A Survey on Using Linguistic Markers for Diagnosing Neuropsychiatric Disorders with Artificial Intelligence
Abstract
:1. Introduction
2. Materials and Methods
3. Medical Descriptions
3.1. Depression
3.2. Dementia and Alzheimer’s Disease
3.3. Hallucinations
4. State of the Art
4.1. NLP Techniques
4.2. Linguistic Markers
4.2.1. Depression
4.2.2. Dementia and Alzheimer’s Disease
4.2.3. Hallucinations
Hallucinations from People with Neuropsychiatric Disorders
Artificial Hallucinations from ML Models
4.3. Relevant Datasets
4.3.1. Depression
4.3.2. Dementia and Alzheimer’s Disease
4.3.3. Hallucinations
5. Discussion and Challenges
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Luchini, C.; Pea, A.; Scarpa, A. Artificial intelligence in oncology: Current applications and future perspectives. Br. J. Cancer 2021, 126, 4–9. [Google Scholar] [CrossRef]
- Gupta, M.; Kunal, S.; Mp, G.; Gupta, A.; Yadav, R.K. Artificial intelligence in cardiology: The past, present and future. Indian Heart J. 2022, 74, 265–269. [Google Scholar] [CrossRef] [PubMed]
- Giorgini, F.A.; Di Dalmazi, G.; Diciotti, S. Artificial intelligence in endocrinology: A comprehensive review. Journal of Endocrinological Investigation. J. Endocrinol. Investig. 2023. [Google Scholar] [CrossRef]
- Zhong, Y.; Chen, Y.; Zhang, Y.; Lyu, Y.; Yin, J.; Yujun, G. The Artificial intelligence large language models and neuropsychiatry practice and research ethic. Asian J. Psychiatry 2023, 84, 103577. [Google Scholar] [CrossRef] [PubMed]
- Rainey, S.; Erden, Y.J. Correcting the brain? the convergence of neuroscience, neurotechnology, psychiatry, and artificial intelligence. Sci. Eng. Ethics 2020, 26, 2439–2454. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Available online: https://platform.who.int (accessed on 10 November 2023).
- Leung, C.M.C.; Ho, M.K.; Bharwani, A.A.; Cogo-Moreira, H.; Wang, Y.; Chow, M.S.C.; Fan, X.; Galea, S.; Leung, G.M.; Ni, M.Y. Mental disorders following COVID-19 and other epidemics: A systematic review and meta-analysis. Transl. Psychiatry 2022, 12, 205. [Google Scholar] [CrossRef]
- Solmi, M.; Radua, J.; Olivola, M.; Croce, E.; Soardo, L.; de Pablo, G.S.; Shin, J.I.; Kirkbride, J.B.; Jones, P.; Kim, J.H.; et al. Age at onset of mental disorders worldwide: Large-scale meta-analysis of 192 epidemiological studies. Mol. Psychiatry 2021, 27, 281–295. [Google Scholar] [CrossRef]
- Belousov, M.; Dinev, M.; Morris, R.; Berry, N.; Bucci, S.; Nenadic, G. Mining Auditory Hallucinations from Unsolicited Twitter Posts. 2016. Available online: https://ep.liu.se/en/conference-article.aspx?series=&issue=128&Article_No=5 (accessed on 29 January 2024).
- Masrani, V.; Murray, G.; Field, T.; Carenini, G. Detecting dementia through retrospective analysis of routine blog posts by bloggers with dementia. ACL Anthol. 2017. Available online: https://aclanthology.org/W17-2329/ (accessed on 29 January 2024).
- Yoon, J.; Kang, C.; Kim, S.; Han, J. D-VLog: Multimodal vlog dataset for Depression Detection. Proc. AAAI Conf. Artif. Intell. 2022, 36, 12226–12234. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N. Attention Is All you Need. Part of Advances in Neural Information Processing Systems 30. 2017. Available online: https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html (accessed on 29 January 2024).
- Ranaldi, L.; Pucci, G. Knowing Knowledge: Epistemological Study of knowledge in transformers. Appl. Sci. 2023, 13, 677. [Google Scholar] [CrossRef]
- Yokoi, R.; Eguchi, Y.; Fujita, T.; Nakayachi, K. Artificial Intelligence Is Trusted Less than a Doctor in Medical Treatment Decisions: Influence of Perceived Care and Value Similarity. Int. J. Hum.–Comput. Interact. 2020, 37, 981–990. [Google Scholar] [CrossRef]
- Kozhemyakova, E.A.; Petukhova, M.E.; Simulina, S.; Ivanova, A.M.; Zakharova, A. Linguistic markers of native speakers. In Proceedings of the International Conference “Topical Problems of Philology and Didactics: Interdisciplinary Approach in Humanities and Social Sciences” (TPHD 2018); 2019. [Google Scholar] [CrossRef]
- Rawte, V.; Chakraborty, S.; Pathak, A.; Sarkar, A.; Tonmoy, S.M.T.I.; Chadha, A.; Sheth, A.P.; Das, A. The troubling emergence of hallucination in large language models—An extensive definition, quantification, and prescriptive remediations. arXiv 2023, arXiv:abs/2310.04988. [Google Scholar]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSM-5-TR) (5TH ED); British Library; American Psychiatric Association: Washington, DC, USA, 2013. [Google Scholar]
- Widiger, T.A.; Oltmanns, J.R. Neuroticism is a fundamental domain of personality with enormous public health implications. World Psychiatry Off. J. World Psychiatr. Assoc. (WPA) 2017, 16, 144–145. [Google Scholar] [CrossRef]
- Dementia Australia. Available online: https://www.dementia.org.au (accessed on 11 November 2023).
- Alzheimer’s Society. Available online: https://www.alzheimers.org.uk (accessed on 11 November 2023).
- Dementia UK. Available online: https://www.dementiauk.org (accessed on 11 November 2023).
- Alzheimer’s Association. Available online: https://www.alz.org (accessed on 11 November 2023).
- Cleveland Clinic. Available online: https://my.clevelandclinic.org (accessed on 11 November 2023).
- Linszen, M.M.J.; de Boer, J.N.; Schutte, M.J.L.; Begemann, M.J.H.; de Vries, J.; Koops, S.; Blom, R.E.; Bohlken, M.M.; Heringa, S.M.; Blom, J.D.; et al. Occurrence and phenomenology of hallucinations in the general population: A large online survey. Schizophrenia 2022, 8, 41. [Google Scholar] [CrossRef]
- Tausczik, Y.R.; Pennebaker, J.W. The psychological meaning of words: LIWC and computerized text analysis methods. J. Lang. Soc. Psychol. 2019, 29, 24–54. [Google Scholar] [CrossRef]
- Burkhardt, H.; Pullmann, M.; Hull, T.; Aren, P.; Cohen, T. Comparing emotion feature extraction approaches for predicting depression and anxiety. In Proceedings of the Eighth Workshop on Computational Linguistics and Clinical Psychology, Seattle, USA, July 2022. [Google Scholar] [CrossRef]
- Tadesse, M.M.; Lin, H.; Xu, B.; Yang, L. Detection of depression-related posts in Reddit social media forum. IEEE Access 2019, 7, 44883–44893. [Google Scholar] [CrossRef]
- Wolohan, J.; Hiraga, M.; Mukherjee, A.; Sayyed, Z.A.; Millard, M. Detecting linguistic traces of depression in topic-restricted text: Attending to self-stigmatized depression with NLP. In Proceedings of the First International Workshop on Language Cognition and Computational Models, Santa Fe, NM, USA, August 2018; pp. 11–21. Available online: https://aclanthology.org/W18-4102/ (accessed on 29 January 2024).
- Baccianella, S.; Esuli, A.; Sebastiani, F. SentiWordNet 3.0: An enhanced lexical resource for sentiment analysis and opinion mining. ACL Anthol. 2010, 10, 2200–2204. [Google Scholar]
- Hutto, C.; Gilbert, E. VADER: A parsimonious rule-based model for sentiment analysis of social media text. Proc. Int. AAAI Conf. Web Soc. Media 2014, 8, 216–225. [Google Scholar] [CrossRef]
- Titla-Tlatelpa, J.d.J.; Ortega-Mendoza, R.M.; Montes-y-Gómez, M.; Villaseñor-Pineda, L. A profile-based sentiment-aware approach for depression detection in social media. EPJ Data Sci. 2021, 10, 54. [Google Scholar] [CrossRef]
- Burkhardt, H.A.; Alexopoulos, G.S.; Pullmann, M.D.; Hull, T.D.; Areán, P.A.; Cohen, T. Behavioral Activation and Depression Symptomatology: Longitudinal Assessment of Linguistic Indicators in Text-Based Therapy Sessions (Preprint); JMIR Publications Inc.: Toronto, ON, Canada, 2021. [Google Scholar] [CrossRef]
- Jones, K.S. A statistical interpretation of term specificity and its application in retrieval. J. Doc. 1972, 28, 11–21. [Google Scholar] [CrossRef]
- Blei, D.M.; Ng, A.Y.; Jordan, M.I. Latent Dirichlet Allocation. J. Mach. Learn. Res. 2003, 3, 993–1022. [Google Scholar]
- Higuch, K. A Two-Step Approach to Quantitative Content Analysis: KH Coder Tutorial Using Anne of Green Gables (Part II). Ritsumeikan Soc. Sci. Rev. 2017, 52, 77–91. [Google Scholar]
- Toutanova, K.; Manning, C.D. Enriching the knowledge sources used in a maximum entropy part-of-speech tagger. In Proceedings of the 2000 Joint SIGDAT Conference on Empirical Methods in Natural Language Processing and Very Large Corpora Held in Conjunction with the 38th Annual Meeting of the Association for Computational Linguistics, Hong Kong, China, 7–8 October 2000. [Google Scholar] [CrossRef]
- Chang, A.X.; Manning, C.D. SUTIME: A library for recognizing and normalizing time expressions. In Proceedings of the 8th International Conference on Language Resources and Evaluation, LREC 2012, Istanbul, Turkey, 21–27 May 2012; pp. 3735–3740. [Google Scholar]
- Wegemer, C.M. Selflessness, depression, and neuroticism: An interactionist perspective on the effects of self-transcendence, perspective-taking, and materialism. Front. Psychol. 2020, 11, 523950. [Google Scholar] [CrossRef] [PubMed]
- Tølbøll, K.B. Linguistic features in depression: A meta-analysis. J. Lang.-Work.–Sprogvidenskabeligt Stud. 2019, 4, 39–59. [Google Scholar]
- Gratch, J.; Artstein, R.; Lucas, G.; Stratou, G.; Scherer, S.; Nazarian, A.; Wood, R.; Boberg, J.; DeVault, D.; Marsella, S.; et al. The Distress Analysis Interview Corpus of human and computer interviews. In Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC’14), Reykjavik, Iceland, May 2014; pp. 3123–3128. Available online: https://aclanthology.org/L14-1421/ (accessed on 29 January 2024).
- Zaman, I.-R.; Trausan-Matu, S.; Rebedea, T. Analysis of medical conversations for the detection of depression. In Proceedings of the 19th International Conference on Human-Computer Interaction—RoCHI 2023; 2023; pp. 15–22. Available online: http://rochi.utcluj.ro/articole/11/RoCHI2023-Zaman.pdf (accessed on 29 January 2024).
- Robertson, C.; Carney, J.; Trudell, S. Language about the future on social media as a novel marker of anxiety and depression: A big-data and experimental analysis. Curr. Res. Behav. Sci. 2023, 4, 100104. [Google Scholar] [CrossRef] [PubMed]
- Demszky, D.; Movshovitz-Attias, D.; Ko, J.; Cowen, A.; Nemade, G.; Ravi, S. GoEmotions: A dataset of fine-grained emotions. arXiv 2020, arXiv:2005.00547. [Google Scholar]
- Al-Mosaiwi, M.; Johnstone, T. In an absolute state: Elevated use of absolutist words is a marker specific to anxiety, depression, and suicidal ideation. Clin. Psychol. Sci. 2018, 6, 529–542. [Google Scholar] [CrossRef] [PubMed]
- Lanzi, A.M.; Saylor, A.K.; Fromm, D.; Liu, H.; MacWhinney, B.; Cohen, M.L. DementiaBank: Theoretical rationale, protocol, and illustrative analyses. Am. J. Speech-Lang. Pathol. 2023, 32, 426–438. [Google Scholar] [CrossRef] [PubMed]
- Labbé, C.; König, A.; Lindsay, H.; Linz, N.; Tröger, J.; Robert, P. Dementia vs. Depression: New methods for differential diagnosis using automatic speech analysis. Alzheimer’s Dement. J. Alzheimer’s Assoc. 2022, 18, e064486. [Google Scholar] [CrossRef]
- Almor, A.; Aronoff, J.M.; MacDonald, M.C.; Gonnerman, L.M.; Kempler, D.; Hintiryan, H.; Hayes, U.L.; Arunachalam, S.; Andersen, E.S. A common mechanism in verb and noun naming deficits in Alzheimer’s patients. Brain Lang. 2009, 111, 8–19. [Google Scholar] [CrossRef]
- Kim, M.; Thompson, C.K. Verb deficits in Alzheimer’s disease and agrammatism: Implications for lexical organization. Brain Lang. 2004, 88, 1–20. [Google Scholar] [CrossRef]
- Guerrero-Cristancho, J.; Vasquez, J.C.; Orozco, J.R. Word-Embeddings and grammar features to detect language disorders in alzheimer’s disease patients. Inst. Tecnol. Metrop. 2020, 23, 63–75. Available online: https://www.redalyc.org/journal/3442/344262603030/html/ (accessed on 29 January 2024). [CrossRef]
- Eyigoz, E.; Mathur, S.; Santamaria, M.; Cecchi, G.; Naylor, M. Linguistic markers predict onset of Alzheimer’s disease. EClinicalMedicine 2020, 28, 100583. [Google Scholar] [CrossRef]
- Martin, A.; Fedio, P. Word production and comprehension in Alzheimer’s diseáse: The breakdown of semantic knowledge. Brain Lang. 1983, 19, 124–141. [Google Scholar] [CrossRef] [PubMed]
- Appell, J.; Kertesz, A.; Fisman, M. A study of language functioning in Alzheimer patients. Brain Lang. 1982, 17, 73–91. [Google Scholar] [CrossRef] [PubMed]
- Karlekar, S.; Niu, T.; Bansal, M. Detecting linguistic characteristics of Alzheimer’s dementia by interpreting neural models. ACL Anthol. 2018. Available online: https://aclanthology.org/N18-2110/ (accessed on 29 January 2024).
- Koyama, A.; O’Brien, J.; Weuve, J.; Blacker, D.; Metti, A.L.; Yaffe, K. The role of peripheral inflammatory markers in dementia and Alzheimer’s disease: A meta-analysis. J. Gerontol. Ser. Biol. Sci. Med. Sci. 2012, 68, 433–440. [Google Scholar] [CrossRef]
- Ewers, M.; Sperling, R.A.; Klunk, W.E.; Weiner, M.W.; Hampel, H. Neuroimaging markers for the prediction and early diagnosis of Alzheimer’s disease dementia. Trends Neurosci. 2011, 34, 430–442. [Google Scholar] [CrossRef]
- Mirjafari, S.; Nepal, S.; Wang, W.; Campbell, A.T. Using mobile data and deep models to assess auditory verbal hallucinations. arXiv 2023, arXiv:2304.11049. [Google Scholar]
- Speth, C.; Speth, J. A new measure of hallucinatory states and a discussion of REM sleep dreaming as a virtual laboratory for the rehearsal of embodied cognition. Cogn. Sci. 2017, 42, 311–333. [Google Scholar] [CrossRef]
- de Boer, J.N.; Linszen, M.M.J.; de Vries, J.; Schutte, M.J.L.; Begemann, M.J.H.; Heringa, S.M.; Bohlken, M.M.; Hugdahl, K.; Aleman, A.; Wijnen, F.N.K.; et al. Auditory hallucinations, top-down processing and language perception: A general population study. Psychol. Med. 2019, 49, 2772–2780. [Google Scholar] [CrossRef]
- Viswanath, B.; Chaturvedi, S.K. Cultural aspects of major mental disorders: A critical review from an Indian perspective. Indian J. Psychol. Med. 2012, 34, 306–312. [Google Scholar] [CrossRef]
- Irving, J.; Colling, C.; Shetty, H.; Pritchard, M.; Stewart, R.; Fusar-Poli, P.; McGuire, P.; Patel, R. Gender differences in clinical presentation and illicit substance use during first episode psychosis: A natural language processing, electronic case register study. BMJ Open 2021, 11, e042949. [Google Scholar] [CrossRef] [PubMed]
- de Boer, J.N.; Corona Hernández, H.; Gerritse, F.; Brederoo, S.G.; Wijnen, F.N.K.; Sommer, I.E. Negative content in auditory verbal hallucinations: A natural language processing approach. Cogn. Neuropsychiatry 2021, 27, 139–149. [Google Scholar] [CrossRef]
- Testoni, A.; Bernardi, R. “I’ve seen things you people wouldn’t believe”: Hallucinating entities in guesswhat?! In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing: Student Research Workshop, Online, August 2021. [CrossRef]
- Dziri, N.; Milton, S.; Yu, M.; Zaiane, O.; Reddy, S. On the Origin of Hallucinations in Conversational Models: Is it the Datasets or the Models? In Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Seattle, DC, USA, 10–15 July 2022. [CrossRef]
- Rohrbach, A.; Hendricks, L.A.; Burns, K.; Darrell, T.; Saenko, K. Object hallucination in image captioning. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, 31 October–4 November 2018. [Google Scholar] [CrossRef]
- Zhang, M.; Press, O.; Merrill, W.; Liu, A.; Smith, N.A. How language model hallucinations can snowball. arXiv 2023, arXiv:2305.13534. [Google Scholar]
- OpenAI. ChatGPT 2023. Available online: https://chat.openai.com/chat (accessed on 29 January 2024).
- Stiles, W.B. Verbal response modes taxonomy. In The Cambridge Handbook of Group Interaction Analysis; Cambridge University Press: Cambridge, UK, 2019; pp. 630–638. [Google Scholar] [CrossRef]
- Alkaissi, H.; McFarlane, S.I. Artificial Hallucinations in ChatGPT: Implications in Scientific Writing. 2023. Available online: https://pubmed.ncbi.nlm.nih.gov/36811129/ (accessed on 29 January 2024).
- Ji, Z.; Lee, N.; Frieske, R.; Yu, T.; Su, D.; Xu, Y.; Ishii, E.; Bang, Y.J.; Madotto, A.; Fung, P. Survey of hallucination in natural language generation. ACM Comput. Surv. 2023, 55, 1–38. [Google Scholar] [CrossRef]
- Mündler, N.; He, J.; Jenko, S.; Vechev, M. Self-contradictory hallucinations of large language models: Evaluation, detection and mitigation. arXiv 2023, arXiv:2305.15852. [Google Scholar]
- Shen, G.; Jia, J.; Nie, L.; Feng, F.; Zhang, C.; Hu, T.; Chua, T.-S.; Zhu, W. Depression detection via harvesting social media: A multimodal dictionary learning solution. In Proceedings of the IJCAI, Melbourne, Canada; 2017; pp. 3838–3844. [Google Scholar]
- Megan, E.; Wittenborn, A.; Bogen, K.; McCauley, H. #MyDepressionLooksLike: Examining public discourse about depression on twitter. JMIR Ment. Health 2017, 4, e8141. [Google Scholar] [CrossRef]
- Cohan, A.; Desmet, B.; Yates, A.; Soldaini, L.; MacAvaney, S.; Goharian, N. SMHD: A large-scale resource for exploring online language usage for multiple mental health conditions. In Proceedings of the 27th International Conference on Computational Linguistics, Santa Fe, NM, USA, August 2018; pp. 1485–1497. Available online: https://aclanthology.org/C18-1126/ (accessed on 29 January 2024).
- Becker, J.T.; Boiler, F.; Lopez, O.; Saxton, J.; McGonigle, K.L. The Natural History of Alzheimer’s Disease: Description of study cohort and accuracy of diagnosis. Arch. Neurol. 1994, 51, 585–594. [Google Scholar] [CrossRef] [PubMed]
- Xue, C.; Karjadi, C.; Paschalidis, I.C.; Au, R.; Kolachalama, V.B. Detection of dementia on voice recordings using deep learning: A Framingham Heart Study. Alzheimer’s Res. Ther. 2021, 13, 1–15. [Google Scholar] [CrossRef]
- Azizi, M.; Jamali, A.A.; Spiteri, R. Identifying Tweets Relevant to Dementia and COVID-19: A Machine Learning Approach (Preprint). PREPRINT-SSRN. 2023. Available online: https://pesquisa.bvsalud.org/global-literature-on-novel-coronavirus-2019-ncov/resource/pt/ppzbmed-10.2139.ssrn.4458777 (accessed on 29 January 2024).
- Liu, T.; Zhang, Y.; Brockett, C.; Mao, Y.; Sui, Z.; Chen, W.; Dolan, W.B. A token-level reference-free hallucination detection benchmark for free-form text generation. ACL Anthol. 2022. Available online: https://aclanthology.org/2022.acl-long.464/ (accessed on 29 January 2024).
- Guo, M.; Dai, Z.; Vrandečić, D.; Al-Rfou’, R. Wiki-40B: Multilingual language model dataset. In Proceedings of the Twelfth Language Resources and Evaluation Conference, Marseille, France, May 2020; pp. 2440–2452. Available online: https://aclanthology.org/2020.lrec-1.297/ (accessed on 29 January 2024).
- Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. BERT: Pre-training of deep bidirectional transformers for language understanding. arXiv 2018, arXiv:1810.04805. [Google Scholar]
- Ghosh, C.C.; McVicar, D.; Davidson, G.; Shannon, C.; Armour, C. Exploring the associations between auditory hallucinations and psychopathological experiences in 10,933 patient narratives: Moving beyond diagnostic categories and surveys. BMC Psychiatry 2023, 23, 1–10. [Google Scholar] [CrossRef]
- Ghosh, C.C.; McVicar, D.; Davidson, G.; Shannon, C. Measuring diagnostic heterogeneity using text-mining of the lived experiences of patients. BMC Psychiatry 2021, 21, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Pal, A.; Umapathi, L.K.; Sankarasubbu, M. Med-HALT: Medical domain hallucination test for large language models. arXiv 2023, arXiv:2307.15343. [Google Scholar]
- Gerke, S.; Minssen, T.; Cohen, G. Ethical and Legal Challenges of Artificial Intelligence-Driven Healthcare. 2020. Available online: https://www.sciencedirect.com/science/article/pii/B9780128184387000125 (accessed on 29 January 2024).
- Gohel, P.; Singh, P.; Mohanty, M. Explainable AI: Current status and future directions. arXiv 2021, arXiv:2107.07045. [Google Scholar]
- Arrieta, A.B.; Díaz-Rodríguez, N.; Del Ser, J.; Bennetot, A.; Tabik, S.; Barbado, A.; Garcia, S.; Gil-López, S.; Molina, D.; Benjamins, R.; et al. Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI. arXiv 2019, arXiv:1910.10045. [Google Scholar]
- Wei, W.; Landay, J. CS 335: Fair, Accountable, and Transparent (FAccT) Deep Learning, Stanford University, April 2020. Available online: https://hci.stanford.edu/courses/cs335/2020/sp/lec1.pdf (accessed on 29 January 2024).
- Enns, M.W.; Larsen, D.K.; Cox, B.J. Discrepancies between self and observer ratings of depression. J. Affect. Disord. 2000, 60, 33–41. [Google Scholar] [CrossRef]
- Larøi, F.; Luhrmann, T.M.; Bell, V.; Christian, W.A.; Deshpande, S.N.; Fernyhough, C.; Jenkins, J.H.; Woods, A. Culture and Hallucinations: Overview and Future Directions. Schizophr. Bull. 2014, 40, S213–S220. [Google Scholar] [CrossRef]
- Council of the EU Artificial Intelligence Act: Council and Parliament Strike a Deal on the First Rules for AI in the World. Available online: https://www.consilium.europa.eu (accessed on 28 January 2024).
- AI HLEG. Ethics Guidelines for Trustworthy AI. Available online: https://ec.europa.eu (accessed on 28 January 2024).
- European Parliament. EU Guidelines on Ethics in Artificial Intelligence: Context and Implementation. Available online: https://www.europarl.europa.eu (accessed on 28 January 2024).
Dataset Source | Data Type | Linguistic Markers or Features | Tools and Techniques | Year | Ref. |
---|---|---|---|---|---|
Reddit posts | N-grams, topics, psychological and personal concern process features | N-grams, LDA, LIWC | 2019 | [27] | |
Reddit posts | N-grams, topics, grammatical features, emotions | N-grams, smoothed TF-IDF, LIWC | 2019 | [28] | |
Reddit and Twitter | Social media posts | Polarity, gender, age, Bow/BoP representations | Bag of Words (BoW), Bag of Polarities (BoP), SentiWordNet | 2021 | [31] |
Talkspace | Messaging therapy sessions | Grammatical features, topics and emotions | LIWC, GoEmotions | 2022 | [26] |
Reddit posts | Temporal features, modal semantics | SUTime | 2022 | [42] | |
Public forums | Forum posts | Absolutist index, LIWC features | LIWC, absolutist dictionary | 2022 | [44] |
DAIC-WOZ | Clinical interviews | POS tagging, grammatical features, topics and emotions | NLTK, NRCLex, TextBlob, pyConverse, KHCoder | 2023 | [41] |
Dataset Source | Data Type | Linguistic Markers or Features | Tools and Techniques | Year | Ref. |
---|---|---|---|---|---|
Public blogs | Posts from public blogs | Context-free grammar features, POS tagging, syntactic complexity, psycholinguistic features, vocabulary richness, repetitiveness | Stanford Tagger, Stanford Parser, L2 Syntactic Complexity Analyzer | 2017 | [10] |
Pitt Corpus—Dementia Bank | Cookie Theft picture description task | Grammatical features, POS tagging | Activation clustering, first-derivative saliency heat maps | 2018 | [53] |
Pitt Corpus—Dementia Bank | Cookie Theft picture description task | Word embeddings, grammatical features, POS tagging | Word2Vec, TF-IDF | 2020 | [49] |
FHS study | Cookie Theft picture description task | Word embeddings, grammatical features, POS tagging | GloVe, NLTK | 2020 | [50] |
Dataset Source | Data Type | Linguistic Markers or Features | Tools and Techniques | Year | Ref. |
---|---|---|---|---|---|
Twitter posts | Semantic classes, POS tagging, use of nonstandard language, polarity, key phrases, semantic and lexical features | TweetNLP tagger, MySpell | 2016 | [9] | |
Clinical study | Audio reports from sleep onset and REM and non-REM sleep | Grammatical features | Measure of Hallucinatory States (MHS) | 2017 | [57] |
“Do I see ghosts?” Dutch study | Auditory verbal recognition task | Age, gender, education, and the presence of visual, tactile, and olfactory hallucinations | IBM SPSS Statistics | 2017 | [57] |
Clinical study | Electronic health records (EHRs) | Age, gender, race, NLP symptoms | Clinical Record Interactive Search (CRIS) | 2020 | [60] |
Clinical study | Recordings of participants’ hallucinations | Grammatical features, emotions, POS tagging | CLAN software, Pattern Python package, Dutch lexicons | 2022 | [61] |
Clinical study | Audio diary by mobile phone with periodic pop-ups asking about the hallucinations | Word embeddings | VGGish model, BERT, ROCKET | 2023 | [56] |
Dataset Source | Data Type | Linguistic Markers or Features | Tools and Techniques | Year | Ref. |
---|---|---|---|---|---|
500 randomly selected images | Image captioning task | CHAIR metrics—CHAIR-i and CHAIR-s, METEOR, CIDEr, SPICE | MSCOCO annotations, FC model, LRCN, Att2In, TopDown, TopDown-BB, Neural Baby Talk (NBT) | 2018 | [64] |
GuessWhat?! game | Utterances from GuessWhat?! game | CHAIR metrics—CHAIR-i and CHAIR-s, analysis of hallucinations | MSCOCO annotations, BL, GDSE, LXMERT-GDSE, VLP | 2021 | [62] |
Wizard of Wikipedia (WOW), CMUDOG, TOPICALCHAT | Dialogues between two speakers | Hallucination rate, entailment rate, Verbal Response Modes (VRMs) | GPT2, DoHA, CTRL | 2022 | [63] |
3 new datasets consisting of yes/no questions | QA task answers | Snowballing of hallucinations, hallucination detection, LM (in)consistency | ChatGPT, GPT-4 | 2023 | [65] |
Dataset consisting of generated encyclopedic text descriptions for Wikipedia topics | Description task | Average no. of sentences, perplexity, self-contradictory features | ChatGPT, GPT-4, Llama2-70B-Chat, Vicuna-13B | 2023 | [70] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaman, I.-R.; Trausan-Matu, S. A Survey on Using Linguistic Markers for Diagnosing Neuropsychiatric Disorders with Artificial Intelligence. Information 2024, 15, 123. https://doi.org/10.3390/info15030123
Zaman I-R, Trausan-Matu S. A Survey on Using Linguistic Markers for Diagnosing Neuropsychiatric Disorders with Artificial Intelligence. Information. 2024; 15(3):123. https://doi.org/10.3390/info15030123
Chicago/Turabian StyleZaman, Ioana-Raluca, and Stefan Trausan-Matu. 2024. "A Survey on Using Linguistic Markers for Diagnosing Neuropsychiatric Disorders with Artificial Intelligence" Information 15, no. 3: 123. https://doi.org/10.3390/info15030123
APA StyleZaman, I. -R., & Trausan-Matu, S. (2024). A Survey on Using Linguistic Markers for Diagnosing Neuropsychiatric Disorders with Artificial Intelligence. Information, 15(3), 123. https://doi.org/10.3390/info15030123