, 15, 85 3 of 27

mentation approach was expected to address potential limitations related to insufficient
real-world data, thereby improving the model’s overall performance and adaptability.

The discussion of possible outcomes involved exploring the effectiveness of the com-
bined CNN and GAN approach in achieving accurate and reliable hand gesture classifi-
cation results. The authors considered factors such as increased classification accuracy,
enhanced HaCk robustness to variations in hand gestures, and the potential for the model
to generalize well to previously unseen data. The incorporation of synthetic data through
GANs was expected to contribute to a more comprehensive and versatile hand gesture
classification system.

The significant contributions of this study are as follows:

1. This study proposes an unsupervised learning model focused on data efficiency
to augment skeleton-based data, HaCk. HaCk can adapt to novel data containing
previously unseen classes once trained.

2. As it does not necessitate prior knowledge and examination of input data during
training, HaCk facilitates an automated cross-domain data augmentation procedure,
requiring minimal hyperparameter adjustment.

3. HaCk utilizes real data for training customized gesture classifiers, allowing users to
significantly reduce the effort needed to gather individualized training data.

The remaining sections of this study are organized as follows: Section 2 presents the
literature survey conducted to develop our HaCk system. Section 3 outlines the system
architecture and problem formulation of HaCk. Section 4 presents a description of the
dataset used. Section 5 details the development process of the proposed HaCk. Section 6
evaluates the performance of the proposed model. Lastly, Section 7 summarizes the
conclusions and outlines potential future work.

2. Literature Survey

In this section, we provide relevant studies related to the utilization of deep learning
(DL) techniques for gesture recognition (GR), customized classifiers, domain translation,
and style transfer networks (STNs).

2.1. The Application of DL Techniques in GR and Human Activity Recognition

Deep learning (DL) has emerged as a powerful tool for image recognition, feature
detection, and pattern recognition. Similarly, notable advancements have been witnessed in
Gesture Recognition (GR) and Human Activity Recognition (HAR) through DL techniques.
It surpasses other ML techniques like SVM.

DL-based models have crucial advantages over ML models [1,2], as described below:

• DL models obviate the requirement for manual feature extraction, eliminating the
dependence on domain-specific knowledge.

• DL models can learn more complex and profound features compared to ML-based
heuristic approaches.

• DL models can utilize unlabeled data during training, whereas traditional ML methods
rely heavily on a significant amount of labeled data.

Various strategies have been investigated and assessed for devising architectures of
Deep Neural Networks (DNNs) in this domain. Since sensory data encompass prolonged
time series signals, a vital consideration entails devising convolutional units that can
adeptly capture temporal features. Initially, early studies employed 1D convolution for
each sensor channel [3]. However, this structure proved inadequate in capturing the
interaction between different sensor channels, prompting the introduction of recurrent
neural networks (RNNs) and 2D convolution [4]. Furthermore, to model inter-channel
relationships and long-term dependencies within sensory signals, researchers designed 2D
convolution with RNNs and LSTM neural networks to capture the long-term sequential
correlations [5–7].

Information 2024, 15, 85 4 of 27

Fang et al. introduced an algorithm for gesture recognition that integrates CNNs
and Deep Convolutional Generative Adversarial Networks (DHaCk), namely CDCGAN.
This algorithm enhanced traditional gesture recognition methods by showcasing increased
resilience to illumination variations and background interference [8].

Tang et al. introduced the GestureGAN model, designed to translate wild hand
gestures into gestures, emphasizing a deep understanding of the high-level mapping
between the input source and the desired output target gesture. The enhancement in the
performance of the GestureGAN model was achieved through improvements in the hand
gesture classifier’s accuracy and effectiveness [9].

Zhu et al. introduced a GGAN model for gesture recognition utilizing Generative Adver-
sarial Networks. This GGAN model operates by employing a deep convolutional structure as
the discriminator and a deep transpose convolutional structure as the generator [10].

Garg et al. introduced the Multiview Hand Gestures with Conditional Adversarial Net-
work (MHG-CAN), which focuses on a gesture synthesis model that employs conditional
translation. Additionally, the MHG-CAN model incorporates multiviews for recognizing
hand gestures [11].

Barbhuiya et al. presented a resilient model for hand gesture recognition through the
utilization of deep ensemble neural networks (i.e., the ASL model). The initial step involves
creating a pretrained network using the VGG16 architecture, incorporating a self-attention
layer within the VGG16 structure. The integration of this self-attention module facilitates
the acquisition of distinctive image features, enhancing the differentiation among various
gesture categories [12].

2.2. Customized Classifiers

All the aforementioned methods involve training for hand gesture recognition using
pre-labeled data. Despite the applicability of these user-independent classifiers across vari-
ous users, several studies have pointed out lower accuracy levels compared to customized
classifiers trained with data explicitly tailored to the target user.

Weiss and Lockhart [13] presented evidence of the effectiveness of custom classifiers
in a human activity recognition task using smartphone sensors.

Fallahzadeh and Ghasemzadeh [14] developed an activity recognition algorithm.
Siirtolas et al. [15] presented the efficacy of custom classifiers through incremental

learning. An accuracy improvement of up to 3.99% was achieved in linear and quadratic
discriminant analysis.

2.3. Domain Adaptation and STNs

We aim to develop customized classifiers without the need for specific examples of
target gestures. To achieve this, machine learning (ML) and computer vision (CV) were
used to introduce domain adaptation and various techniques of STNs.

Most studies leverage the Generative Adversarial Network, wherein a generator
network (GN) creates a new image based on an input. In contrast, a discriminator network
(DN) evaluates its authenticity and domain label. Traditionally, the supervised translation
of images has relied on paired training data [16]. However, recent interest has shifted
towards unsupervised translation, which eliminates the need for paired images based on
the concept of cycle consistency [17]. This cycle consistency ensures that a translated image
can be accurately converted to its original form.

However, this approach is limited to one-to-one translation between domains. To ad-
dress this limitation, Almahairi et al. introduced Augmented CycleGAN [18]. Augmented
CycleGAN allows for one-to-many or many-to-many translation mappings by incorporat-
ing auxiliary variables that capture variations independent of the content being translated.

Another noteworthy advancement is StyleGAN, proposed by Karras et al. [19]. The joint
learning in StyleGAN enhances training efficiency and improves outcomes compared to
pairwise transformations.

Information 2024, 15, 85 5 of 27

Considerable advancements have been made in computer vision and graphics image
stylization techniques. One popular approach involves manipulating the intermediate
features of a CNN. The gram matrix was utilized for CNN’s middle feature extraction from
a pretrained VGG network to represent style [20–28]. Similarly, Holden et al. proposed
analogous ideas for motion stylization [29].

Wu et al. proposed patch swapping between feature maps of the input and style
images to achieve stylization [20]. Sheng et al. proposed the features of whitening and
de-whitening to preserve the input image’s global structure while reflecting the reference
image’s style [27]. Dan [21] proposed an image style by adjusting the retrieval, description,
and stylization. Johnson et al. proposed perceptual losses for real-time style transfer and
super resolution [25].

Building upon these concepts, we use STNs for GR to train customized classifiers. We
extend the capabilities of HaCk to facilitate the translation of sensory data among different
users and gesture classes.

3. System Architecture and Problem Formulation
3.1. System Architecture

The HaCk system comprises a Conditional Generative Adversarial Network and a
Convolution Neural Network as a classifier trained using the dataset. This dataset was
created by expanding the initially captured dataset through image augmentation tech-
niques. After that, the Conditional Generative Adversarial Network underwent train-
ing, allowing its generator component to produce a dataset that closely resembles real
data but includes variations, resulting in the generated dataset. As a result of this process,
two distinct datasets were created: one containing real images, and the other containing
images generated by HaCk.

Following the generation of this dataset, our proposed HaCk system proceeded to train
two separate CNN models. One of these models was trained using the real data samples
obtained from the original dataset. In contrast, the other was trained using the generated
dataset produced by the Conditional Generative Adversarial Network generator. This
means two CNN models were produced, each trained on a different dataset—one on real
images and the other on synthetic images generated by HaCk.

In the final step of the system’s operation, real-time images were captured through a
webcam. These real-time images, which had not been previously seen by the system, were
then used to make predictions. Both CNN models, the one trained on real data and the
one trained on the generated dataset, were employed to predict the labels of these newly
captured images. Once predictions had been made, the accuracy of both CNN networks
was compared. This comparison assessed how well each CNN performed in recognizing
and classifying the real-time images, providing insights into the system’s effectiveness for
hand gesture recognition.

Hence, our proposed HaCk system uses a conditional Generative Adversarial Network
to generate synthetic data, trains two CNN models—one on real data and the other on the
generated data—and then evaluates their performance in real-time image classification
to gauge the utility of the generated data for improving the CNN-based hand gesture
recognition system.

Figure 1 illustrates the system architecture of our proposed HaCk system.

3.2. Problem Formulation

To design the objective function, let us assumel that X represents the input data
representing hand gestures, Y represents the corresponding class labels, C is the CNN, G is
the GAN, and D is the data generation model.

Information 2024, 15, 85 6 of 27

........

User

User

Input as hand
gesture

Web
Interface

CNN Model
trained by the
generated data

CNN Model
trained by the

real data

Hand Gesture

Output

Output

Generated Data

HaCk Model

Expanded Dataset

Real Dataset

Image
Augmentation

Figure 1. System architecture of the HaCk system.

3.2.1. CNN Formulation

The CNN C is designed to map input data X to class labels Y. Let W and b represent
the weights and biases of the CNN layers.

Z[l] = W[l]A[l−1] + b[l] (1)

A[l] = σ(Z[l]) (2)

LCNN(Y, Ŷ) = − 1
m

m

∑
i=1

n

∑
j=1

(
Yij log(Ŷij) + (1 − Yij) log(1 − Ŷij)

)
(3)

where:

• Z[l] is the linear output of layer l;
• A[l] is the activation of layer l;
• σ is the activation function;
• LCNN is the CNN loss function;
• Ŷ is the predicted output;
• m is the number of samples;
• n is the number of classes.

Information 2024, 15, 85 7 of 27

3.2.2. GAN and Data Generation Formulation

The GAN G is used to generate synthetic data Xsynthetic. The data generation model D
is employed to enhance the quality of generated data.

Zlatent ∼ N (0, 1) (4)

Xsynthetic = G(Zlatent) (5)

Xaugmented = D(X, Xsynthetic) (6)

LGAN(Xsynthetic) = log
(

D(Xsynthetic)
)

(7)

where:

• Zlatent is the latent vector;
• Xaugmented is the augmented dataset;
• LGAN is the GAN loss function.

4. Dataset

The hand gesture recognition database was obtained from [30], composed of a set
of near-infrared images acquired by a Leap Motion sensor. The database comprises ten
different hand gestures performed by ten subjects (five men and five women).

Dataset Description

This image database utilizes the infrared data provided by the Leap Motion device for
hand-related information. Consequently, this database is designed by collecting samples
of various hand poses using a Leap Motion sensor positioned on a table. Subjects were
seated near the sensor and moved their right hand within a range of 10 to 15 cm in front of
it. A diverse set of 10 distinct hand gestures was performed by ten different individuals,
consisting of five women and five men. Each subject and gesture combination resulted in
the recording of 200 frames.

Figure 2 illustrates a selection of these hand gestures performed by different subjects.
The top row, from left to right, showcases the following gestures: an open palm parallel to
the sensor (Palm), a closed palm with the thumb and index fingers extended (L), a closed
fist (Fist), a fist perpendicular to the sensor (Fist m), and a closed palm with the thumb
extended (Thumb). The bottom row, also from left to right, displays the following gestures:
a closed palm with the index extended (Index), an open palm with the index and thumb
forming a circle (OK), an open palm perpendicular to the sensor (Palm m), a partially closed
palm in a C shape (C), and an open palm with all fingers spread apart (Palm d).

Figure 2. Data samples [30].

5. Proposed HaCk System

This study presents a hand GR system capable of classifying different hand gestures
into their respective classes and assigning appropriate labels. Our HaCk system can generate
synthetic data that resemble real-world data while introducing variations. This capability
is particularly beneficial in augmenting datasets for hand gesture recognition, thereby
addressing potential limitations in the availability of diverse real-world data.

Information 2024, 15, 85 8 of 27

The reasons behind the selection of a CNN over all other classifiers, including Deci-
sion Trees (DTs), Logistic Regression (LR), K-Nearest Neighbor (KNN), Artificial Neural
Networks (ANNs), and Support Vector Machines (SVMs), are as follows:

• Feature Extraction: CNNs are known for their ability to automatically learn and extract
relevant features from image data. Also, CNNs are used for image classification tasks
due to their hierarchical feature extraction capabilities.

• Spatial Hierarchies: CNNs are designed to capture spatial hierarchies in images,
recognizing patterns at different scales. This architecture aligns with the hierarchical
nature of hand gesture recognition, where specific hand shapes and movements may
be composed of more minor, recognizable elements.

• Computational Efficiency: CNNs are known for their computational efficiency in pro-
cessing image data, which can be important in real-time or resource-constrained applications.

HaCk comprises the following three phases: (i) data generation, (ii) training, and
(iii) testing.

5.1. Phase I: Data Generation Phase

In this phase, we applied various image augmentation techniques, such as flipping,
shifting, and rotation, to a dataset comprising five classes of hand gestures, with each class
containing 550 images. This operation expanded the dataset, resulting in five classes with
6600 images in each class. The expanded dataset was then pre-processed and converted into
NumPy arrays to train a conditional GAN. After training, the GAN’s generator successfully
generated images of different hand gestures, resulting in the generated dataset.

5.1.1. Discriminator

The output layer of the model consists of only two neurons, forming a simple classifier.
After each epoch, the model undergoes improvement by updating its weights using real
and fake samples. The discriminator assigns a value of 0 to fake data and 1 to real data,
allowing it to classify generated data from the generator as fake samples. The discriminator
receives input data of the same dimension as the actual data, whether real or fake, and
produces an output of either 0 or 1, corresponding to fake or real samples, respectively.
The sigmoid activation function is utilized for model training. The loss function employed
by the discriminator is binary cross-entropy, as described in Equation (8).

∆θd =
1
m

m

∑
i=1

(
log D

(
x(i)
)
+ log

(
1 − D

(
G
(

z(i)
))))

(8)

Here, ∆θd defines the loss function for the discriminator, m represents the total number
of samples in the test dataset, and D refers to the discriminator, which is a function or
model used in GANs to distinguish between real and generated data. The discriminator
(D) wants to maximize this stochastic function. x represents the real data samples, G refers
to the generator, which is used in GANs to generate synthetic or fake data, and z represents
the input noise vector used as an input to the generator to generate fake data.

Algorithm 1 outlines the employed discrimination procedure in detail.

5.1.2. Generator

The generator in HaCk is responsible for generating data samples based on the input
noise. It continually improves the performance of HaCk by learning from the feedback pro-
vided by the discriminator. Its main objective is to deceive the discriminator by generating
data that appear to be fake but which do not contain fake information. The generator inputs
random noise and produces generated data that resemble the original samples. The ac-
tivation function used in the generator model is the hyperbolic tangent (tanh) function.
Algorithm 2 outlines the employed generator procedure in detail.

Information 2024, 15, 85 9 of 27

Algorithm 1 Discriminator Algorithm

1: Input: Real data samples X, synthetic data samples Xsynthetic
2: Output: Discriminator loss LD
3: procedure TRAINDISCRIMINATOR(X, Xsynthetic)
4: Initialize discriminator parameters θD
5: for epoch = 1 to Nepochs do
6: for x ∈ X do
7: Lreal = − log(D(x))
8: Update θD using gradient of Lreal w.r.t. θD

9: for xsynthetic ∈ Xsynthetic do
10: Lsynthetic = − log(1 − D(xsynthetic))
11: Update θD using gradient of Lsynthetic w.r.t. θD

12: LD = 1
2 (Lreal + Lsynthetic)

13: return LD

Algorithm 2 Generator Algorithm

1: Input: Latent vector Z
2: Output: Synthetic data sample Xsynthetic
3: procedure GENERATEDATA(Z)
4: Initialize generator parameters θG
5: Generate synthetic data: Xsynthetic = G(Z; θG)
6: return Xsynthetic

The loss function for the generator is similar to that of the discriminator, but in the case
of the generator, the loss for real data samples is set to zero. As a result, the first term in
the expression is eliminated, and the equation is simplified to the following mathematical
expression, as shown in Equation (9).

∆θg =
1
m

m

∑
i=1

log
(

1 − D
(

G
(

z(i)
)))

(9)

Here, ∆θg defines the loss function for the generator (G), and the generator (G) wants
to minimize this stochastic function.

Figure 3 depicts the loss function for the generator (G).

5.2. Phase II: Training Phase

In the training phase, two CNNs are trained using different datasets. One model is
trained using real data samples (hand gestures). In contrast, the other model is trained using
generated data samples from the generator of the conditional GAN model, as described in
Figure 4. Both CNN networks have the same configuration, and the hyperparameter setup
is described in Table 1.

Choosing hyperparameters for CNN and GAN models is crucial to achieving an
optimal performance. Therefore, we discuss the hyperparameters for each type of model,
as follows:

1. Hyperparameters for CNN:

(a) Number of Layers: This includes the number of convolutional layers, pooling
layers, and fully connected layers. The architecture of the CNN dramatically
impacts its ability to learn complex features from the data.

(b) Filter Size and Stride: The size of convolutional filters (kernels) and the stride
at which they move over the input data determine the spatial characteristics
that the network can capture.

Information 2024, 15, 85 10 of 27

(c) Number of Filters: The number of filters in each convolutional layer affects
the depth of the network and its capacity to learn features at different levels
of abstraction.

(d) Activation Functions: Choices like the use of Rectified Linear Units (ReLUs)
are standard, but other activation functions like Leaky ReLU or Sigmoid can
also be used. The chosen activation functions affect the network’s non-linearity.

(e) Dropout Rate: Dropout is a regularization technique that helps prevent overfit-
ting by randomly dropping a fraction of neurons during training. The dropout
rate is a hyperparameter determining the number of neurons to drop.

(f) Batch Size: The number of data samples used in each training iteration (mini
batch) can impact training speed and generalization. It is important to find a
balance between computational efficiency and convergence.

(g) Learning Rate: The learning rate determines the step size during gradient
descent optimization. It must be carefully tuned to ensure convergence without
overshooting or becoming stuck in local minima.

(h) Weight Initialization: How the network weights are initialized can affect
training. Standard methods include random initialization and techniques like
Xavier/Glorot initialization.

(i) Optimizer: The choice of optimization algorithms, such as Stochastic Gradient
Descent (SGD), Adam, or RMSProp, can influence the convergence speed and
final performance.

(j) Padding: Padding can be valid (no padding) or the same (zero-padding), and
this affects the spatial dimensions of the output feature maps after convolution.

2. Hyperparameters for GAN:

(a) lGenerator Architecture: Similar to CNN, the architecture of the genera-
tor network is crucial. This includes the number of layers, filter sizes, and
activation functions.

(b) Discriminator Architecture: The discriminator must also be designed appro-
priately. It should be capable of distinguishing between real and generated
data effectively.

(c) Learning Rate: The learning rates for both the generator and discriminator are
essential. They can impact the stability of GAN training. Sometimes, different
learning rates are used for each network.

(d) Loss Functions: GANs use two loss functions—generator loss (often a form
of binary cross-entropy) and the discriminator loss. The choice of these loss
functions can influence the quality of generated samples.

(e) Noise Dimension: GANs often take random noise as inputs to generate data.
The dimensionality and distribution of this noise can impact the diversity and
quality of generated samples.

(f) Batch Size: Similar to CNNs, the batch size used during GAN training can
affect the stability and convergence of the model.

(g) Training Duration: Deciding when to stop training is essential. Training GANs
can be tricky, and setting the number of epochs or other stopping criteria is a
hyperparameter choice.

(h) Regularization Techniques: Techniques like weight clipping (for Wasserstein
GANs), gradient penalties, and feature matching can stabilize training and
improve sample quality.

(i) Architecture Variants: There are various GAN variants, such as Deep Convo-
lutional GAN (DHaCk), Wasserstein GAN (WGAN), and more. The choice of
GAN architecture should align with the specific task and data.

(j) Data Preprocessing: Data preprocessing, including normalization and scaling,
can also be considered part of the hyperparameter selection process.

Information 2024, 15, 85 11 of 27

Loss Function

0 200 400 600 800 1000
No. of Epochs

0
0.5
1.0
1.5
2.0

4.0
3.5
3.0
2.5

Lo
ss

Figure 3. Plot of loss functions with numbers of epochs, where d_loss1 and d_loss2 are the discrimi-
nator’s loss on real and generated samples, respectively, and g_loss is the loss of the generator (G).

Figure 4. The training phase using the CNN.

Each CNN model consists of an input layer with dimensions of 224 × 224 × 3, match-
ing the input image dimension. They also include three convolution layers: the first with a

Information 2024, 15, 85 12 of 27

kernel size of 5 × 5, 32 filters, 2,2 strides, and valid padding; the second with a kernel size
of 3 × 3, 64 filters, and valid padding; and the third with a kernel size of 3 × 3, 64 filters,
and valid padding. Three max pooling layers with a kernel size of 2 × 2 are also inserted
between the convolution layers. After flattening, there are three hidden layers, each with
128 neurons.

Table 1. Best Hyperparameter configuration.

Hyperparameter Value

Loss Validation MSE
Optimizer Softmax

Metrics MSE, and MAE
Batch size 68
Time step 1

Epochs 500
Number of CNN layers 300

Learning rate 0.211
Dropout 0.2

Activation function ReLU

During training, the input dimensions (224 × 224 × 3) are reduced to 110 × 110 × 32
after the first convolution operation, then further reduced to 55 × 55 × 32 after max
pooling. Similarly, after the second convolution operation, the dimensions are reduced to
53 × 53 × 64, and after max pooling, they become 26 × 26 × 64. After the third convolution
operation, the dimensions are reduced to 24 × 24 × 64, and after max pooling, they become
12 × 12 × 64.

Upon flattening, the total number of parameters is calculated as 12 × 12 × 64 = 9216.
This is connected to a hidden layer with 128 neurons, resulting in a total number of
parameters of 9216 × 128 = 1,179,648. This is further connected to a second hidden
layer, increasing the total number of parameters to 1,179,648 × 128 = 150,994,944. Finally,
the second hidden layer is connected to a third hidden layer, resulting in a total number
of parameters of 150,994,944 × 128 = 19,327,352,832. The output layer, consisting of
five neurons, represents the five classes (Fist, L, OK, Palm, and Peace) for classification.
After training, the model can predict the probability of an input image belonging to a
particular class.

5.3. Phase III: Testing Phase

In the real-time testing environment, we utilized the webcam of a laptop to capture
gestures continuously. We mapped different keyboard keys to various functionalities, such
as using ’B’ to capture the background, ’R’ to reset the background, and the space bar to
capture an image and predict its class using our trained CNN model. The predicted class
was then displayed alongside the captured gesture in real time.

We employed the background subtraction technique to extract hand images from the
overall captured images. This process involved converting the image from BGR to GRAY,
keeping the hand white and the rest of the image black. By utilizing functions like cvtColor
and GaussianBlur, we transformed the image into a binary image, enabling our model to
recognize hand gestures of individuals with different complexions, such as fair or wheatish.

Subsequently, the pre-processed hand gesture images were passed through the CNN
model for prediction. The model determined the class of the gesture—whether it was Fist,
L, OK, Palm, or Peace. To initiate result prediction, we used the space bar. When pressed,
the model employed its CNN network to predict the class or category of the image and
calculate the probability of it belonging to each class. The class with the highest probability
was designated as the class of the input image. We then combined the result with the output
image, creating a black-and-white representation of the hand gesture, its label, and the
corresponding action to be performed.

Information 2024, 15, 85 13 of 27

5.4. Algorithm and Flow Chart of the HaCk System

The integration process of CNN and GAN for Hand Gesture Classification using HaCk
can be described as follows:

5.4.1. CNN Integration

The Convolutional Neural Network (CNN) serves as the primary classifier for hand
gesture recognition. Its architecture is designed to effectively capture hierarchical features
within the input images. The CNN comprises multiple convolutional layers, each followed
by activation functions and pooling layers. These convolutional layers are instrumental in
automatically learning spatial hierarchies and discriminating features, which are crucial for
distinguishing various hand gestures.

In our integration, we adopted a modified VGG16 architecture as the backbone of our
CNN. This architecture has proved to be effective in image classification tasks. Moreover,
to enhance the network’s attention to salient image features, a self-attention mechanism
was embedded within the VGG16 structure. This self-attention module enables the model
to focus on distinguishing features, improving the overall differentiability among different
hand gesture categories.

5.4.2. GAN Integration

To address data scarcity and potentially improve the model’s robustness, we intro-
duced a GAN for data generation. The GAN consists of a generator and a discriminator.

5.4.3. Integration and Training Procedure

The integration of CNN and GAN involves a joint training procedure to improve both
the classification performance and the quality of generated data, described as follows:

• Pretraining the CNN: The CNN is initially pretrained using available labeled data for
hand gestures. This step provides the CNN with a foundation for recognizing real
hand gestures accurately.

• Adversarial Training: GAN training involves a two-step process. First, the discriminator
is trained on both real and synthetic hand gesture images, which are optimized for
accurate discrimination. Subsequently, the generator is trained to produce synthetic
images that can effectively deceive the discriminator. This adversarial training loop is
iterated to refine both the generator and discriminator.

• Fine-Tuning the CNN: The CNN is then fine-tuned using the combined dataset of
real and synthetic hand gesture images generated by the GAN. This step helps the
CNN adapt to the augmented dataset, potentially improving its generalization to
unseen gestures.

5.4.4. Parameter Selection Rationale

The selection of hyperparameters, such as learning rates, batch sizes, and the architec-
ture of both the CNN and GAN, is crucial for the success of the integrated model. These
parameters were chosen through a systematic exploration and validation process, aim-
ing for stable convergence during training and optimal performance on the task of hand
gesture classification.

This integrated approach leverages the strengths of both CNN and GAN, enhancing
the model’s ability to recognize diverse hand gestures even in the presence of limited
labeled data, as described in Table 1.

Algorithm 3 outlines the hand GR process implemented in HaCk, while the workflow
of the proposed HaCk is illustrated in Figure 5.

Information 2024, 15, 85 14 of 27

Algorithm 3 Hand Gesture Classification Using a Convolutional Neural Network and
Generative Adversarial Network-Based Data Generation Model (HaCk)

Require:
1: G: Real and generated hand gesture images from test data

Ensure:
2: R: Predicted class labels for input images
3: Begin
4: Phase-I
5: Initialize the CNN-based classifier model
6: Train the generator of the GAN model using the generated hand gesture images
7: Generate a dataset containing both real and generated hand gesture images
8: Preprocess the dataset by converting images to grayscale and resizing them to a fixed

size
9: Split the dataset into training and testing sets

10: Phase-II
11: Initialize the GAN model
12: Train the CNN classifier model using the training set
13: Test the trained model on the testing set
14: Compute the accuracy of the classifier
15: Predict the class labels for newly input hand gesture images using the trained model
16: End

Real
Samples

Labels

Noise

Discriminator

Generator

OutputIn
pu

t

Predicted L
abel

Real/
Generated

Error

G
en

er
at

ed
sa

m
pl

es

HaCK Model

Figure 5. Conditional GAN workflow.

6. Experimental Results and Discussion

In this section, we demonstrate the performance of our proposed HaCk model through
a comparative analysis using LOO CV and Holdout CV tests.

The compared ML/DL models are: (i) CNN [31], (ii) FTCNN [32], (iii) CDCGAN [8],
(iv) GestureGAN [9], (v) GGAN [10], (vi) MHG-CAN [11], and (vii) ASL [12] for LOO
CV Test. For Holdout CV Test comparisons, the used ML/DL models are: (i) HU [33],
(ii) ZM [33], (iii) GB [33], (iv) GB-ZM [33], (v) GB-HU [33], (vii) CDCGAN [8], (viii) Ges-
tureGAN [9], (ix) GGAN [10], (x) MHG-CAN [11], and (xi) ASL [12].

The evaluation of the GAN-generated data against real-world datasets is used for
validating HaCk’s effectiveness, as described in Table 2.

Information 2024, 15, 85 15 of 27

Table 2. Evaluation of HaCk.

Dataset Metric Real-World
Data

GAN-Generated
Data

Combined Data (Real +
GAN)

Test Set
Accuracy 0.85 0.78 0.87
Precision 0.88 0.76 0.89
Recall 0.82 0.80 0.85
F1 score 0.85 0.78 0.87

Robustness
Testing

Success rate - 0.75 0.80

6.1. Model Evaluation

The network loss of HaCk is evaluated through the MSE and MAE metrics. Both MSE
and MAE are standard loss computation metrics.

MSE is a commonly used metric for measuring the loss of a predictive model. It
quantifies the average of the squared differences between the predicted values and the
actual observed values. MSE can be calculated based on the following steps:

• For each data point in the dataset used, subtract the actual observed value (the ground
truth) from the predicted value obtained from HaCk.

• Square the result of each subtraction to ensure that all differences are positive and
emphasize larger errors.

• Calculate the average (mean) of all these squared differences.

On the other hand, MAE is another metric used to evaluate the loss of a predictive
model. It calculates the average of the absolute differences between the predicted values
and the actual observed values. MAE can be calculated based on the following steps:

• For each data point in the dataset used, subtract the actual observed value from the
predicted value, taking the absolute value of the difference.

• Calculate the average (mean) of all these absolute differences.

MSE can be computed using (10).

MSE = 1/S ∗
(

S

∑
i=1

(yi − ŷi)
2

)
(10)

MAE can be computed using (11).

MAE = 1/S ∗
(

S

∑
i=1

|(yi − ŷi)|
)

(11)

Here, yi denotes the observed value, ŷi represents the predicted value, and S represents
the total number of samples used during testing.

Therefore, MSE and MAE give more weight to more significant errors due to the
squaring operation. As a result, these values penalize outliers more heavily and can
measured in squared units of the target variable, which may not always be interpretable.
Lower MSE and MAE values indicate a better model performance, meaning that, close to
0, HaCk’s predictions are identical to the actual values.

Figures 6 and 7 depict the loss (MSE and MAE) of the proposed HaCk system for both
the training and testing datasets. Observing these figures shows that the training and testing
losses rapidly decrease during the initial epochs. Subsequently, after around 50 epochs,
both plots stabilize, indicating that the training and testing losses converge to similar values.
This implies a consistent trend between the training and testing datasets, which is desirable
for sequential time series data. Furthermore, the loss remains approximately steady across
500 epochs.

Information 2024, 15, 85 16 of 27

No. of Epochs

Lo
ss

Loss Computation using MSE Metric

0 200 400 600 800 1000
0.0035
0.0040
0.0045
0.0050
0.0055

0.0070
0.0065
0.0060

0.0075

Figure 6. MSE of HaCk.

Loss Computation using MAE Metric

No. of Epochs

Lo
ss

0 200 400 600 800 1000
0.0034

0.0036

0.0038

0.0040

0.0042

0.0044

0.0046

Figure 7. MAE of HaCk.

6.2. Hand GR

We used a separate testing dataset of 550 real images of various hand gestures, each la-
beled accordingly, to analyze the results, as illustrated in Figure 8. When both trained CNN
models—one using real data samples and the other using generated data samples—were
employed to predict the class of these testing images, the following statistics were obtained:

• The CNN model, trained using real data samples, achieved an accuracy of 93% in
predicting the class of the testing hand gestures, as described in Figure 9.

• HaCk, trained using generated data samples, achieved an accuracy of 68% in predicting
the class of the testing hand gestures, as depicted in Figure 10.

Information 2024, 15, 85 17 of 27

Figure 8. Hand GR is conducted by the continuous prediction of hand gestures during the testing
phase in real time.

Fist L Okay PeacePlam

Fi
st

L
O
ka
y

Pe
ac
e

Pl
am

0

20

40

100

80

60

Figure 9. Result analysis using a heat map of CNN-based real samples.

Information 2024, 15, 85 18 of 27

Fist

Fi
st

L

L

Okay

O
ka
y

Plam

Pl
am

Peace

Pe
ac
e

0

10

20

70

60

50

40

30

80

Figure 10. Result analysis using a heat map of CNN-based generated samples.

Upon comparing the accuracy using Figures 9 and 10, we observed a remarkable re-
semblance between the generated data samples and the properties of the real data samples.

6.3. Comparison of Hand GR with Other Existing Models

We evaluate the performance of the proposed HaCk by comparing it with a previ-
ously reported technique, employing both Leave-One-Out Cross-Validation (LOO CV) and
Holdout Cross-Validation (Holdout CV) tests. The results are presented in Tables 3 and 4,
respectively.

As shown in Table 3, the proposed HaCk exhibits a mean accuracy that is 17.03%,
20.27%, 15.76%, 13.76%, 10.16%, 5.90%, and 15.90% higher than the CNN, FTCNN, CDC-
GAN, GestureGAN, GGAN, MHG-CAN, and ASL models, respectively. These findings
highlight the superior recognition accuracy of our proposed approach. Similarly, Table 4
also demonstrates HaCk’s superior mean accuracy performance compared to the earlier-
reported technique during the Holdout CV test. From Table 4, we can observe that the
proposed HaCk exhibits a mean accuracy that is 56.87%, 15.91%, 13.97%, 24.81%, 23.52%,
17.72%, 15.72%, 12.12%, 7.94%, and 17.94% higher than the HU, ZM, GB, GB-ZM, GB-HU,
CDCGAN, GestureGAN, GGAN, MHG-CAN, and ASL models, respectively.

Table 3. Compared models using LOO CV test.

Models Accuracy (%)

CNN [31] 78.93%
FTCNN [32] 75.69%

CDCGAN [8] 80.20%
GestureGAN [9] 82.20%

GGAN [10] 85.80%
MHG-CAN [11] 89.98%

ASL [12] 90.05%
HaCk (proposed) 95.96%

Information 2024, 15, 85 19 of 27

Table 4. Compared Models using Holdout CV test.

Models Accuracy (%)

HU [33] 41.05%
ZM [33] 82.01%
GB [33] 83.95%

GB-ZM [33] 73.11%
GB-HU [33] 74.40%

CDCGAN [8] 80.20%
GestureGAN [9] 82.20%

GGAN [10] 85.80%
MHG-CAN [11] 89.98%

ASL [12] 90.10%
HaCk (proposed) 97.92%

6.4. Computational Complexity

The computational complexity of our proposed HaCk system concerns the amount of
computational resources, such as time and memory, required to perform various operations
within the system. Several factors influence this complexity, and these can vary depending
on the specific architecture and size of the CNN and GAN models, the dataset size, and other
computational considerations. Below are some aspects that contribute to the model’s
computational complexity:

1. Model Architecture: The number of layers, neurons, and connections in the CNN
classifier, GAN generator, and discriminator networks significantly determine com-
putational complexity. Deeper and larger networks generally require more computa-
tional resources.

2. Training: Training deep neural networks like CNNs and GANs involves forward and
backward passes through the network, including matrix multiplications and gradient
calculations. The number of training iterations and the mini batch size can affect the
training time and memory usage.

3. Data Augmentation: If extensive data augmentation techniques are used to expand
the dataset, this can increase computational complexity during training and inference,
as additional transformations must be applied to the data.

4. GAN Training: Training a GAN involves multiple iterations of generator and dis-
criminator updates, which can be computationally intensive, especially for more
extensive networks.

5. Real-Time Inference: When using the system for real-time hand gesture recognition
with a webcam feed, the computational complexity depends on the inference speed of
the CNN model and the rate at which new frames are processed.

6. Hyperparameter Search: If hyperparameter tuning is performed, it adds an extra com-
putational burden as the system evaluates multiple combinations of hyperparameters.

7. Memory Usage: The size of the neural network parameters and the dataset size can
impact memory requirements. Large models and datasets may require more memory,
potentially leading to memory limitations on some hardware.

8. Optimization Techniques: Optimization techniques, such as weight quantization,
can influence the computational complexity and efficiency of the system.

9. Hardware Resources: The computational complexity depends on the available hard-
ware resources. High-performance GPUs or TPUs can handle more complex models
and larger datasets more efficiently than CPUs.

Hence, the computational complexity of HaCk is a multifaceted consideration influ-
enced by factors such as model architecture, data size, training and inference procedures,
and hardware resources.

Information 2024, 15, 85 20 of 27

6.5. Methodological Approaches

To enable a methodological comparison of the HaCk system, we use two models: the
(i) Multisensor Guided Hand Gesture Recognition System (MGHGRS) [34], and the (ii) Wear-
able Respiratory and Activity Monitoring (WRAM) System [35].

Table 5 describes the methodological comparison among all state-of-the-art models.
From Table 5, we observed the need for the development of HaCk based on various

factors, each of which plays a crucial role in meeting specific requirements, which can be
described as follows:

• Addressing Visual Impairment Challenges: HaCk is explicitly designed to address visual
impairment challenges, making it a suitable choice for applications where accessibility
for individuals with visual impairments is a priority.

• Non-Contact Interaction for Accessibility: The HaCk system’s emphasis on non-contact
interaction aligns with scenarios where hands-free or touchless interaction is essential
for user accessibility.

• Diverse Set of Hand Gestures: HaCk’s ability to generate a diverse set of hand ges-
tures suggests its versatility in accommodating a wide range of gestures. This
could be advantageous in applications requiring a comprehensive set of recognizable
hand movements.

• Two-Step Recognition Approach: The integration of CNN and GAN in a two-step recog-
nition approach enhances the model’s adaptability and performance.

• Rigorous Evaluation through Cross-Validation: HaCk undergoes rigorous evaluation
through cross-validation tests, indicating a focus on generalization, robustness, and prac-
tical suitability. This makes it a favorable choice for applications where reliability and
performance validation are critical.

• Versatility in Cross-Validation Tests: HaCk’s versatility, as demonstrated by its success
in both Leave-One-Out and Holdout Cross-Validation tests, suggests its potential
applicability across different datasets and scenarios.

• Ethical Considerations: Ethical considerations related to the generation of synthetic data
are acknowledged in relation to HaCk.

Therefore, the decision to develop HaCk was driven by specific application requirements
such as the need for accessibility, non-contact interaction, diverse gesture recognition, modular
recognition approaches, rigorous evaluation, versatility, and real-time responsiveness.

6.6. Real-World Application

Sign language interpretation using HaCk involves recognizing and translating sign
language gestures into corresponding textual or spoken representations, which can be
described as follows:

1. Data Collection:

(a) Gather a diverse dataset of sign language gestures representing various signs
and expressions.

(b) Annotate the dataset with corresponding labels or translations.

2. Model Training:

(a) Train HaCk based on a CNN and GAN architecture.
(b) Train the CNN to recognize hand gestures from visual inputs. At the same time,

employ the GAN for data augmentation or generating additional synthetic
data to improve HaCk system’s performance.

3. Gesture Recognition:

(a) Deploy the trained HaCk to recognize hand gestures in real-time or from
recorded video inputs.

(b) Process the visual information using the CNN component so that the corre-
sponding sign can be predicted.

Information 2024, 15, 85 21 of 27

4. Translation:

(a) Translate the recognized sign language gestures into textual or spoken form.
(b) Associate each recognized gesture with its corresponding meaning.

5. Output Display:

(a) Display the translated output, making it accessible to users who may not be
proficient in sign language.

(b) Options include displaying the translation as text or using a speech synthesis
system for spoken outputs.

6. User Interaction:

(a) Design the system to facilitate user interaction, allowing individuals to input
sign language gestures through a camera or other input devices.

(b) Consider providing feedback to users, such as highlighting the recognized
gestures on display.

7. Adaptability and Robustness:

(a) Ensure HaCk’s adaptability to different signing styles and variations in hand
movements.

(b) Implement robustness features for lighting conditions, background noise,
and occlusion variations.

8. User Feedback and Iterative Refinement:

(a) Encourage user feedback to improve HaCk’s accuracy and user experience.
(b) Consider implementing an iterative refinement process, updating HaCk based

on observed limitations and user suggestions.

9. Accessibility Features:

(a) Implement accessibility features within HaCk, like options for adjusting the
model’s sensitivity, adapting to different signing speeds, and accommodating
users with varying proficiency levels in sign language.

10. Integration with Assistive Technologies:

(a) Explore integration with assistive technologies to enhance accessibility for
individuals with differing abilities.

(b) Consider compatibility with smart glasses and wearable technology for seam-
less interaction.

11. Ethical Considerations:

(a) Address all ethical considerations related to user privacy, informed consent,
and the responsible use of AI technology in sign language interpretation.

12. Continuous Improvement:

(a) Implement feedback mechanisms for the continuous improvement of the HaCk
system based on advancements in AI and user feedback.

Sign language interpretation using HaCk involves a comprehensive pipeline that
combines computer vision, machine learning, and natural language processing to bridge
communication gaps and enhance accessibility for individuals who use sign language.

Information 2024, 15, 85 22 of 27

Table 5. Methodological comparison among all state-of-the-art models.

Models Network Architecture Training Strategy Data Preprocessing Advantages Limitations

MGHGRS [34] A multi-sensor data fusion
model comprising a
multilayer RNN.
The multilayer RNN consists
of an LSTM module and a
dropout layer.

Multiple label
classification.

Signal processing
and modeling
approaches.

(i) Improved accuracy, (ii) real-time
responsiveness, (iii) effective management of
depth data challenges, (iv) occlusion handling,
(v) adaptability to dynamic conditions,
(vi) versatility in collaboration tasks,
and (vii) a comparative edge over traditional
ML algorithms.

(i) Hardware complexity, (ii) cost
implications, (iii) adaptability to novel
gestures, (iv) sensitivity to
environmental changes,
(v) dependency on real-time processing,
and (vi) interference in
dynamic environments.

WRAM system [35] A fusion architecture
incorporating multiple
modalities is formed by
amalgamating a hybrid
hierarchical classification
(HHC) algorithm that
combines both deep learning
and threshold-based
methods.

Multiple users
breathing in
real-time.

Signal denoising
and DL.

The WRAM system [35] offers significant
advantages, ranging from accurate activity
recognition and in-depth breathing pattern
analysis to real-time monitoring capabilities,
demonstrating its potential impact on
healthcare and precision medicine.

(i) Limited generalization to diverse
populations, (ii) dependency on
participant compliance, (iii) sensitivity
to device placement, (iv) challenges in
handling unseen activities, (v) potential
interference in real-world
environments, (vi) data privacy and
ethical considerations, and (vii) limited
exploration of health conditions.

HaCk (proposed) Integration of CNN
and GAN.

Multiple label
classification based
on DL.

Data normalization
and scaling.

(i) Addressing visual impairment challenges,
(ii) non-contact interaction for accessibility, (iii)
diverse set of hand gestures, (iv) two-step
recognition approach, (v) evaluation through
rigorous cross-validation, (vi) versatility in
cross-validation tests, and (vii) contributing to
accessibility technology and potential for
real-time applications.

(i) Limited representativeness of visual
impairment, (ii) dependency on
non-contact interaction, (iii) synthetic
gesture generalization challenges,
and (iv) potential ethical considerations
in synthetic data generation.

Information 2024, 15, 85 23 of 27

6.7. Discussion

Certainly, explaining why the specific technique of background subtraction was chosen
for a CNN-based classifier for Hand Gesture Recognition (Hand GR) using a GAN-based
data generation model and how it compares to other methods is crucial to provide insights
into the design choices of the system. Below is an elaboration on this topic:

6.7.1. Choice of Background Subtraction

Background subtraction is a common pre-processing technique in computer vision and
gesture recognition applications, including Hand GR using CNNs and GANs. The rationale
behind choosing background subtraction in this context can be explained as follows:

1. Noise Reduction: Hand gesture recognition relies heavily on accurately detecting the
hand and its movements. A cluttered or dynamic background can introduce noise
into the input data, making it challenging for the CNN-based classifier to focus on
the hand itself. By subtracting the background, we isolate the region of interest (ROI),
which is the hand, and reduce noise from the surrounding environment.

2. Feature Extraction: Background subtraction simplifies feature extraction. The CNN
can then focus on extracting meaningful features from the hand region without being
distracted by irrelevant information in the background. This can lead to more robust
and accurate recognition of hand gestures.

3. Consistency: Lighting conditions and backgrounds can vary significantly in real-
world scenarios. Using background subtraction helps achieve consistency in the input
data, making it easier for the CNN model to generalize across different environments.

4. Real-Time Processing: For applications that require real-time processing, such as
gesture recognition for interactive systems, background subtraction can be com-
putationally efficient compared to more complex methods like background mod-
eling and subtraction. This allows for faster inference times, which is critical for
interactive applications.

Therefore, the choice of background subtraction in the context of the CNN-based
Classifier for Hand GR using a GAN-based data generation model is motivated by its
simplicity, real-time processing capabilities, noise reduction benefits, and suitability for
various real-world scenarios. However, the selection of the technique should be based
on the specific requirements and constraints of the application, considering factors like
computational resources, environmental conditions, and the desired level of accuracy.

6.7.2. Scalability, User Adaptability, and Computational Efficiency of the HaCk System

Let’s consider a real-life example of HaCk for sign language interpretation. This
example will help illustrate how HaCk addresses scalability, user adaptability, and compu-
tational efficiency.

• Scalability:

– Scenario: The system is deployed in a public space, such as a transportation hub,
where a diverse group of users may need to utilize a sign language interpreta-
tion service.

– Scalability Measures:

* The system is designed to handle a growing number of users, ensuring that
the model’s performance remains consistent even during peak usage times.

* Training the model on a large and diverse sign language dataset allows it to
recognize a broad range of gestures, accommodating various signing styles.

• User Adaptability:

– Scenario: The system caters to users with different signing proficiency levels and
physical characteristics.

– User Adaptability Measures:

Information 2024, 15, 85 24 of 27

* HaCk includes adaptive features that adjust its recognition sensitivity based
on individual user preferences, allowing both beginners and advanced sign-
ers to use the system effectively.

* Robustness in recognizing gestures from users with different hand shapes or
sizes is ensured through extensive training on diverse datasets.

• Computational Efficiency:

– Scenario: The system is integrated into a portable device that enables real-time
sign language interpretation on the go.

– Computational Efficiency Measures:

* HaCk is optimized for efficient inference on the device, ensuring minimal
latency in recognizing and interpreting gestures.

* Quantization techniques are applied to reduce HaCk’s size, making it suit-
able for deployment on resource-constrained devices without compromis-
ing performance.

• Operational Environments:

– Scenario: The system is used in various operational environments, including well-
lit indoor spaces and outdoor environments with dynamic lighting conditions.

– Operational Environment Measures:

* HaCk is trained to be robust to different lighting conditions, and it un-
dergoes thorough testing in diverse environments to ensure accurate ges-
ture recognition.

* Adaptive algorithms dynamically adjust recognition parameters based on en-
vironmental factors, maintaining their performance in challenging conditions.

Therefore, in this real-life example, HaCk is not only effective in controlled settings but
also scalable, adaptable to diverse users, and computationally efficient in addressing the
challenges of real-world sign language interpretation.

6.7.3. Ethical Considerations

Ethical considerations play a pivotal role in the development and deployment of
AI-powered gesture recognition systems, especially when aiming to ensure inclusivity and
accessibility for individuals with differing abilities. Below are they key ethical considera-
tions in this context:

• Inclusive Dataset Representation:

– Ethical Concern: Bias in training data that does not adequately represent individu-
als with differing abilities can lead to discriminatory outcomes.

– Mitigation: Ensure diverse representation in training datasets, encompassing
individuals with varying abilities, ages, genders, and cultural backgrounds.

• Privacy and Informed Consent:

– Ethical Concern: Gesture recognition systems may capture sensitive information;
obtaining informed consent is crucial to respect individuals’ privacy.

– Mitigation: Clearly communicate data collection purposes, offer opt-in/opt-out
choices, and provide transparent explanations about how data will be used,
stored, and shared.

• Accessibility in Design:

– Ethical Concern: Excluding individuals with certain disabilities due to design
limitations hinders inclusivity.

– Mitigation: Prioritize universal design principles, ensuring that the gesture recog-
nition system is accessible to individuals with diverse abilities and adaptable to
assistive technologies.

Information 2024, 15, 85 25 of 27

• Avoiding Reinforcement of Stereotypes:

– Ethical Concern: Biased algorithms can perpetuate stereotypes, affecting the fair
treatment of individuals with varying abilities.

– Mitigation: Regularly audit and test algorithms for bias, and implement strategies
to minimize and rectify biases that may arise during training.

• Interpretable and Explainable AI:

– Ethical Concern: Lack of interpretability in AI models may result in decisions that
are difficult to explain or understand.

– Mitigation: Prioritize the development of interpretable AI models to enhance
transparency, accountability, and user trust.

• Ensuring Fair Access:

– Ethical Concern: Limited accessibility to gesture recognition technology may
widen existing disparities for individuals with differing abilities.

– Mitigation: Strive to make the technology affordable, considerate of resource con-
straints, and compatible with a variety of devices to ensure widespread accessibility.

• Continuous User Feedback and Adaptability:

– Ethical Concern: A lack of continuous feedback mechanisms may result in systems
that do not adequately adapt to the needs of individuals with varying abilities.

– Mitigation: Establish channels for ongoing user feedback, incorporate user per-
spectives in system refinement, and ensure adaptability to evolving accessibil-
ity requirements.

• Guarding Against Unintended Consequences:

– Ethical Concern: Unintended consequences, such as misinterpretation of gestures
or inadvertent exclusion, may occur.

– Mitigation: Regularly assess the real-world impact of the gesture recognition
system, conduct usability testing with individuals with differing abilities, and
promptly address any issues identified.

• Education and Awareness:

– Ethical Concern: Lack of awareness about the capabilities and limitations of gesture
recognition systems can lead to unrealistic expectations.

– Mitigation: Provide transparent information to users about the system’s capabili-
ties, potential errors, and ongoing efforts to enhance inclusivity.

By addressing these ethical considerations, we can contribute to the responsible and
inclusive deployment of AI-powered gesture recognition technology, ensuring that it meets
the needs of all users, including those with diverse abilities. Ongoing collaboration with
relevant communities and stakeholders is crucial to the creation of systems that are both
technologically advanced and ethically sound.

7. Conclusions and Future Work

In this study, we utilized a conditional Generative Adversarial Network (GAN) as a
central component of our methodology. The primary objective of employing this GAN
was to generate synthetic images that accurately represent various hand gestures. These
synthetic images were subsequently subjected to a rigorous evaluation by comparing
them with authentic hand gesture images. To achieve this comparison, we trained distinct
Convolutional Neural Network (CNN) models using two separate datasets: the generated
images and the genuine, real-world hand gesture images.

One noteworthy observation is that the generated images exhibit properties similar to
the actual hand gesture images. This is a positive indication of the GAN’s ability to produce
realistic and contextually relevant data. However, it is essential to note that, in the spirit
of continuous improvement and refinement, there remains room for enhancements and
optimizations in future iterations of this research. While our current results are promising,

Information 2024, 15, 85 26 of 27

ongoing work and future investigations will further enhance the fidelity and accuracy
of the generated images and the overall performance of the CNN models. This commit-
ment to refinement underscores our dedication to advancing state-of-the-art methods in
hand gesture recognition and underscores the dynamic and evolving nature of this field
of research.

The study mentions that the generated images closely resemble real hand gesture
images. However, the extent of the data variability and complexity in real-world scenarios
has yet to be fully captured. The dataset may need more diversity in hand shapes, sizes,
and environmental conditions, potentially limiting the model’s robustness in practical
applications where these factors vary widely.

Author Contributions: K.C.: manuscript writing, software development, experiment design, and con-
ducting experiments. M.R., N.S., M.P., B.K.K. and A.B.: initial idea, manuscript writing, manuscript
revision, experiment design, and data analysis. S.M.: resource management, data analysis, and
manuscript revision. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Li, W.; Shi, P.; Yu, H. Gesture recognition using surface electromyography and deep learning for prostheses hand: state-of-the-art,

challenges, and future. Front. Neurosci. 2021, 15, 621885. [CrossRef]
2. Wang, J.; Chen, Y.; Hao, S.; Peng, X.; Hu, L. Deep learning for sensor-based activity recognition: A survey. Pattern Recognit. Lett.

2019, 119, 3–11. [CrossRef]
3. Dahou, A.; Al-qaness, M.A.; Abd Elaziz, M.; Helmi, A.M. MLCNNwav: Multi-level Convolutional Neural Network with Wavelet

Transformations for Sensor-based Human Activity Recognition. IEEE Internet Things J. 2023, 11, 820–828. [CrossRef]
4. Verma, K.K.; Singh, B.M. Deep multi-model fusion for human activity recognition using evolutionary algorithms. Int. J. Interact.

Multimed. Artif. Intell. 2021, 7, 44–58. [CrossRef]
5. Mekruksavanich, S.; Jitpattanakul, A. Deep convolutional neural network with rnns for complex activity recognition using

wrist-worn wearable sensor data. Electronics 2021, 10, 1685. [CrossRef]
6. Alessandrini, M.; Biagetti, G.; Crippa, P.; Falaschetti, L.; Turchetti, C. Recurrent neural network for human activity recognition in

embedded systems using ppg and accelerometer data. Electronics 2021, 10, 1715. [CrossRef]
7. Ordóñez, F.J.; Roggen, D. Deep convolutional and lstm recurrent neural networks for multimodal wearable activity recognition.

Sensors 2016, 16, 115. [CrossRef]
8. Fang, W.; Ding, Y.; Zhang, F.; Sheng, J. Gesture recognition based on CNN and DCGAN for calculation and text output. IEEE

Access 2019, 7, 28230–28237. [CrossRef]
9. Tang, H.; Wang, W.; Xu, D.; Yan, Y.; Sebe, N. Gesturegan for hand gesture-to-gesture translation in the wild. In Proceedings of the

26th ACM International Conference on Multimedia, Seoul, Republic of Korea, 22–26 October 2018; pp. 774–782.
10. Zhu, W.; Yang, Y.; Chen, L.; Xu, J.; Zhang, C.; Guo, H. Application of Generative Adversarial Networks in Gesture Recognition.

In Proceedings of the 2022 WRC Symposium on Advanced Robotics and Automation (WRC SARA), Beijing, China, 20 August
2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–6.

11. Garg, M.; Ghosh, D.; Pradhan, P.M. Generating multiview hand gestures with conditional adversarial network. In Proceedings of
the 2021 IEEE 18th India Council International Conference (INDICON), Guwahati, India, 19–21 December 2021; IEEE: Piscataway,
NJ, USA, 2021; pp. 1–6.

12. Barbhuiya, A.A.; Karsh, R.K.; Jain, R. ASL hand gesture classification and localization using deep ensemble neural network.
Arab. J. Sci. Eng. 2023, 48, 6689–6702. [CrossRef]

13. Javed, A.R.; Faheem, R.; Asim, M.; Baker, T.; Beg, M.O. A smartphone sensors-based personalized human activity recognition
system for sustainable smart cities. Sustain. Cities Soc. 2021, 71, 102970. [CrossRef]

14. Fallahzadeh, R.; Ghasemzadeh, H. Personalization without user interruption: Boosting activity recognition in new subjects using
unlabeled data. In Proceedings of the 8th International Conference on Cyber-Physical Systems, Pittsburgh, PA, USA, 18–20 April
2017; pp. 293–302.

15. Siirtola, P.; Röning, J. Context-aware incremental learning-based method for personalized human activity recognition. J. Ambient.
Intell. Humaniz. Comput. 2021, 10499–10513. [CrossRef]

http://doi.org/10.3389/fnins.2021.621885
http://dx.doi.org/10.1016/j.patrec.2018.02.010
http://dx.doi.org/10.1109/JIOT.2023.3286378
http://dx.doi.org/10.9781/ijimai.2021.08.008
http://dx.doi.org/10.3390/electronics10141685
http://dx.doi.org/10.3390/electronics10141715
http://dx.doi.org/10.3390/s16010115
http://dx.doi.org/10.1109/ACCESS.2019.2901930
http://dx.doi.org/10.1007/s13369-022-07495-w
http://dx.doi.org/10.1016/j.scs.2021.102970
http://dx.doi.org/10.1007/s12652-020-02808-z

Information 2024, 15, 85 27 of 27

16. Boroujeni, S.P.H.; Razi, A. IC-GAN: An Improved Conditional Generative Adversarial Network for RGB-to-IR image translation
with applications to forest fire monitoring. Expert Syst. Appl. 2024, 238, 121962. [CrossRef]

17. Wang, G.; Shi, H.; Chen, Y.; Wu, B. Unsupervised image-to-image translation via long-short cycle-consistent adversarial networks.
Appl. Intell. 2023, 53, 17243–17259. [CrossRef]

18. Almahairi, A.; Rajeshwar, S.; Sordoni, A.; Bachman, P.; Courville, A. Augmented cyclegan: Learning many-to-many mappings
from unpaired data. In Proceedings of the International Conference on Machine Learning, PMLR, Stockholm, Sweden, 10–15 July
2018; pp. 195–204.

19. Karras, T.; Laine, S.; Aila, T. A style-based generator architecture for generative adversarial networks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 4401–4410.

20. Wu, B.; Ding, Y.; Dong, Q. Fast continuous structural similarity patch based arbitrary style transfer. Appl. Sci. 2019, 9, 3304.
[CrossRef]

21. Ruta, D.S. Learned Representations of Artistic Style for Image Retrieval, Description, and Stylization. Ph.D. Thesis, University of
Surrey, Guildford, UK, 2023.

22. Gupta, V.; Sadana, R.; Moudgil, S. Image style transfer using convolutional neural networks based on transfer learning. Int. J.
Comput. Syst. Eng. 2019, 5, 53–60. [CrossRef]

23. Gu, S.; Chen, C.; Liao, J.; Yuan, L. Arbitrary style transfer with deep feature reshuffle. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 8222–8231.

24. Jung, D.; Yang, S.; Choi, J.; Kim, C. Arbitrary style transfer using graph instance normalization. In Proceedings of the 2020 IEEE
International Conference on Image Processing (ICIP), Abu Dhabi, United Arab Emirates, 25–28 October 2020; IEEE: Piscataway,
NJ, USA, 2020; pp. 1596–1600.

25. Johnson, J.; Alahi, A.; Fei-Fei, L. Perceptual losses for real-time style transfer and super-resolution. In Proceedings of the
Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Proceedings, Part
II 14; Springer: Berlin/Heidelberg, Germany, 2016; pp. 694–711.

26. Wang, Z.; Zhao, L.; Chen, H.; Qiu, L.; Mo, Q.; Lin, S.; Xing, W.; Lu, D. Diversified arbitrary style transfer via deep feature
perturbation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19
June 2020; pp. 7789–7798.

27. Sheng, L.; Lin, Z.; Shao, J.; Wang, X. Avatar-net: Multi-scale zero-shot style transfer by feature decoration. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 8242–8250.

28. Suzuki, N.; Watanabe, Y.; Nakazawa, A. Gan-based style transformation to improve gesture-recognition accuracy. In Proceedings
of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies; Association for Computing Machinery: New York, NY, USA,
2020; Volume 4, pp. 1–20.

29. Holden, D.; Saito, J.; Komura, T. A deep learning framework for character motion synthesis and editing. Acm Trans. Graph. (Tog)
2016, 35, 1–11. [CrossRef]

30. Banerjee, T.; Srikar, K.P.; Reddy, S.A.; Biradar, K.S.; Koripally, R.R.; Varshith, G. Hand Sign Recognition using Infrared Imagery
Provided by Leap Motion Controller and Computer Vision. In Proceedings of the 2021 International Conference on Innovative
Practices in Technology and Management (ICIPTM), Noida, India, 17–19 February 2021; IEEE: Piscataway, NJ, USA, 2021;
pp. 20–25.

31. Chevtchenko, S.F.; Vale, R.F.; Macario, V.; Cordeiro, F.R. A convolutional neural network with feature fusion for real-time hand
posture recognition. Appl. Soft Comput. 2018, 73, 748–766. [CrossRef]

32. Sahoo, J.P.; Prakash, A.J.; Pławiak, P.; Samantray, S. Real-time hand gesture recognition using fine-tuned convolutional neural
network. Sensors 2022, 22, 706. [CrossRef] [PubMed]

33. Sahoo, J.P.; Sahoo, S.P.; Ari, S.; Patra, S.K. RBI-2RCNN: Residual block intensity feature using a two-stage residual convolutional
neural network for static hand gesture recognition. Signal Image Video Process. 2022, 16, 2019–2027. [CrossRef]

34. Qi, W.; Ovur, S.E.; Li, Z.; Marzullo, A.; Song, R. Multi-Sensor Guided Hand Gesture Recognition for a Teleoperated Robot Using a
Recurrent Neural Network. IEEE Robot. Autom. Lett. 2021, 6, 6039–6045. [CrossRef]

35. Qi, W.; Aliverti, A. A Multimodal Wearable System for Continuous and Real-Time Breathing Pattern Monitoring during Daily
Activity. IEEE J. Biomed. Health Inform. 2020, 24, 2199–2207. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.eswa.2023.121962
http://dx.doi.org/10.1007/s10489-022-04389-0
http://dx.doi.org/10.3390/app9163304
http://dx.doi.org/10.1504/IJCSYSE.2019.098418
http://dx.doi.org/10.1145/2897824.2925975
http://dx.doi.org/10.1016/j.asoc.2018.09.010
http://dx.doi.org/10.3390/s22030706
http://www.ncbi.nlm.nih.gov/pubmed/35161453
http://dx.doi.org/10.1007/s11760-022-02163-w
http://dx.doi.org/10.1109/LRA.2021.3089999
http://dx.doi.org/10.1109/JBHI.2019.2963048
http://www.ncbi.nlm.nih.gov/pubmed/31902783

	Introduction
	Research Gap
	Motivation

	Literature Survey
	The Application of DL Techniques in GR and Human Activity Recognition
	Customized Classifiers
	Domain Adaptation and STNs

	System Architecture and Problem Formulation
	System Architecture
	Problem Formulation
	CNN Formulation
	GAN and Data Generation Formulation

	Dataset
	Proposed HaCk System
	Phase I: Data Generation Phase
	Discriminator
	Generator

	Phase II: Training Phase
	Phase III: Testing Phase
	Algorithm and Flow Chart of the HaCk System
	CNN Integration
	GAN Integration
	Integration and Training Procedure
	Parameter Selection Rationale

	Experimental Results and Discussion
	Model Evaluation
	Hand GR
	Comparison of Hand GR with Other Existing Models
	Computational Complexity
	Methodological Approaches
	Real-World Application
	Discussion
	Choice of Background Subtraction
	Scalability, User Adaptability, and Computational Efficiency of the HaCk System
	Ethical Considerations

	Conclusions and Future Work
	References

