
Citation: Jagrič, T.; Herman, A. AI

Model for Industry Classification

Based on Website Data. Information

2024, 15, 89. https://doi.org/

10.3390/info15020089

Academic Editor: Aneta

Poniszewska-Maranda

Received: 5 January 2024

Revised: 30 January 2024

Accepted: 3 February 2024

Published: 6 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Article

AI Model for Industry Classification Based on Website Data
Timotej Jagrič and Aljaž Herman *

Institute of Finance and Artificial Intelligence, Faculty of Economics and Business, University of Maribor,
Razlagova 14, 2000 Maribor, Slovenia; timotej.jagric@um.si
* Correspondence: aljaz.herman@um.si; Tel.: +386-2-2290-261

Abstract: This paper presents a broad study on the application of the BERT (Bidirectional Encoder
Representations from Transformers) model for multiclass text classification, specifically focusing
on categorizing business descriptions into 1 of 13 distinct industry categories. The study involved
a detailed fine-tuning phase resulting in a consistent decrease in training loss, indicative of the
model’s learning efficacy. Subsequent validation on a separate dataset revealed the model’s robust
performance, with classification accuracies ranging from 83.5% to 92.6% across different industry
classes. Our model showed a high overall accuracy of 88.23%, coupled with a robust F1 score of 0.88.
These results highlight the model’s ability to capture and utilize the nuanced features of text data
pertinent to various industries. The model has the capability to harness real-time web data, thereby
enabling the utilization of the latest and most up-to-date information affecting to the company’s
product portfolio. Based on the model’s performance and its characteristics, we believe that the
process of relative valuation can be drastically improved.

Keywords: industry classification; BERT transformer; business descriptions; multiclass text
classification; AI

1. Introduction

The bedrock of numerous business research endeavors and economic analyses lies
in industry classification schemes. These systems are pivotal for gauging economic ac-
tivity, executing business censuses, pinpointing peers and competitors, defining market
share, evaluating company performance against benchmarks, and crafting sector indices.
The seamless execution of these tasks would be unattainable without the organizational
structure offered by industry classification schemes [1].

The accurate classification of businesses is a cornerstone in various economic and
financial analyses [1]. It facilitates the assessment of market competition, influences gov-
ernment regulatory decisions, guides capital market research, and contributes to economic
studies examining investment and innovation. The accuracy of industry classification
is emphasized as fundamental for guaranteeing the integrity and validity of statistical
inferences drawn from empirical data [2].

Identifying and assigning companies to industries presents significant challenges.
The first difficulty is the vendor-specific nature of assignments that raises concerns about
consistency across data vendors. Following this, diversification complicates the affiliation
of companies with detailed industries. For instance, revenue-based rules may lead to biased
classifications. This issue might be addressed by allowing companies to belong to multiple
industries or treating affiliation as a fuzzy problem [3].

In the paper [4] authors warn that changes in industry codes, varying data vendors,
and evolving affiliations can result in Type I and Type II sampling errors. Type I occurs
when a company is erroneously assigned to an industry, and Type II occurs when a company
is not assigned to its actual industry. Quantifying these errors involves benchmarking
assignment methods and comparing alternatives.

Information 2024, 15, 89. https://doi.org/10.3390/info15020089 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info15020089
https://doi.org/10.3390/info15020089
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://doi.org/10.3390/info15020089
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info15020089?type=check_update&version=1

Information 2024, 15, 89 2 of 19

In [1] authors mention that these big industry classification schemes (ICS), such as
NACE or GICS, must find a delicate stability between granularity and practicality. The
upkeep of extensive company universes, encompassing business lines, products, and
services with ICS assignments, demands substantial investments in both resources and
manpower from business information providers and government entities. The progress
and sustainability of ICSs will advance in tandem with the perceived return on investment
by ICS producers and the discerned value that customers and users derive from these
classification systems.

In the paper [5], the author continues that activity-based classification systems, like
SIC and NAICS, have notable limitations, primarily stemming from their inability to
accurately reflect the structure of industries. Despite efforts to align with industry structures,
such systems still fall short. They fail to depict the interconnectedness between firms in
adjacent categories, leading to oversights in understanding the relationships within sectors.
Additionally, such systems can result in inconsistent classifications for similar firms based
on how they operate rather than their core purpose. Furthermore, as industries evolve with
technological advancements like microsystems and software, these systems struggle to keep
pace, leading to inaccuracies in classification. For instance, the rise in complex products
reliant on diverse components challenges traditional categorization methods. Moreover,
innovations like nanotechnology further complicate industry classifications, highlighting
the ongoing struggle of activity-based systems to adapt to changing economic landscapes.

To address the limitations of these activity-based classification systems, we have
used an industry classification model that offers significant advantages. While traditional
systems struggle to capture the intricacies of evolving industries, our model offers a
dynamic solution. Although initially trained on a specific dataset, its adaptable nature
allows for easy adjustments and fine-tuning to accommodate various industry structures
and changes over time for the optimal business classification.

With the exponential growth of digital information, automated classification has
become not just advantageous, but essential [6]. This paper presents the innovative applica-
tion of BERT, a Large Language Model (LLM) in the realm of business classification based
on its description.

The BERT model has become a cornerstone in the area of NLP (natural language
processing) for various tasks such as classification, named entity recognition, and question
answering [7]. BERT’s advantage is using transformer’s bidirectional training, because on
the contrary, the primary constraint of conventional language models lies in their unidirec-
tional nature. This constraint significantly restricts the options available for architectural
choices during the pre-training process. These models typically employ a left-to-right
architecture, wherein each token possesses the ability to attend solely to the tokens that
precede it in the self-attention layers of the transformer [8]. On the basis of [9], we can
claim that bidirectional models can understand the meaning of the text in more detail than
models that are trained in a single direction. The transformer encoder comprehends the
complete sequence of words simultaneously. While often described as bidirectional, a more
precise characterization would be non-directional. This unique attribute empowers the
model to grasp the contextual nuances of a word by considering its entire surroundings,
encompassing both the left and right contexts [8].

In this paper, we present a comprehensive overview of our model’s architecture, high-
lighting how the BERT framework has been fine-tuned for the task of business classification.
This phase is critical in harnessing the full potential of BERT [10], ensuring that the model
is not just powerful in general language understanding, but also acutely tuned to the
subtleties and specifics of business categorization. In the end, we will present our results
and conclusions, demonstrating the efficacy of using BERT for business classification.

Our model’s architecture is based explicitly on the BERT transformer and was built on
almost 70,000 business descriptions. Its simple and flexible architecture allows for rapid
adaptation to disaggregation. Moreover, our model’s capability to harness real-time web
data positions it as a powerful tool for industry practitioners. By enabling the utilization of

Information 2024, 15, 89 3 of 19

the latest and most up-to-date information affecting a company’s product portfolio, our
approach offers practical implications for decision makers seeking dynamic and accurate
insights in real-world business scenarios. A simplified integration scheme is shown in
Figure 1. One of the advantages is also that the model is considered to be small among
large language models, which allows it to be used locally, and with that comes increased
privacy and reduced dependence on external servers, ensuring that sensitive data stay
within the user’s control. This will be supported by a comprehensive description of the
model’s structure and parameters presented in the subsequent sections.

Information 2024, 15, x FOR PEER REVIEW 3 of 19

rapid adaptation to disaggregation. Moreover, our model’s capability to harness real-time
web data positions it as a powerful tool for industry practitioners. By enabling the utiliza-
tion of the latest and most up-to-date information affecting a company’s product portfolio,
our approach offers practical implications for decision makers seeking dynamic and ac-
curate insights in real-world business scenarios. A simplified integration scheme is shown
in Figure 1. One of the advantages is also that the model is considered to be small among
large language models, which allows it to be used locally, and with that comes increased
privacy and reduced dependence on external servers, ensuring that sensitive data stay
within the user’s control. This will be supported by a comprehensive description of the
model’s structure and parameters presented in the subsequent sections.

Figure 1. Integrated solution scheme.

2. Related Work
In a related project [11] conducted on the same dataset [12], the researcher employed

a series of sophisticated data processing and machine learning techniques to categorize
businesses into corresponding industries. The primary methodology involved a combina-
tion of text preprocessing, vectorization, and clustering analysis to derive meaningful cat-
egorizations from the web-scraped data. The core of the project was the application of a
cluster analysis. The researcher employed a TensorFlow-based implementation of K-
means clustering, optimized for GPU processing, to categorize the businesses into distinct
clusters. The ideal number of clusters was identified using both the Elbow Method and
Silhouette Scores, with the final decision being to create twelve clusters. They were found
to represent distinct business categories, each with their own unique textual footprint
within the data.

In the quest for more accurate and insightful industry classification, researchers have
explored a variety of models, each designed to capture distinct facets of the dynamic busi-
ness environment. In their study [13], authors showcased the application of a Naive Bayes
(NB) classifier on a dataset focused on the industry sector. This dataset comprised com-
pany web pages, systematically categorized within a hierarchical structure of 71 industry
sectors. The reported findings revealed that the multinomial NB classifier achieved an ac-
curacy level of up to 0.74. Additionally, the multivariate Bernoulli model demonstrated
an accuracy rate of up to 0.46.

In [14] authors advocate for the utilization of Support Vector Machines (SVM) em-
ploying a one-vs-all strategy and error-correcting output coding in the context of the in-
dustry sector dataset. Their findings indicate a noteworthy improvement in performance
compared to Naive Bayes (NB).

In his paper [15] author illustrates the efficacy of k-Nearest Neighbors (kNN) and the
DragPushing strategy-based kNN classifier (DPSKNN) methodologies on a subset com-

Figure 1. Integrated solution scheme.

2. Related Work

In a related project [11] conducted on the same dataset [12], the researcher employed
a series of sophisticated data processing and machine learning techniques to categorize
businesses into corresponding industries. The primary methodology involved a combi-
nation of text preprocessing, vectorization, and clustering analysis to derive meaningful
categorizations from the web-scraped data. The core of the project was the application of a
cluster analysis. The researcher employed a TensorFlow-based implementation of K-means
clustering, optimized for GPU processing, to categorize the businesses into distinct clusters.
The ideal number of clusters was identified using both the Elbow Method and Silhouette
Scores, with the final decision being to create twelve clusters. They were found to represent
distinct business categories, each with their own unique textual footprint within the data.

In the quest for more accurate and insightful industry classification, researchers have
explored a variety of models, each designed to capture distinct facets of the dynamic
business environment. In their study [13], authors showcased the application of a Naive
Bayes (NB) classifier on a dataset focused on the industry sector. This dataset comprised
company web pages, systematically categorized within a hierarchical structure of 71 indus-
try sectors. The reported findings revealed that the multinomial NB classifier achieved an
accuracy level of up to 0.74. Additionally, the multivariate Bernoulli model demonstrated
an accuracy rate of up to 0.46.

In [14] authors advocate for the utilization of Support Vector Machines (SVM) em-
ploying a one-vs-all strategy and error-correcting output coding in the context of the
industry sector dataset. Their findings indicate a noteworthy improvement in performance
compared to Naive Bayes (NB).

In his paper [15] author illustrates the efficacy of k-Nearest Neighbors (kNN) and
the DragPushing strategy-based kNN classifier (DPSKNN) methodologies on a subset
comprising 48 sectors from the industry sector dataset. The micro-F1 score for the kNN
classifier is reported as 0.8188, with a corresponding macro-F1 score of 0.8235. Conversely,
DPSKNN exhibits a slightly superior performance, achieving a micro-F1 score of 0.8544
and a macro-F1 score of 0.8585.

Information 2024, 15, 89 4 of 19

In more recent studies [16], authors employed four distinct models to analyze company
descriptions. Firstly, they implemented a linear model—a perceptron without hidden layers.
The perceptron’s input was the sum of unigram vectors. The second approach introduced a
customized linear model, incorporating unigrams and bigrams as features while still using
one-hot vector representations. The third model, GloVe, aimed to integrate context vectors
by employing 300-dimensional GloVe vectors instead of one-hot representations. Lastly,
they tested the ULMfit algorithm, a sophisticated classification model utilizing context
vectors. In contrast to the previous models, ULMfit leveraged a custom language model
based on AWD-LSTM for direct context vector generation, offering a more intricate and
flexible approach to language modeling and classification training. Regarding the micro-F1
scores, the first three models showed a performance with a score just over 0.92, and GloVe
at 0.906. On the other hand, the macro-F1 scores indicated that hot-bigram outperformed
the others with a score of 0.712, followed by hot-unigram and GloVe with a score that was
just under 0.69, and ULMfit at 0.641.

In [17] authors developed a model for automated industry classification using deep
learning methods. They introduced a multilayer perceptron that has the capability to
acquire knowledge from imperfect labels while also incorporating and blending verified
examples as they become accessible.

Several related studies have been identified where both the model and the purpose
were similar to ours. In their work [18] authors focused on companies listed on the
Chinese National Equities Exchange and Quotations (NEEQ). Their dataset covered 17,604
annual business reports, which limited the use of the model, as well as its durability.
Authors [19] used companies shown in Shanghai Stock Exchange and Oriental Fortune Net
as a dataset upon which they built a model that was based on two main architectures—a
convolutional neural network (CNN) and the BERT transformer. Similarly, authors [20]
combined a CNN and bidirectional long short-term memory networks in addition to using
the BERT transformer. On the contrary to these, our dataset includes almost 70,000 different
business descriptions, is well-generalized, and is based solely on the architecture of the
BERT transformer.

3. Materials and Methods

In the context of using a BERT transformer model for multiclass industry classification
based on a business description, the phase of data collection assumes significance. This
stage entails the acquisition of a representative and diverse dataset that is reflective of the
intended classification task. In our case, we needed a dataset with two crucial entities,
a business description text of their initial purpose and corresponding labels, which, in
this case, are industry categories. In this paper, we used a comprehensive database [12]
containing a substantial volume of data with 73,974 rows and 10 columns, but for the
needs of this research, we only kept 2 of them—“Meta Description”, which contains short
business description of the work, and “Category”, in which the corresponding industry
class is attributed. Although our model was initially trained on a pre-existing dataset, its
adaptability and efficacy are demonstrated by its seamless integration with live data.

Equally critical is a comprehensive data inspection process, which encompasses data
exploration, preprocessing, and cleansing—identifying and correcting errors, inconsisten-
cies, and inaccuracies in a dataset. In her work [21] author addresses issues such as missing
values, data imbalances, and the removal of irrelevant or duplicate entries. Data analysis
tools offer substantial utility in the business context, but their effectiveness hinges upon the
meticulous cleansing of data before yielding meaningful outcomes. Otherwise, the entire
data processing pipeline succumbs to the axiom of “garbage in, garbage out”, rendering
the results far less valuable than anticipated by the business teams. It is imperative to
acknowledge that real-world data are inherently imperfect, given the inevitability of errors
that can manifest in intricate and unforeseeable ways.

Following these processes, a total of 7088 rows were systematically removed due to
the presence of missing or inaccurate values, ensuring the data’s integrity and quality. As

Information 2024, 15, 89 5 of 19

a result, the new refined database now consists of 66,886 rows, signifying a considerable
reduction from its initial size of 73,974 rows. This streamlined database also underwent
transformations to enhance its consistency and usability. Specifically, special characters,
when present, were excluded from the data, further enhancing the quality of the dataset
and ensuring that it adheres to standardized formatting practices. These data cleansing and
transformation steps were essential in preparing the database for reliable and meaningful
analysis [22]. An example of the transformed dataset is shown in Table 1.

Table 1. Example of the dataset (source: adopted from [12]).

Business Description Industry Class

American Association of Neuromuscular & Electrodiagnostic
Medicine-AANEM is dedicated to advancing neuromuscular and
electrodiagnostic medicine by providing physician education,
advocacy efforts, and resources for patients with muscle and
nerve disorders.

Healthcare

Searching for a private security and investigation company in
Midland, TX? Look no further than Finley Investigations &
Security, Inc. If you are in need of security guards for construction
and oil field sites, or need a private investigator, we are the ones
to call. Visit our site today. #sep#PROVIDING QUALITY
SECURITY GUARDS, CAMERA MONITORING, AND PRIVATE
INVESTIGATION SERVICES IN THE PERMIAN BASIN

Commercial Services &
Supplies

Aluminum & Zinc Ingots—Custom alloyed to your exact
specifications. From aerospace to automotive to industrial, we
manufacture & distribute the widest array of recycled and
primary casting alloys in the USA.

Materials

Our labeling column encompasses a total of 13 distinct categories. Each category
represents a unique sector or domain, offering a structured and systematic way to classify
and analyze the content within the dataset based on business descriptions. The names of
the categories and the corresponding number of enterprises in that category are shown in
Table 2.

Table 2. Table of categories and corresponding number of enterprises.

Category Name Label Number of
Cases Training Set Testing Set

Commercial Services &
Supplies 0 5856 4685 1171

Healthcare 1 6534 5227 1307
Materials 2 2418 1934 484
Financials 3 6278 5022 1256

Energy & Utilities 4 5162 4130 1032
Professional Services 5 6655 5324 1331
Corporate Services 6 6442 5153 1289

Media, Marketing & Sales 7 5798 4638 1160
Information Technology 8 5426 4341 1085
Consumer Discretionary 9 2611 2089 522

Industrials 10 3073 2458 615
Transportation & Logistics 11 5727 4582 1145

Consumer Staples 12 4906 3925 981

As authors [23] mentioned, it is important to properly encode labels for a better
operation of the BERT model. According to this, we encoded the names of industry classes
as consecutive numbers, starting with 0. The encoded labels are presented in Table 2.

By reserving a distinct portion of the dataset for testing, the train–test split offers a
rigorous evaluation of the model’s performance on previously unseen data, highlighting its

Information 2024, 15, 89 6 of 19

effectiveness and robustness. Additionally, it aids in detecting issues like overfitting [24].
Regarding this, we had to split our data into two subsets—training and validation sets. We
followed Pareto’s principle [25] and used one of the common ratios [24] for splitting the
data, 80:20, which means that 80% (53,508) of the data were used for training the model and
the rest of them (13,378) were used to confirm that the model was properly built, meaning
that the outcomes on the training set were not the result of overfitting, rather, the model
was properly trained and is able to classify companies into industry classes accurately. At
this point, we also had to pay attention to the distribution of classes within the dataset.
Class distribution refers to the proportion of each class (category or label) in the dataset. In
many real-world scenarios, datasets are imbalanced, meaning that some classes may be
significantly underrepresented compared to others. Ignoring class distribution during data
splitting can lead to a range of issues in model training and evaluation [26]. When class
distribution is not adequately considered, there is a risk of having an insufficient number
of instances from one or more classes in the training set. This scenario can severely hinder
the model’s ability to learn from those underrepresented classes. The model may struggle
to make accurate predictions for these classes, as it lacks sufficient examples to understand
their patterns and characteristics. Conversely, in the absence of consideration for class
distribution, certain classes may not be represented in the testing set. In this scenario,
the model’s performance on these classes cannot be evaluated, as there are no instances
available for testing. This lack of representation can result in misleading performance
metrics and hinder the model’s overall effectiveness [26].

So, we took into consideration the risk and maintained the distribution by class to
prevent an inaccurate model performance. The distribution by class is shown in Table 2.

In the remainder of this section, we will present the method we used. For interested
readers, we suggest the following sources [10,27,28] for more detailed information on the
description of the method and clarification of its features.

In the paper [8] authors explained, that, to ensure that BERT can effectively handle
a wide range of downstream tasks, it is equipped with a flexible input representation
that can unambiguously accommodate both single sentences and pairs of sentences (such
as question–answer pairs) within a single token sequence. Here, the term “sentence”
is not limited to traditional linguistic sentences; rather, it can represent any contiguous
span of text. A “sequence” in the context of BERT pertains to the token sequence used
as an input, which may encompass either a single sentence or two sentences combined.
For tokenization, which is the process of breaking down text into smaller units called
tokens, BERT employs WordPiece embeddings [29] with a vocabulary size of 30,000 tokens.
For our needs, the base model with a 30,000-word vocabulary is adequate, striking a
balance between computational efficiency and effective text representation. In every input
sequence, the initial token is always a distinct classification token [CLS]. The final hidden
state corresponding to this [CLS] token serves as the comprehensive representation of
the entire sequence, particularly valuable for classification tasks. In cases where sentence
pairs are involved, they are combined into a single sequence. To distinguish between
these sentences, two strategies are employed. First, they are separated by a special [SEP]
token. Second, segment embedding is added to each token, indicating whether it belongs
to sentence A or sentence B. But, in the case of classifying business descriptions into
industry classes, the use of special [SEP] tokens and segment embeddings is not necessary,
especially because the sentences in the business description are closely related and form a
coherent text.

Authors continue that the BERT framework encompasses two key steps: pre-training
and fine-tuning. In the pre-training phase, the model undergoes training using vast
amounts of unlabeled data while engaging in various pre-training tasks. Following this,
in the fine-tuning step, the BERT model is initially set up with the pre-trained parameters,
serving as a foundation. It then proceeds to fine-tune all of its parameters using labeled
data specific to downstream tasks. Notably, for each individual downstream task, distinct
models are fine-tuned. Even though they share the same set of pre-trained parameters, the

Information 2024, 15, 89 7 of 19

fine-tuning process tailors these models to the distinct requirements of their individual
tasks [8].

Originally proposed by authors [7], the transformer architecture serves as the backbone
for BERT. It replaces recurrent layers with self-attention mechanisms and feed-forward
neural networks (FFNN), enabling parallel computation and efficient learning. BERT
utilizes the transformer architecture, which is based on an attention mechanism capable of
understanding the contextual relationships between words or sub-words within a given
text. This transformer architecture comprises two core components: an encoder, responsible
for processing the input text, and a decoder, which generates predictions for specific tasks.
However, BERT’s primary objective is to create a language model, and for this purpose, it
exclusively relies on the encoder module, which is presented in Figure 2.

Information 2024, 15, x FOR PEER REVIEW 7 of 19

classes, the use of special [SEP] tokens and segment embeddings is not necessary, espe-
cially because the sentences in the business description are closely related and form a co-
herent text.

Authors continue that the BERT framework encompasses two key steps: pre-training
and fine-tuning. In the pre-training phase, the model undergoes training using vast
amounts of unlabeled data while engaging in various pre-training tasks. Following this,
in the fine-tuning step, the BERT model is initially set up with the pre-trained parameters,
serving as a foundation. It then proceeds to fine-tune all of its parameters using labeled
data specific to downstream tasks. Notably, for each individual downstream task, distinct
models are fine-tuned. Even though they share the same set of pre-trained parameters, the
fine-tuning process tailors these models to the distinct requirements of their individual
tasks [8].

Originally proposed by authors [7], the transformer architecture serves as the back-
bone for BERT. It replaces recurrent layers with self-attention mechanisms and feed-for-
ward neural networks (FFNN), enabling parallel computation and efficient learning.
BERT utilizes the transformer architecture, which is based on an attention mechanism ca-
pable of understanding the contextual relationships between words or sub-words within
a given text. This transformer architecture comprises two core components: an encoder,
responsible for processing the input text, and a decoder, which generates predictions for
specific tasks. However, BERT’s primary objective is to create a language model, and for
this purpose, it exclusively relies on the encoder module, which is presented in Figure 2.

Figure 2. Transformer architecture (source: adopted from [7]).

The encoder component within the transformer architecture is structured as a stack
of 𝑁 = 6 identical layers, each comprising two sub-layers. The first sub-layer incorpo-
rates a multi-head self-attention mechanism, while the second sub-layer features a
straightforward, position-wise fully connected feed-forward network. To enhance the
flow of information, a residual connection, following the principles of residual networks
[30], surrounds each of these two sub-layers. This is coupled with layer normalization [31],
which ensures that the output of each sub-layer conforms to a standard. To enable the
implementation of these residual connections, all sub-layers in the model, in addition to

Figure 2. Transformer architecture (source: adopted from [7]).

The encoder component within the transformer architecture is structured as a stack of
N = 6 identical layers, each comprising two sub-layers. The first sub-layer incorporates a
multi-head self-attention mechanism, while the second sub-layer features a straightforward,
position-wise fully connected feed-forward network. To enhance the flow of information,
a residual connection, following the principles of residual networks [30], surrounds each
of these two sub-layers. This is coupled with layer normalization [31], which ensures that
the output of each sub-layer conforms to a standard. To enable the implementation of
these residual connections, all sub-layers in the model, in addition to the embedding layers,
generate outputs with the same dimensionality dmodel . This consistent dimensionality
facilitates the flow of information and the fusion of various sub-components within the
encoder [7].

When performing multiclass classification with BERT, the labels should typically be
encoded as integers [23]. Each integer represents the class label or category to which a
specific text belongs. The choice of encoding may vary, but it is essential that the labels
are discrete integers, with each integer corresponding to a unique class. According to the
explanation given, we encoded the names of categories into suitable forms, meaning we
assigned consecutive numbers to each category starting with 0.

After the data were properly preprocessed, we used tokenization, which is a pivotal
preprocessing step for BERT-based models [8]. We used a tokenization provided by the
Hugging Face transformers library. We set the parameter “return attention mask” as true,

Information 2024, 15, 89 8 of 19

which means that the tokenizer will generate attention masks for the input sequences.
Attention masks help the model to focus on actual input tokens while ignoring padding
tokens. With the parameter “pad to max length” set as true, we ensured that all sequences
in the batch (subset) were padded to the same maximum length, which we set to 256.
This choice balances the need for comprehensive context representation with practical
considerations, as longer sequences would significantly increase the computational de-
mands, potentially exceeding the available resources for model training and inference.
The parameter “return tensors to pt” specifies the format of the output. Setting it to “pt”
indicates that the output should be in the PyTorch tensors format, allowing us to train the
model on graphical processing units (GPU) [32]. A detailed explanation on the importance
of this concept will be presented subsequently in the paper.

In the BERT transformer model, the word embedding step converts each token ID into
a high-dimensional vector [7]. These vectors serve as the initial representations of the words
and are designed to capture the semantic meaning of each token [33]. This embedding is
typically performed through a lookup table, where each unique token ID is mapped to a pre-
defined vector in the embedding space. These vectors are trainable parameters, meaning
they are updated during the backpropagation process to better capture the semantics of
words in the context of the specific task. The embedded vectors are the first representations
that are fed into the subsequent layers of the transformer model. This is a crucial step, as it
transforms discrete tokens into a form that the model can understand and manipulate [8].

Positional encoding is added to the word embeddings to give the model information
about the position of each token in the sequence. Unlike traditional RNNs (Recurrent
Neural Networks) or LSTMs (Long Short-Term Memory), transformers do not have a
built-in sense of sequence order, so positional encoding is crucial for tasks that depend
on the order of words. The positional encoding is usually generated using a specific
mathematical formula involving sine and cosine functions. The formula generates a unique
encoding for each position that is then added to the corresponding word embedding vector.
Mathematically, the positional encoding for position p in dimension d is calculated as:

PE(p, d) = sin

 p

10, 000
2d

dmodel

 if diseven,

PE(p, d) = cos

 p

10, 000
2d

dmodel

 if disodd.

The resulting positional encodings have the same dimension as the word embeddings,
so they can be added together. After generating these positional encodings, they are added
element-wise to the word embedding vectors [34], which is shown in Figure 3. The resulting
vectors, which now contain both semantic and positional information, are what are passed
into the subsequent layers of the transformer model [7].

Information 2024, 15, x FOR PEER REVIEW 9 of 19

Figure 3. Input representation (source: adopted from [8]).

Next in the transformer’s architecture is an attention function [7], which serves as a
way to process information. It is like a map that takes in a query along with an assortment
of input key–value pairs and provides an output. In this context, query, keys, values, and
output are represented as vectors. The output, in particular, is determined by calculating
a weighted sum of the values. These weights are derived from a compatibility function
that measures how well the query aligns with each key. Essentially, the compatibility
function helps to decide how much importance or attention to give to each value, and the
weighted sum of these values forms the final output.

Regarding BERT’s multi-head self-attention, it is essential to begin by understanding
the concept of scaled dot-product attention, which can be defined as follows: 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 ൬ொඥௗೖ൰ 𝑉,

where 𝑄 represents the matrix containing queries, 𝐾 is the matrix holding the keys, 𝑉
is the matrix storing the values, and 𝑑 represents the dimension shared by the 𝑄 and 𝐾
matrices [9].

Now, we can introduce the multi-head attention. With multi-head attention, the
model gains the ability to collectively focus on information residing in various represen-
tation subspaces and at distinct positions within the input data. It is defined as: 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑ଵ, … , ℎ𝑒𝑎𝑑)𝑊ை,

where ℎ𝑒𝑎𝑑 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛൫𝑄𝑊ொ, 𝐾𝑊, 𝑉𝑊൯ , projections are the parameter matrices 𝑊ொ ∈ ℝௗൈௗೖ, 𝑊 ∈ ℝௗൈௗೖ, 𝑊 ∈ ℝௗൈௗೡ and 𝑑௩ is the dimension of the val-
ues.

Multi-head attention involves a process where the queries, keys, and values are pro-
jected multiple times using distinct learned linear transformations. These projections aim
to map them to new dimensions such as 𝑑 for queries and keys and 𝑑௩ for values. Once
these different versions of the queries, keys, and values are obtained, the attention func-
tion is applied independently to each set. This generates output values, each with a di-
mension of 𝑑௩. These outputs are then brought together by concatenation and further pro-
jection to create the final values. The term “self-attention” signifies that all the queries,
keys, and values originate from the same source or context. This self-attention mechanism
allows the model to understand the relationships and dependencies between different el-
ements within the same input sequence [7].

Residual connections, also known as skip connections, allow the input of a layer to
be added to its output, which can help to mitigate the exploding and vanishing gradient
problem during training [35]. This is particularly important in deep networks like BERT.

Let us denote the input to a layer (after any previous layer normalizations and oper-
ations) as 𝑋. If 𝐹(𝑋) represents the operation performed by the layer (such as multi-head

Figure 3. Input representation (source: adopted from [8]).

Information 2024, 15, 89 9 of 19

Next in the transformer’s architecture is an attention function [7], which serves as a
way to process information. It is like a map that takes in a query along with an assortment
of input key–value pairs and provides an output. In this context, query, keys, values, and
output are represented as vectors. The output, in particular, is determined by calculating a
weighted sum of the values. These weights are derived from a compatibility function that
measures how well the query aligns with each key. Essentially, the compatibility function
helps to decide how much importance or attention to give to each value, and the weighted
sum of these values forms the final output.

Regarding BERT’s multi-head self-attention, it is essential to begin by understanding
the concept of scaled dot-product attention, which can be defined as follows:

Attention(Q, K, V) = so f tmax

(
QKT
√

dk

)
V,

where Q represents the matrix containing queries, K is the matrix holding the keys, V
is the matrix storing the values, and dk represents the dimension shared by the Q and K
matrices [9].

Now, we can introduce the multi-head attention. With multi-head attention, the model
gains the ability to collectively focus on information residing in various representation
subspaces and at distinct positions within the input data. It is defined as:

MultiHead(Q, K, V) = Concat(head1, . . . , headh)WO,

where headi = Attention
(

QWQ
i , KWK

i , VWV
i

)
, projections are the parameter matrices

WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmodel×dk , WV
i ∈ Rdmodel×dv and dv is the dimension of the values.

Multi-head attention involves a process where the queries, keys, and values are
projected multiple times using distinct learned linear transformations. These projections
aim to map them to new dimensions such as dk for queries and keys and dv for values.
Once these different versions of the queries, keys, and values are obtained, the attention
function is applied independently to each set. This generates output values, each with a
dimension of dv. These outputs are then brought together by concatenation and further
projection to create the final values. The term “self-attention” signifies that all the queries,
keys, and values originate from the same source or context. This self-attention mechanism
allows the model to understand the relationships and dependencies between different
elements within the same input sequence [7].

Residual connections, also known as skip connections, allow the input of a layer to
be added to its output, which can help to mitigate the exploding and vanishing gradient
problem during training [35]. This is particularly important in deep networks like BERT.

Let us denote the input to a layer (after any previous layer normalizations and op-
erations) as X. If F(X) represents the operation performed by the layer (such as multi-
head attention or feed-forward neural network), the output of the layer with the residual
connection is:

Y = F(X) + X.

This equation means that the output of the layer Y is the sum of the original input X
and the processed input F(X). The dimensions of X and F(X) must be the same to make
this element-wise addition possible [36].

After the residual connection, layer normalization [31] is applied. This operation
normalizes the data across the features for each data point in a batch, which helps to
stabilize the learning process.

Let us consider Y as the output from the residual connection. The layer normalization
process involves calculating the mean and variance for each data point across the features:

µ =
1
H ∑H

i=1 yi and σ2 =
1
H ∑H

i=1(yi − µ)2,

Information 2024, 15, 89 10 of 19

where H is the number of features (the dimensionality of the hidden layer) and yi represents
the individual features of the output Y.

The next step is normalizing the output Y using the mean µ and variance σ2:

ŷi =
yi − µ√
σ2 + ϵ

,

where ϵ is a small constant for numerical stability.
In the end, we have to apply learnable parameters γ (scale) and β (shift) to the

normalized output.
LN(yi) = γŷi + β,

where LN(yi) is the final output. We can label it as LN.
A feed-forward neural network [7] is the second sub-layer in the model’s architecture.

It comes after layer normalization and is applied to each position separately and identically.
This means that the same feed-forward neural network is applied to each position, but it
operates independently on the inputs from each position. The purpose of this sub-layer
is to introduce non-linearity into the model, which allows the network to learn more
complex patterns.

The FFNN operates on each position’s vector independently but in the same way.
This is different from the self-attention mechanism that considers other positions. It also
introduces non-linear capabilities to the model, enabling it to learn complex patterns
beyond what linear transformations can capture.

The FFNN structure consists of two linear transformations with non-linearity between
them. The input to the first linear transformation is the output from the layer normaliza-
tion. Let us denote this input as LN, where this is a matrix with rows corresponding to
positions in the sequence and columns corresponding to the model’s hidden units. The first
linear transformation applies weights W1 to the input LN and adds a bias term b1. This
transformation projects the input into a higher-dimensional space.

Then, the non-linear activation function ReLU [37] is applied:

H = ReLU(LN · W1 + b1),

where H is the output of the first transformation. The ReLU activation function is defined as:

ReLU(z) = max(0, z),

where z represents each element of the matrix H.
Finally, the output of the ReLU activation is passed through a second linear transfor-

mation with its own weights W2 and bias b2. This transformation projects the data back to
the original dimensionality of the model’s hidden layers as:

F = HW2 + b2,

where F is the final output of the FFNN, W2 is the second weight matrix, and b2 is the
second bias vector [7].

After the FFNN, residual connection that adds the input of the FFNN sub-layer to its
output is typically applied, followed by a layer normalization. This, like before, helps to
mitigate the risk of exploding and vanishing gradients [35] and allows the model to learn
identity functions, which is beneficial for deep networks [7].

The pre-training method closely adheres to established practices in language model
pre-training, drawn from a substantial pre-training corpus that includes the BooksCor-
pus, which comprises 800 million words [38], and the English Wikipedia, consisting of
2500 million words. When using Wikipedia, text passages were specifically extracted
and lists, tables, and headers were excluded. In paper [8] authors also point out that a
noteworthy aspect of this approach is the use of a document-level corpus as opposed to a

Information 2024, 15, 89 11 of 19

shuffled sentence-level corpus like the Billion Word Benchmark [39]. This choice enables
the extraction of extended, coherent sequences of text.

For pre-training, we used the BERT model for sequence classification using the BERT-
base-uncased pre-trained model as its foundation. We set the “num labels” parameter to
match the number of classes in our classification task, dynamically adjusting the model’s
output dimension to accommodate the classification needs. Additionally, we can control
whether the model should provide attention weights and hidden states as part of its
output. In this instance, both output attentions and output hidden states were set to
false, indicating that the model would not return attention weights or hidden states by
default. These settings are often preferred for standard sequence classification tasks such
as ours [32].

The pre-training of BERT commences by immersing it in two distinct unsupervised
tasks—masked language modeling (MLM) and next sentence prediction (NSP).

Fine-tuning in the BERT model is a straightforward process due to the versatile
self-attention mechanism of the transformer architecture, which will be explained in the
following sections of this paper. This self-attention mechanism allows BERT to effectively
model a diverse range of downstream tasks, irrespective of whether they involve processing
single texts or text pairs. This flexibility is achieved by simply adjusting the inputs and
outputs as needed for each task. For tasks that involve text pairs [40,41], a common
approach is to separately encode both texts and then perform bidirectional cross-attention.
However, BERT takes a different approach by utilizing the self-attention mechanism to
seamlessly merge these two stages. When encoding a concatenated text pair, the self-
attention mechanism inherently includes bidirectional cross-attention between the two
sentences. To fine-tune BERT for specific tasks, we customize the inputs and outputs to
match the requirements of each task. For input, the sentences A and B from the pre-training
phase can be analogous to different types of pairs, such as sentence pairs in paraphrasing,
hypothesis–premise pairs in entailment, question–passage pairs in question answering,
or even a single text paired with an empty context for text classification or sequence
tagging. At the output, token representations are fed into an output layer for token-level
tasks like sequence tagging or question answering. Meanwhile, the [CLS] representation
is directed to an output layer for classification tasks such as entailment or a sentiment
analysis. Compared to the resource-intensive pre-training phase, fine-tuning is a relatively
efficient process, making it cost-effective and practical for various NLP applications [8].

For handling the training data efficiently, we set up data loaders [42], which play a
vital role in the training process, as they load and manage batches of input data for efficient
model training. We used a function called DataLoader, which is provided by deep learning
frameworks like PyTorch. The critical part here is the sampler parameter, which we set
to random. This means the data loader will randomly shuffle the training data before
creating batches. Shuffling is essential to prevent the model from learning patterns based
on the order of the data, ensuring that they generalize well [43]. Lastly, the batch size
parameter specifies how many data samples are processed together in each batch [44].
The choice of batch size is a crucial hyper parameter that influences the training process
and memory usage. Larger batch sizes can speed up training but require more memory.
We decided to set up the batch size to 3. This choice optimally balances the utilization
of available resources, mitigating memory constraints while concurrently enhancing the
model’s capacity to learn from diverse instances within each batch, thus fostering an
improved generalization performance.

Training extensive deep neural networks on massive datasets causes significant compu-
tational challenges. In response to this, there has been a notable upswing in the exploration
of large-batch stochastic optimization techniques as a means to address this computational
difficulty [45]. In our case, we used AdamW [46], which originates from a stochastic
optimizer called Adam [47], which is an efficient stochastic optimization technique that
operates with minimal memory usage and relies solely on first-order gradients. Adam
calculates personalized learning rates for various model parameters based on estimations

Information 2024, 15, 89 12 of 19

of the gradients’ first and second moments. The term itself is derived from its core principle,
which involves adaptive moment estimation. Adam has gained widespread popularity
for training deep neural networks because of its reduced need for hyper parameter tun-
ing and its outstanding performance [46]. To enhance the model’s ability to generalize,
Adam is often used alongside a squared l2 regularizer, known as Adam-l2. However, even
more superior results can be achieved by employing AdamW, a variant that effectively
separates the gradient of the regularizer from the update rule of Adam-l2. This decoupling
mechanism contributes to improved training outcomes [48].

We set the learning rate, a parameter that determines the step size that the optimizer
takes during each iteration of training, to 10−5 and the eps to 10−8, a parameter that defines
a small constant value used to prevent division by zero when computing the adaptive
learning rates in the optimizer to ensure numerical stability [49].

We also used a predefined framework learning rate scheduler called get linear schedule
with warmup [50]. Its primary purpose is to manage the learning rate throughout the
training process. The name linear signifies that this scheduler linearly adjusts the learning
rate during training. It commences with an initial learning rate and progressively decreases
it over a specified number of training steps or epochs. The warmup aspect indicates an
initial warmup phase. During this phase, the learning rate gradually escalates from a very
small value to the initial learning rate. This warmup phase is valuable for ensuring a stable
training process and preventing early convergence issues. The scheduler’s core objective is
to strike a balance between the stability and convergence speed. To employ this scheduler,
we had to specify the optimizer [32]. We used AdamW, as was already described.

The last step in our model was to build a training loop [32]. We also defined a
procedure or, more precisely, an evaluation metric [36] for monitoring outcomes. It is
instrumental in several aspects of model evaluation. Firstly, it underscores the class-
specific performance, highlighting how the model fares with each individual class. This
is particularly vital in scenarios where the importance of classes varies, ensuring that
critical categories are adequately addressed. Secondly, it adeptly handles class imbalance.
In datasets where some classes are overrepresented, a general accuracy metric might be
misleading. This method, however, offers a more detailed and accurate representation of
the model’s performance across all classes. Additionally, it plays a crucial role in identifying
weaknesses. By pinpointing classes where the model’s performance is lacking, it guides
targeted improvements in both the model and data collection strategies.

4. Results

In this segment, we present an in-depth analysis of the results obtained from the
training and validation phases of our BERT-based model. The training phase results
provide insights into the model’s learning process over epochs, as evidenced by changes in
training loss. Following this, we delve into the performance of the model on the validation
set, which serves as a crucial indicator of its generalization capabilities and real-world
applicability. This allows for a complete understanding of the model’s effectiveness in
classifying business descriptions into predefined industry categories.

The results of the training process, shown in Table 3, span over five epochs, showing
a consistent decrease in loss, indicating an improvement in the model’s ability to classify
the data accurately. The choice of fine-tuning the model over five epochs is optimal, as it
achieves a balance between leveraging pre-existing knowledge from the pre-trained model
and adapting to the task-specific data, ensuring effective classification.

This downward trend in training loss is a positive indicator of the model’s learning
efficiency. The initial loss of 0.46 in the first epoch, which is relatively high, suggests that the
model began with limited knowledge about the data’s structure and the classification task.
However, as the training progressed, the model rapidly improved, with the loss decreasing
by approximately 28% from epoch 1 to epoch 2, and by about 30% from epoch 2 to epoch 3.
The rate of decrease in loss slowed down in the subsequent epochs, with a reduction of
26% from epoch 3 to epoch 4, and a further 12% decrease from epoch 4 to epoch 5.

Information 2024, 15, 89 13 of 19

Table 3. Training loss for each epoch.

Epoch Training Loss

1 0.46
2 0.33
3 0.23
4 0.17
5 0.15

This pattern of rapid improvement in the initial epochs followed by a slower rate
of improvement in later epochs aligns with observations made in other studies utilizing
deep learning models for text classification [8,10]. The initial steep decline in loss can be
attributed to the model quickly learning major patterns in the data, while the gradual
decrease in later epochs indicates the model’s refinement in understanding and classifying
more nuanced aspects of the data.

The final training loss of 0.15 at epoch 5 demonstrates the model’s effective adaptation
to the task, suggesting a high level of accuracy in classifying business descriptions into the
correct industry categories. However, it is important to note that training loss alone is not a
comprehensive indicator of model performance. Evaluation metrics such as accuracy on a
validation set are essential to fully understand the model’s effectiveness [51].

In conclusion, the training process of the BERT-based model for this multiclass text
classification task shows promising results, with a consistent decrease in training loss across
epochs. This indicates a successful learning trajectory, aligning with trends observed in
similar applications of deep learning models in text classification tasks.

At this point, it is also worth noting the significant impact of utilizing GPUs (Graphics
Processing Units) for accelerating our language model training on such a vast database.
Unlike CPUs (Central Processing Units), GPUs boast essential parallel processing capabili-
ties, revolutionizing the execution of complex neural network operations and markedly
enhancing the efficiency of the entire training process. When our model was executed on
a CPU, the training process consumed over 40 h per epoch. This extended timeframe is
primarily attributed to the sequential nature of CPU processing. However, upon transition-
ing to GPU acceleration, we observed a transformative reduction in the training duration,
achieving an astonishingly swift 6 h per epoch. The key advantage lies in the parallel
architecture of GPUs, which enables the simultaneous execution of multiple operations.
Neural network computations, inherently parallelizable, experience a substantial speedup
when processed on GPUs. This not only expedites model training, but also unlocks the
potential for handling larger datasets and more complex architectures.

The analysis of the validation set results for our BERT-based model reveals significant
insights into its performance across different industry classes, which is shown in Table 4.
The model demonstrates a commendable level of accuracy in classifying business descrip-
tions, with accuracies ranging from 83.5% to 92.6% across the 13 industry categories. Such
variation in accuracy across different classes is a common observation in multiclass classifi-
cation tasks and can be attributed to factors like class imbalance, the varying complexity of
class-specific features, and the amount of training data available per class [52,53].

The model achieved a notably high accuracy in classes like healthcare (92.6%), con-
sumer staples (91.4%), and financials (90.7%) This could indicate that the descriptions in
these categories have distinct features that the model learns effectively, leading to more
accurate predictions.

All the other industry classes exhibited accuracies between 83.5% and 89%, with
the category of corporate services showing an accuracy just above 89%. This suggests a
generally robust model performance across a diverse set of classes.

Information 2024, 15, 89 14 of 19

Table 4. Confusion matrix of distributions of predicted values for each industry class with number of
total cases and accuracy.

True (Class)/
Predicted (Label) 0 1 2 3 4 5 6 7 8 9 10 11 12 Total

Cases Accuracy

Commercial Services &
Supplies 1010 6 16 5 25 10 17 19 17 18 10 11 7 1171 86.3%

Healthcare 10 1210 5 3 4 14 16 7 15 10 1 9 3 1307 92.6%
Materials 18 2 412 1 9 1 0 1 5 0 23 6 6 484 85.1%
Financials 11 10 3 1139 8 30 15 4 16 8 3 7 2 1256 90.7%

Energy & Utilities 40 3 7 9 916 4 2 7 8 2 16 8 10 1032 88.8%
Professional Services 18 11 1 36 6 1165 30 13 28 8 3 6 6 1331 87.5%
Corporate Services 16 20 1 10 10 23 1148 20 13 8 3 4 13 1289 89.1%

Media, Marketing &
Sales 6 4 2 10 4 22 14 1028 39 6 5 9 11 1160 88.6%

Information
Technology 25 22 3 19 11 31 14 18 908 6 5 10 13 1085 83.7%

Consumer
Discretionary 13 5 3 6 2 7 13 12 6 436 6 9 4 522 83.5%

Industrials 14 3 21 5 15 3 2 2 8 2 519 14 7 615 84.4%
Transportation &

Logistics 24 8 5 3 10 5 18 7 9 7 28 1015 6 1145 88.6%

Consumer Staples 8 6 2 2 3 6 27 6 3 4 9 8 897 981 91.4%

The distribution of accurate predictions across classes was relatively balanced, with no
class showing an extremely low accuracy. This balance is crucial in multiclass classification
tasks to ensure that the model does not favor certain classes over others, a challenge often
addressed in the literature [54].

The variation in accuracies across classes may also reflect the inherent complexity and
distinctiveness of the textual data in each category. Classes with a lower accuracy, such as
consumer discretionary (83.5%) and information technology (83.7%), might own more am-
biguous or overlapping features with other classes, making classification more challenging.

To sum up, the validation results demonstrate the model’s effective learning and
generalization capabilities across a range of industry classes. The high accuracy in certain
classes suggests that the model is particularly adept at capturing and utilizing distinctive
features in those categories. Meanwhile, the moderate to high accuracy in other classes
indicates a well-rounded performance.

Furthermore, shown in Table 4, the confusion matrix offers a detailed view of the
model’s performance in classifying business descriptions into their respective industry
classes [55]. The matrix shows the distribution of predicted values against the true values for
each industry class, allowing for a nuanced analysis of the model’s classification accuracy
and its potential areas of confusion.

The high values along the diagonal of the matrix, representing correct classifications,
indicate strong performances in all classes.

Besides the overall accuracy, which is 88.23%, we calculated some additional metrics
to obtain even more in-depth insights into our model’s performance.

The precision per class, which shows us the proportion of correctly classified instances
among the instances classified as that class, ranged from 0.83 for the commercial services &
supplies category to 0.92 for the healthcare category. These values signify the accuracy of
the positive predictions made by the classifier for each specific class. A precision of 0.83
implies that approximately 83% of the instances predicted as belonging to the commercial
services & supplies category were indeed classified correctly, while a precision of 0.92
indicates a higher accuracy level, with around 92% of instances in the healthcare category
being correctly classified.

Next was recall, which tells us for each class the proportion of correctly classified
instances among all the instances that truly belong to that class. Notably, recall ranged from
0.84 for the information technology, consumer discretionary, and industrials categories to
0.93 for the healthcare category. These findings underscore the effectiveness of the classifier
in correctly identifying the instances belonging to each specific class. A recall score of 0.84

Information 2024, 15, 89 15 of 19

indicates that approximately 84% of instances in the mentioned categories were accurately
classified by the model, while a higher recall of 0.93 for the healthcare category signifies
that around 93% of instances within this class were correctly identified.

In conjunction with both, the parallel nature of these metrics underscores a balanced
performance, where high precision values indicate low false-positive rates, complemented
by elevated recall values signifying thorough positive instance capture, collectively con-
tributing to a robust evaluation of the classification model across various classes.

Additionally, we used a slightly more complex metric, which is defined on the basis of
the eigenvalues of the matrix [56]:

MSVD(P) =
∑N

i

√
λi

(∼
P
′∼
P
)

N
,

where P is the relative matrix of our confusion matrix, the mobility matrix (
∼
P) is defined as

∼
P = P − I, I is an identity matrix of the same size as P,

∼
P
′

is the transposed matrix of
∼
P,

and λi represents the eigenvalues of the matrix product
∼
P
′∼
P.

The background here are the transition matrices [57], where we use these measures to
see how strong the transition is from the main (diagonal) classes to the rest. We obtained
the result of 0.123, which indicates a high degree of closure of the main classes, i.e., there is
relatively little leakage from them.

As it goes for the wrongfully predicted cases, there are noticeable instances of misclas-
sification, where descriptions from one class were predicted as another [58]. This suggests
certain similarities in the textual features between these classes that the model may be
conflating. In the materials industry, we can see there are two industries (commercial
services & supplies and industrials) which have visible deviations among others. The
same observation goes for the industry of financials, where professional services havethe
highest deviation. Significant deviation happens also in energy & utilities, where the most
misclassified cases are from commercial services & supplies. In the category of professional
services, the industries of financials, corporate services, and information technologies are
the ones with the highest deviation. In media, marketing & sales the most misclassified
cases fell into information technology and, in this industry, most cases fell into professional
services. In industrials industry, the highest deviation is observed for materials, and in
transportation & logistics, this was industrials and commercial services & supplies. In
consumer staples, the highest deviation happened in corporate services. Nevertheless, the
errors are relatively well-distributed across different classes, without any single class being
predominantly misclassified as another. This indicates balanced learning by the model,
without significant biases towards certain classes [59].

5. Discussion and Conclusions

This study explored the application of the BERT (Bidirectional Encoder Representa-
tions from Transformers) model for the task of multiclass text classification, focusing on
categorizing business descriptions into 13 distinct industry classes. The results from both
the training and validation phases demonstrate the model’s proficiency in understanding
and classifying complex text data.

During the training phase, the model exhibited a consistent decrease in loss across
five epochs, indicating effective learning and adaptation to the task. The final training loss
achieved was significantly lower than the initial loss, underscoring the model’s ability to
capture the fundamental attributes of the dataset.

In the validation phase, the model’s performance was robust across various industry
classes, with accuracies ranging from 83.5% to 92.6%. This variation in class-specific perfor-
mance highlights the challenges and complexities inherent in multiclass text classification
tasks. The high accuracy in certain classes suggests that the model was particularly effective

Information 2024, 15, 89 16 of 19

at identifying the unique characteristics of those industries. Meanwhile, the moderate to
high accuracy in other classes indicates a well-rounded ability to generalize across diverse
types of text data.

In comparison to various models employed for industry classification, our developed
model demonstrated an accuracy of 88.23% and an F1 score of 0.88. This surpasses the
performance of a Naive Bayes (NB) classifier, achieving an accuracy level of up to 0.74 [13].
The exploration of the k-Nearest Neighbors (kNN) and DragPushing strategy-based kNN
classifier (DPSKNN) methodologies, while showcasing competitive micro-F1 and macro-F1
scores around of 0.82 (kNN) and 0.85 (DPSKNN) [15], did not surpass our model’s accuracy.
In a more recent context [16], authors employed four models. While slightly below the
micro-F1 scores of some models (just over 0.92), our model notably outperforms them in
terms of macro-F1 scores, where the highest macro-F1 score reaches 0.712.

The study’s findings reinforce the potential of transformer-based models like BERT
in handling intricate classification tasks in natural language processing. The ability of
BERT to understand context and nuances in text makes it a powerful tool for business
applications, where the accurate categorization of textual data can provide significant
insights and operational advantages.

Despite the initial training on a pre-existing dataset, the model’s capability to adapt
and perform effectively is evident in its smooth integration with real-time or live data.
This suggests the model’s ability to apply its learned knowledge to new and dynamic
information, showcasing its versatility and practical utility.

With the application of this model, we successfully demonstrated the viability of
employing the BERT transformer in its small version as an LLM in classification task. Our
findings indicate that, with meticulous fine-tuning, the BERT transformer can be effectively
utilized for analogous tasks. This underscores the model’s adaptability and opens up
avenues for its application across diverse classification scenarios.

While our current implementation of BERT-based classification has yielded promis-
ing results in identifying and categorizing firms into sectors, there exist opportunities for
further refinement and enhancement. One potential avenue for improvement lies in the
adoption of a more sophisticated classification scheme within the BERT model. By incor-
porating a nuanced learning process that corrects misclassifications and applies varying
degrees of penalization based on the occurrence of firms in incorrect or related sectors,
we can potentially boost the model’s accuracy and robustness. Additionally, adjusting
the penalization strategy based on the severity of misclassifications may contribute to a
more adaptive and fine-tuned classification system. A notable limitation of our current
BERT-based classification model is its reliance on manually sourced business descriptions
from the web. This process not only limits the volume and diversity of data, but also intro-
duces potential biases. A promising direction for future research would be to automate the
acquisition of business descriptions, utilizing advanced web scraping and natural language
processing techniques. Additionally, the model’s current proficiency is primarily in English,
which restricts its global applicability. Addressing this limitation could involve expanding
the training to encompass multilingual datasets, thereby enhancing the model’s relevance
in international markets. Another significant area for development is the integration of
this model into a larger analytical framework. This could take the form of a hybrid system,
where the BERT classifier functions as a component in conjunction with other tools like
market trend analyzers or financial performance modules, offering a more comprehensive
relative valuation. Lastly, the model could benefit from an expanded and more nuanced
sector categorization. This would allow for finer distinctions between industries and a
more accurate reflection of the current business landscape, especially in rapidly evolving or
newly emerging sectors. These enhancements and expansions are crucial for advancing the
model’s accuracy, applicability, and utility in the dynamic field of business classification.

Information 2024, 15, 89 17 of 19

Author Contributions: Conceptualization, T.J. and A.H.; methodology, T.J.; software, A.H.; validation,
T.J. and A.H.; formal analysis, T.J. and A.H.; investigation, T.J. and A.H.; resources, T.J. and A.H.; data
curation, T.J. and A.H.; writing—original draft preparation, A.H.; writing—review and editing, T.J.
and A.H.; visualization, A.H.; supervision, T.J.; project administration, T.J. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Original data were gathered from Kaggle platform by Charan Puvvala—
Company Classification. 2019 at https://www.kaggle.com/datasets/charanpuvvala/company-
classification (accessed on 3 October 2023).

Conflicts of Interest: The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported in this paper.

References
1. Phillips, R.L.; Ormsby, R. Industry classification schemes: An analysis and review. J. Bus. Financ. Librariansh. 2016, 21, 1–25.

[CrossRef]
2. Hrazdil, K.; Zhang, R. The importance of industry classification in estimating concentration ratios. Econ. Lett. 2012, 114, 224–227.

[CrossRef]
3. Lyocsa, S.; Vyrost, T. Industry Classification: Review, Hurdles and Methodologies. SSRN Electron. J. 2011. [CrossRef]
4. Kile, C.O.; Phillips, M.E. Using industry classification codes to sample high-technology firms: Analysis and recommendations. J.

Account. Audit. Financ. 2009, 24, 35–58. [CrossRef]
5. Dalziel, M. A systems-based approach to industry classification. Res. Policy 2007, 36, 1559–1574. [CrossRef]
6. Sharma, R.M. Quantitative Analysis of Automation and Manual Testing. Int. J. Eng. Innov. Technol. 2014, 4, 6. Available online:

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=4705f69033ea278213b4980326d7ba893e1e1cfd (accessed on
16 November 2023).

7. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention Is All You Need.
Adv. Neural Inf. Process. Syst. 2023, 30, 15. [CrossRef]

8. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of deep bidirectional transformers for language understanding.
In Proceedings of the NAACL HLT 2019—2019 Conference North American Chapter Association Computer Linguistics Human
Language Technology, Minneapolis, MN, USA, 2–7 June 2019; Volume 1, pp. 4171–4186.

9. Garrido-Merchan, E.C.; Gozalo-Brizuela, R.; Gonzalez-Carvajal, S. Comparing BERT against Traditional Machine Learning
Models in Text Classification. J. Comput. Cogn. Eng. 2023, 2, 352–356. [CrossRef]

10. Sun, C.; Qiu, X.; Xu, Y.; Huang, X. How to Fine-Tune BERT for Text Classification? In Chinese Computational Linguistics; Springer
International Publishing: Berlin/Heidelberg, Germany, 2019.

11. Kesarwani, R. Company Classification. Available online: https://www.kaggle.com/code/rishabhkes19/company-classification
(accessed on 3 October 2023).

12. Puvvala, C. Company Classification. Available online: https://www.kaggle.com/datasets/charanpuvvala/company-
classification/data (accessed on 12 October 2023).

13. McCallum, A.; Nigam, K. A Comparison of Event Models for Naive Bayes Text Classification. 1998. Available online: http:
//www.kamalnigam.com/papers/multinomial-aaaiws98.pdf (accessed on 8 November 2023).

14. Rennie, J.D.M.; Rifkin, R. Improving Multiclass Text Classification with the Support Vector Machine. 2001. Available online:
https://dspace.mit.edu/handle/1721.1/7241 (accessed on 2 November 2023).

15. Tan, S. An effective refinement strategy for KNN text classifier. Expert Syst. Appl. 2006, 30, 290–298. [CrossRef]
16. Tagarev, A.; Tulechki, N.; Boytcheva, S. Comparison of machine learning approaches for industry classification based on textual

descriptions of companies. In Proceedings of the International Conference on Recent Advances in Natural Language Processing,
Varna, Bulgaria, 2–4 September 2019; pp. 1169–1175. [CrossRef]

17. Wood, S.; Muthyala, R.; Jin, Y.; Qin, Y.; Rukadikar, N.; Rai, A.; Gao, H. Automated Industry Classification with Deep Learning.
2017. Available online: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8257920 (accessed on 25 October 2023).

18. Wang, S.; Pan, Y.; Xu, Z.; Hu, B.; Wang, X. Enriching BERT with Knowledge Graph Embedding for Industry Classification. 2021.
Available online: https://link.springer.com/chapter/10.1007/978-3-030-92310-5_82 (accessed on 7 November 2023).

19. Xu, L.; Ji, B. Industry Classification Algorithm Based on Improved BERT Model. ACM Int. Conf. Proc. Ser. 2022, 2022, 1790–1794.
[CrossRef]

20. Yu, Y.; Liu, X. Research on enterprise text classification methods of BiLSTM and CNN based on BERT. ACM Int. Conf. Proc. Ser.
2023, 2023, 491–495. [CrossRef]

21. Chai, C.P. The Importance of Data Cleaning: Three Visualization Examples. Chance 2020, 6, 4–9. [CrossRef]

https://www.kaggle.com/datasets/charanpuvvala/company-classification
https://www.kaggle.com/datasets/charanpuvvala/company-classification
https://doi.org/10.1080/08963568.2015.1110229
https://doi.org/10.1016/j.econlet.2011.10.001
https://doi.org/10.2139/ssrn.1480563
https://doi.org/10.1177/0148558X0902400104
https://doi.org/10.1016/j.respol.2007.06.008
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=4705f69033ea278213b4980326d7ba893e1e1cfd
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.47852/bonviewJCCE3202838
https://www.kaggle.com/code/rishabhkes19/company-classification
https://www.kaggle.com/datasets/charanpuvvala/company-classification/data
https://www.kaggle.com/datasets/charanpuvvala/company-classification/data
http://www.kamalnigam.com/papers/multinomial-aaaiws98.pdf
http://www.kamalnigam.com/papers/multinomial-aaaiws98.pdf
https://dspace.mit.edu/handle/1721.1/7241
https://doi.org/10.1016/j.eswa.2005.07.019
https://doi.org/10.26615/978-954-452-056-4_134
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8257920
https://link.springer.com/chapter/10.1007/978-3-030-92310-5_82
https://doi.org/10.1145/3573428.3573743
https://doi.org/10.1145/3594315.3594362
https://doi.org/10.1080/09332480.2020.1726112

Information 2024, 15, 89 18 of 19

22. Gheisari, M.; Wang, G.; Bhuiyan, M.Z.A. A Survey on Deep Learning in Big Data. In Proceedings of the 2017 IEEE International
Conference on Computational Science and Engineering and IEEE/IFIP International Conference on Embedded and Ubiquitous,
Guangzhou, China, 21–24 July 2017; Volume 2, pp. 173–180. [CrossRef]

23. Haidar, A.; Bertholom, F. Fine-Tuning BERT for Monolingual Intent Classification. 2023, p. 6. Available online: https://
openreview.net/pdf?id=dQgzBBpNvS (accessed on 24 October 2023).

24. Pawluszek-Filipiak, K.; Borkowski, A. On the Importance of Train–Test Split Ratio of Datasets in Automatic Landslide Detection
by Supervised Classification. Remote Sens. 2020, 12, 3054. [CrossRef]

25. Backhaus, J. The Pareto Principle; University of Plymouth: Plymouth, UK, 2016. [CrossRef]
26. Daskalaki, S.; Kopanas, I.; Avouris, N. Evaluation of classifiers for an uneven class distribution problem. Appl. Artif. Intell. 2006,

20, 381–417. [CrossRef]
27. Gillioz, A.; Casas, J.; Mugellini, E.; Khaled, O.A. Overview of the Transformer-based Models for NLP Tasks. In Proceedings of

the 2020 FedCSIS Conference on Computer Science and Information Systems, Sofia, Bulgaria, 6–9 September 2020; pp. 179–183.
[CrossRef]

28. Qasim, R.; Bangyal, W.H.; Alqarni, M.A.; Ali Almazroi, A. A Fine-Tuned BERT-Based Transfer Learning Approach for Text
Classification. J. Healthc. Eng. 2022, 2022, 3498123. [CrossRef] [PubMed]

29. Wu, Y.; Schuster, M.; Chen, Z.; Le, Q.V.; Norouzi, M.; Macherey, W.; Krikun, M.; Cao, Y.; Gao, Q.; Macherey, K.; et al. Google’s
Neural Machine Translation System: Bridging the Gap between Human and Machine Translation. arXiv 2016, arXiv:1609.08144.

30. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; Volume 2016,
pp. 770–778. [CrossRef]

31. Lei Ba, J.; Kiros, J.R.; Hinton, G.E. Layer Normalization. arXiv 2016, arXiv:1607.06450.
32. Hugging Face, I. Transformers. Available online: https://huggingface.co/docs/transformers/index (accessed on 10 Octo-

ber 2023).
33. Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.S.; Dean, J. Distributed Representations of Words and Phrases and their

Compositionality. Adv. Neural Inf. Process. Syst. 2013. [CrossRef]
34. Gehring, J.; Auli, M.; Grangier, D.; Yarats, D.; Dauphin, Y.N. Convolutional sequence to sequence learning. In Proceedings of the

34th International Conference on Machine Learning ICML 2017, Sydney, Australia, 6–11 August 2017; Volume 70, pp. 1243–1252.
Available online: https://dl.acm.org/doi/10.5555/3305381.3305510 (accessed on 10 November 2023).

35. Pascanu, R.; Mikolov, T.; Bengio, Y. On the difficulty of training recurrent neural networks. In Proceedings of the 30th International
Conference on Machine Learning, ICML, Atlanta, GA, USA, 17–19 June 2013; pp. 2347–2355.

36. Ong, K.; Haw, S.C.; Ng, K.W. Deep Learning Based-Recommendation System: An Overview on Models, Datasets, Evaluation
Metrics, and Future Trends. ACM Int. Conf. Proc. Ser. 2019, 2019, 6–11. [CrossRef]

37. Banerjee, C.; Mukherjee, T.; Pasiliao, E. An empirical study on generalizations of the RelU activation function. In Proceedings of
the ACMSE 2019—Proceedings 2019 ACM Southeast Conference, Kennesaw, GA, USA, 18–20 April 2019; pp. 164–167. [CrossRef]

38. Zhu, Y.; Kiros, R.; Zemel, R.; Salakhutdinov, R.; Urtasun, R.; Torralba, A.; Fidler, S. Aligning Books and Movies: Towards Story-like
Visual Explanations by Watching Movies and Reading Books. In Proceedings of the IEEE International Conference on Computer
Vision, Santiago, Chile, 7–13 December 2015; Volume 23. [CrossRef]

39. Chelba, C.; Mikolov, T.; Schuster, M.; Ge, Q.; Brants, T.; Koehn, P.; Robinson, T. One Billion Word Benchmark for Measuring
Progress in Statistical Language Modeling. arXiv 2014, arXiv:1312.3005.

40. Parikh, A.P.; Täckström, O.; Das, D.; Uszkoreit, J. A Decomposable Attention Model for Natural Language Inference. arXiv 2016,
arXiv:1606.01933.

41. Seo, M.; Kembhavi, A.; Farhadi, A.; Hajishirzi, H. Bidirectional Attention Flow for Machine Comprehension. arXiv 2018,
arXiv:1611.01603.

42. Siddiq, M.L.; Santos, J.C.S. BERT-based GitHub issue report classification. In Proceedings of the NLBSE ‘22: Proceedings of the
1st International Workshop on Natural Language-based Software Engineering, Pittsburgh, PA, USA, 21 May 2022. [CrossRef]

43. Si, C.; Wang, S.; Kan, M.Y.; Jiang, J. What does BERT Learn from Multiple-Choice Reading Comprehension Datasets? arXiv 2019,
arXiv:1910.12391.

44. Smith, L.N. A disciplined approach to neural network hyper-parameters: Part 1—Learning rate, batch size, momentum, and
weight decay. arXiv 2018, arXiv:1803.09820.

45. You, Y.; Li, J.; Reddi, S.; Hseu, J.; Kumar, S.; Bhojanapalli, S.; Song, X.; Demmel, J.; Keutzer, K.; Hsieh, C.J. Large Batch Optimization
for Deep Learning: Training BERT in 76 minutes. arXiv 2020, arXiv:1904.00962.

46. Zhuang, Z.; Liu, M.; Cutkosky, A.; Orabona, F. Understanding AdamW through Proximal Methods and Scale-Freeness. arXiv
2022, arXiv:2202.00089.

47. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2017, arXiv:1412.6980.
48. Loshchilov, I.; Hutter, F. Decoupled Weight Decay Regularization. arXiv 2019, arXiv:1711.05101.
49. PyTorch, C. ADAMW. Available online: https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html (accessed on

16 October 2023).
50. Yu, W.; Boenninghof, B.; Kolossa, D. BERT-Based Ironic Authors Profiling. 2022, p. 14. Available online: https://ceur-ws.org/Vol-

3180/paper-229.pdf (accessed on 9 November 2023).

https://doi.org/10.1109/CSE-EUC.2017.215
https://openreview.net/pdf?id=dQgzBBpNvS
https://openreview.net/pdf?id=dQgzBBpNvS
https://doi.org/10.3390/rs12183054
https://doi.org/10.1515/auk-1980-0203
https://doi.org/10.1080/08839510500313653
https://doi.org/10.15439/2020F20
https://doi.org/10.1155/2022/3498123
https://www.ncbi.nlm.nih.gov/pubmed/35013691
https://doi.org/10.1109/CVPR.2016.90
https://huggingface.co/docs/transformers/index
https://doi.org/10.48550/arXiv.1310.4546
https://dl.acm.org/doi/10.5555/3305381.3305510
https://doi.org/10.1145/3372422.3372444
https://doi.org/10.1145/3299815.3314450
https://doi.org/10.48550/arXiv.1506.06724
https://doi.org/10.1145/3528588.3528660
https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html
https://ceur-ws.org/Vol-3180/paper-229.pdf
https://ceur-ws.org/Vol-3180/paper-229.pdf

Information 2024, 15, 89 19 of 19

51. Chicco, D.; Jurman, G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary
classification evaluation. BMC Genomics 2020, 21, 6. [CrossRef] [PubMed]

52. Japkowicz, N.; Stephen, S. The class imbalance problem: A systematic study. Intell. Data Anal. 2002, 6, 429–449. [CrossRef]
53. He, H.; Garcia, E.A. Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 2009, 21, 1263–1284. [CrossRef]
54. Krawczyk, B. Learning from imbalanced data: Open challenges and future directions. Prog. Artif. Intell. 2016, 5, 221–232.

[CrossRef]
55. Zhou, J.; Yang, Y.; Zhang, M.; Xing, H. Constructing ECOC based on confusion matrix for multiclass learning problems. Sci. China

Inf. Sci. 2016, 59, 1–14. [CrossRef]
56. Jafry, Y.; Schuermann, T. Measurement, estimation and comparison of credit migration matrices. J. Bank. Financ. 2004, 28,

2603–2639. [CrossRef]
57. Jagrič, T.; Jagrič, V. Uporaba tranzicijskih matrik v procesu validacije. Bančni Vestn. 2007. Available online: https://bv.zbs-giz.si/

bancni-vestnik/e-arhiv/2007-5/Uporaba-tranzicijskih-matrik-v-procesu-validacije--2007-5 (accessed on 23 January 2024).
58. Caelen, O. A Bayesian interpretation of the confusion matrix. Ann. Math. Artif. Intell. 2017, 81, 429–450. [CrossRef]
59. Grandini, M.; Bagli, E.; Visani, G. Metrics for Multi-Class Classification: An Overview. arXiv 2020, arXiv:2008.05756.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1186/s12864-019-6413-7
https://www.ncbi.nlm.nih.gov/pubmed/31898477
https://doi.org/10.3233/IDA-2002-6504
https://doi.org/10.1109/TKDE.2008.239
https://doi.org/10.1007/s13748-016-0094-0
https://doi.org/10.1007/s11432-015-5321-y
https://doi.org/10.1016/j.jbankfin.2004.06.004
https://bv.zbs-giz.si/bancni-vestnik/e-arhiv/2007-5/Uporaba-tranzicijskih-matrik-v-procesu-validacije--2007-5
https://bv.zbs-giz.si/bancni-vestnik/e-arhiv/2007-5/Uporaba-tranzicijskih-matrik-v-procesu-validacije--2007-5
https://doi.org/10.1007/s10472-017-9564-8

	Introduction
	Related Work
	Materials and Methods
	Results
	Discussion and Conclusions
	References

