
Citation: Kim, Y.; Kim, W.; Yoon, J.;

Chung, S.; Kim, D. Deep Learning-

Based Multiple Droplet

Contamination Detector for Vision

Systems Using a You Only Look Once

Algorithm. Information 2024, 15, 134.

https://doi.org/10.3390/

info15030134

Academic Editors: Dejiu Chen,

Fredrik Warg, Anders Thorsén

and Anders Cassel

Received: 31 January 2024

Revised: 19 February 2024

Accepted: 27 February 2024

Published: 28 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Article

Deep Learning-Based Multiple Droplet Contamination Detector
for Vision Systems Using a You Only Look Once Algorithm
Youngkwang Kim 1,†, Woochan Kim 1,†, Jungwoo Yoon 1, Sangkug Chung 1,* and Daegeun Kim 2,*

1 Department of Mechanical Engineering, Myongji University, Yongin 17058, Republic of Korea;
ygkim@mju.ac.kr (Y.K.); wckim@mju.ac.kr (W.K.); yoon000912@mju.ac.kr (J.Y.)

2 Microsystems, Inc., Yongin 17058, Republic of Korea
* Correspondence: skchung@mju.ac.kr (S.C.); dgkim@microsystems.co.kr (D.K.)
† These authors contributed equally to this work.

Abstract: This paper presents a practical contamination detection system for camera lenses using
image analysis with deep learning. The proposed system can detect contamination in camera digital
images through contamination learning utilizing deep learning, and it aims to prevent performance
degradation of intelligent vision systems due to lens contamination in cameras. This system is
based on the object detection algorithm YOLO (v5n, v5s, v5m, v5l, and v5x), which is trained with
4000 images captured under different lighting and background conditions. The trained models
showed that the average precision improves as the algorithm size increases, especially for YOLOv5x,
which showed excellent efficiency in detecting droplet contamination within 23 ms. They also
achieved an average precision (mAP@0.5) of 87.46%, recall (mAP@0.5:0.95) of 51.90%, precision
of 90.28%, recall of 81.47%, and F1 score of 85.64%. As a proof of concept, we demonstrated the
identification and removal of contamination on camera lenses by integrating a contamination detec-
tion system and a transparent heater-based cleaning system. The proposed system is anticipated
to be applied to autonomous driving systems, public safety surveillance cameras, environmental
monitoring drones, etc., to increase operational safety and reliability.

Keywords: object detection; classification; contamination detection; autonomous driving systems;
machine leaning

1. Introduction

Traffic accidents are one of the primary causes of death worldwide. These accidents
are often caused by factors such as driver inattentiveness, failure to follow traffic rules, and
distractions [1,2]. Particularly, the lack of safety mechanisms in vehicles has been identified
as a principal factor contributing to traffic accidents [3]. For these reasons, the automobile
industry is adopting electronic safety devices. The U.S. National Highway Traffic Safety
Administration (NHTSA) passed a law requiring vehicles to have rear visibility starting in
2018 [4], and Europe is enacting similar regulations to enhance vehicle safety features.

As a result, the automotive industry is rapidly growing research vision-based recog-
nition systems that use optical sensors, like cameras and lidar, which act as the vehicle’s
‘eyes’. These systems assist in safe driving by detecting the driving environment, objects,
and potential hazards and by providing warning signals [5]. Such capabilities are essential
for making safe decisions and responding quickly, even in abnormal situations. The effec-
tiveness of these systems is highly dependent on the quality of image acquisition devices
such as cameras [6,7]. However, these devices are vulnerable to contamination, such as
rain, snow, and fog, due to exposure to the external environment.

To solve this issue, various active cleaning technologies are being developed. These
technologies employ methods such as electrowetting [8,9], surface acoustic waves [10,11],
and heat [12,13] to remove contamination from lens surfaces. For instance, Lee et al. [14]

Information 2024, 15, 134. https://doi.org/10.3390/info15030134 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info15030134
https://doi.org/10.3390/info15030134
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://doi.org/10.3390/info15030134
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info15030134?type=check_update&version=1

Information 2024, 15, 134 2 of 14

developed a cleaning device using electrowetting, applying an electrical signal to con-
trol the interfacial tension of droplets on the surface, thus moving and removing them.
Song et al. [15] developed a cleaning device that uses surface acoustic waves and applies an
electric signal to the device to push and remove droplets in the direction of surface acoustic
waves. Park et al. [16] developed a cleaning device using heat to evaporate and remove
droplets on the surface. As such, various active cleaning technologies are being developed,
and the application of these devices in real-world scenarios requires the development of
contamination detection technology so that the cleaning device can detect contamination
and operate on its own.

Robbins and Nelson [17] developed a system for detecting the presence of contamina-
tion on the lens of cameras equipped with digital image sensors. This system comprises a
light source, an image sensor, and a light source located between the lens cover and the
digital image sensor. When contamination occurs on the lens, the light emitted from the
light source is scattered by the contamination. The image sensor detects this scattered
light and converts it into a digital signal. Utilizing this signal, the system determines
the presence of lens contamination and provides a warning to the user. Zhang et al. [18]
researched detecting camera lens contamination using a static region segmentation algo-
rithm and a wave decomposition-based blurred edge detection algorithm. The static region
segmentation algorithm detects non-moving regions obscured by contamination in the
images acquired through a camera, and the blurred edge detection algorithm identifies the
blurred outlines of objects due to contamination. However, Robbins and Nelson’s system
requires precise control of the light source and sensitivity adjustment of the image sensor,
and Zhang’s algorithm requires complex processing to accurately identify static areas and
blurry edges. This process requires a high level of technical knowledge and resources and
has limitations, such as being inapplicable in a variety of lighting conditions. To overcome
these issues, we attempted to solve these problems by utilizing deep learning algorithms
that are easier to develop and more adaptable to different environments.

Recently, with the advancement of Graphic Processing Unit (GPU) technology, deep
learning algorithms detection technologies have attracted attention that can precisely
analyze various objects and situations in complex environments. Chi Cheng Lai et al. [19]
developed a windshield rain detection system using deep learning on more than 150 k
global background images of rainy situations. Huanjie Tao et al. [20] developed a pixel-
level supervised learning neural network to build an advanced detection system that
can recognize forest smoke. Similarly, Yining Cao et al. [21] developed an MCS-YOLO
algorithm to implement a high-precision real-time object detection system optimized for
autonomous driving environments. Despite these advances, there is a lack of development
of specialized contamination detection systems that precisely analyze and recognize the
location and characteristics of contamination to develop self-cleaning systems that can
effectively clean various contaminants on the surface of a camera lens.

This paper proposes an advanced droplet contamination cleaning system for improv-
ing the visibility of automotive vision systems. This system consists of a transparent
heater-based advanced droplet cleaning device and a deep learning-based contamination
detection system utilizing YOLO (You Only Look Once), an object detection model based
on CNN architecture [22,23]. The advanced droplet contamination cleaning system pre-
cisely recognizes the location of droplet contamination and enables customized cleaning
technology based on it, enabling continuous high-definition image acquisition without
degrading the performance of the camera lens. The operational scenario of this system is
shown in Figure 1. If the camera installed in a vehicle is contaminated, the analytical model
trained on the contamination receives this distorted image. The YOLO algorithm embedded
within this model analyzes the image to determine the presence of contamination. When
contamination is detected, the analysis image is transmitted to the vehicle’s display to
visually inform the driver of the contamination situation. Concurrently, a digital signal
is transmitted to the vehicle’s internal lens cleaning system to remove the contamination
attached to the lens. This research focuses on using deep learning technology for the

Information 2024, 15, 134 3 of 14

detection of camera lens contamination. Ultimately, through a demonstration, it shows the
enhancement of camera visibility through integration with a previously developed lens
cleaning system [24].

Information 2024, 15, x FOR PEER REVIEW 3 of 15

display to visually inform the driver of the contamination situation. Concurrently, a digi-
tal signal is transmitted to the vehicle’s internal lens cleaning system to remove the con-
tamination attached to the lens. This research focuses on using deep learning technology
for the detection of camera lens contamination. Ultimately, through a demonstration, it
shows the enhancement of camera visibility through integration with a previously devel-
oped lens cleaning system [24].

Figure 1. Scenario for the proposed deep learning-based contamination detection system.

2. Network
2.1. Convolution Neural Network (CNN)

A CNN is a deep learning algorithm inspired by the structure and functional princi-
ples of the human brain. Deep learning algorithms have evolved from Artificial Neural
Networks (ANNs) to Deep Neural Networks (DNNs) and finally to CNNs. An ANN con-
sists of an input layer that receives data, a hidden layer where data processing occurs, and
an output layer that produces the final results. However, ANNs were limited to low accu-
racy and slow learning times. To solve these problems, DNNs were developed. DNNs are
more complex, featuring two or more deep hidden layers [25,26]. DNNs autonomously
create classification labels and categorize data, producing optimal results through re-
peated processes. While DNNs excel in object classification and recognition, they struggle
with processing high-dimensional data that require extensive computation.

CNNs were developed based on the foundational concepts of DNNs to overcome
these limitations [27,28]. CNNs are specifically structured to efficiently learn local features
within an image. This structure reduces computational requirements and enhances image
processing accuracy. The CNN architecture is used for image classification, recognition,
and detection and is based on a paper by Yann LeCun et al. in 1998 [29]. The operation of
CNN architecture is divided into two major steps (Figure 2) [30,31]. The first step is a
feature extraction. This step includes a convolutional layer and a pooling layer. The con-
volutional layer uses a kernel filter to compute a convolutional operation on the input
image to extract the underlying features. Pooling reduces the dimensionality of the feature
data and converts the two-dimensional data into a one-dimensional array. The second
step is classification, in which the fully connected layer learns the relationships between
the extracted features and uses them to determine which category the image belongs to,
outputting a classification result. Through this process, CNN architecture contributes to
reducing the complexity of the data while retaining important information, resulting in
high accuracy and efficient image processing.

Figure 1. Scenario for the proposed deep learning-based contamination detection system.

2. Network
2.1. Convolution Neural Network (CNN)

A CNN is a deep learning algorithm inspired by the structure and functional princi-
ples of the human brain. Deep learning algorithms have evolved from Artificial Neural
Networks (ANNs) to Deep Neural Networks (DNNs) and finally to CNNs. An ANN
consists of an input layer that receives data, a hidden layer where data processing occurs,
and an output layer that produces the final results. However, ANNs were limited to low
accuracy and slow learning times. To solve these problems, DNNs were developed. DNNs
are more complex, featuring two or more deep hidden layers [25,26]. DNNs autonomously
create classification labels and categorize data, producing optimal results through repeated
processes. While DNNs excel in object classification and recognition, they struggle with
processing high-dimensional data that require extensive computation.

CNNs were developed based on the foundational concepts of DNNs to overcome
these limitations [27,28]. CNNs are specifically structured to efficiently learn local features
within an image. This structure reduces computational requirements and enhances image
processing accuracy. The CNN architecture is used for image classification, recognition,
and detection and is based on a paper by Yann LeCun et al. in 1998 [29]. The operation
of CNN architecture is divided into two major steps (Figure 2) [30,31]. The first step is
a feature extraction. This step includes a convolutional layer and a pooling layer. The
convolutional layer uses a kernel filter to compute a convolutional operation on the input
image to extract the underlying features. Pooling reduces the dimensionality of the feature
data and converts the two-dimensional data into a one-dimensional array. The second
step is classification, in which the fully connected layer learns the relationships between
the extracted features and uses them to determine which category the image belongs to,
outputting a classification result. Through this process, CNN architecture contributes to
reducing the complexity of the data while retaining important information, resulting in
high accuracy and efficient image processing.

Information 2024, 15, x FOR PEER REVIEW 4 of 15

Figure 2. CNN architecture for image classification [32].

2.2. You Only Look Once (YOLO) [33]
The YOLO (You Only Look Once) series is a prominent example of a single-stage

detector in object detection technology. Single-stage detectors generally comprise three
main components: the backbone, neck, and head. The backbone extracts both low-level
and high-level features from the images. The neck fuses the features extracted by the back-
bone. This process enriches the semantic information of the features and transfers them to
the head, as well as bridging the gap between feature extraction (achieved by the back-
bone) and object detection (achieved by the head), ensuring a smooth transition of in-
formative features. The head is the final stage of object detection and classification. This
stage performs the head based on the features received from the neck, predicting the lo-
cation and class of objects.

YOLO divides the image into grids and predicts the presence or absence of objects
and their bounding boxes within each grid region. This treats the object detection problem
as a single regression problem, allowing the model to predict the location and class of the
object with just one inference on the input image. Each grid cell is responsible only for
objects centered within its area and predicts many bounding boxes and a confidence score
for them. Ultimately, each bounding box provides a five-dimensional output that repre-
sents the location of the object (coordinates) and the probability that the object exists. The
five-dimensional outputs are the coordinates of the object’s center point (x, y), the width
and height of the bounding box (w, h), and the probability that the object exists within
that box. Here, x and y are coordinates that represent the location of the center of the object
within the image, and w and h are the width and height of the bounding box surrounding
the object. Confidence represents the probability that an object exists within the box,
which is a metric of the model’s detection performance. These five dimensions of infor-
mation allow YOLO to accurately predict the location, size, and probability of the exist-
ence of objects in an image. Early versions of YOLO were very fast in inference speed but
had limitations in terms of accuracy. However, subsequent versions, such as YOLOv3,
YOLOv4, and YOLOv5, have greatly improved accuracy through various technical im-
provements.

2.3. YOLOv5
YOLOv5 is widely favored in various research circles due to its seamless integration

with specific libraries and frameworks, its ability to perform rapid inferences, and its no-
table accuracy [34–36]. An overview of the YOLOv5 architecture is presented in Figure 3.
At its core, YOLOv5 employs CSPDarknet, an enhanced version of darknet, augmented
with a cross-stage partial network (CSPNet) [37]. CSPNet efficiently addresses the issue
of redundant gradient information in the network, enhancing the learning process while
preserving accuracy and reducing complexity. The spatial pyramid pooling (SPP) block,
a key component of the backbone, broadens the receptive field and isolates critical features
from the base network. This block generates feature maps from the input image through
its convolutional layers. The YOLOv5 architecture’s neck features a Path Aggregation

Figure 2. CNN architecture for image classification [32].

Information 2024, 15, 134 4 of 14

2.2. You Only Look Once (YOLO) [33]

The YOLO (You Only Look Once) series is a prominent example of a single-stage
detector in object detection technology. Single-stage detectors generally comprise three
main components: the backbone, neck, and head. The backbone extracts both low-level
and high-level features from the images. The neck fuses the features extracted by the
backbone. This process enriches the semantic information of the features and transfers
them to the head, as well as bridging the gap between feature extraction (achieved by
the backbone) and object detection (achieved by the head), ensuring a smooth transition
of informative features. The head is the final stage of object detection and classification.
This stage performs the head based on the features received from the neck, predicting the
location and class of objects.

YOLO divides the image into grids and predicts the presence or absence of objects
and their bounding boxes within each grid region. This treats the object detection problem
as a single regression problem, allowing the model to predict the location and class of
the object with just one inference on the input image. Each grid cell is responsible only
for objects centered within its area and predicts many bounding boxes and a confidence
score for them. Ultimately, each bounding box provides a five-dimensional output that
represents the location of the object (coordinates) and the probability that the object exists.
The five-dimensional outputs are the coordinates of the object’s center point (x, y), the width
and height of the bounding box (w, h), and the probability that the object exists within that
box. Here, x and y are coordinates that represent the location of the center of the object
within the image, and w and h are the width and height of the bounding box surrounding
the object. Confidence represents the probability that an object exists within the box, which
is a metric of the model’s detection performance. These five dimensions of information
allow YOLO to accurately predict the location, size, and probability of the existence of
objects in an image. Early versions of YOLO were very fast in inference speed but had
limitations in terms of accuracy. However, subsequent versions, such as YOLOv3, YOLOv4,
and YOLOv5, have greatly improved accuracy through various technical improvements.

2.3. YOLOv5

YOLOv5 is widely favored in various research circles due to its seamless integration
with specific libraries and frameworks, its ability to perform rapid inferences, and its
notable accuracy [34–36]. An overview of the YOLOv5 architecture is presented in Figure 3.
At its core, YOLOv5 employs CSPDarknet, an enhanced version of darknet, augmented
with a cross-stage partial network (CSPNet) [37]. CSPNet efficiently addresses the issue
of redundant gradient information in the network, enhancing the learning process while
preserving accuracy and reducing complexity. The spatial pyramid pooling (SPP) block, a
key component of the backbone, broadens the receptive field and isolates critical features
from the base network. This block generates feature maps from the input image through its
convolutional layers. The YOLOv5 architecture’s neck features a Path Aggregation Network
(PANet), which facilitates optimal information flow. PANet incorporates an innovative
Feature Pyramid Network (FPN) design, with layers arranged in both bottom-up and
top-down configurations, enhancing the transfer of low-level features within the algorithm.
This structure is particularly effective in boosting localization accuracy at lower layers,
thus enabling more precise object localization [38]. The head of the YOLOv5 architecture is
tailored for multi-level predictions, generating feature map outputs at three distinct levels.
This multi-tiered approach allows the detection of objects of varying sizes, from small to
large, with rapid inference speeds and high accuracy. Such capabilities render YOLOv5
exceptionally suitable for real-time object detection systems [39,40].

Information 2024, 15, 134 5 of 14

Information 2024, 15, x FOR PEER REVIEW 5 of 15

Network (PANet), which facilitates optimal information flow. PANet incorporates an in-
novative Feature Pyramid Network (FPN) design, with layers arranged in both bottom-
up and top-down configurations, enhancing the transfer of low-level features within the
algorithm. This structure is particularly effective in boosting localization accuracy at lower
layers, thus enabling more precise object localization [38]. The head of the YOLOv5 archi-
tecture is tailored for multi-level predictions, generating feature map outputs at three dis-
tinct levels. This multi-tiered approach allows the detection of objects of varying sizes,
from small to large, with rapid inference speeds and high accuracy. Such capabilities ren-
der YOLOv5 exceptionally suitable for real-time object detection systems [39,40].

Figure 3. The general architecture of YOLOv5 [41].

3. Methodology
The development of a deep learning-based real-time droplet detector using the

YOLO algorithm involves the process of building a development environment and train-
ing the algorithm in that environment. The hardware configuration utilized included a
computer equipped with a 12th Gen Intel® Core™ i7-12700 processor, an NVIDIA
RTX4080 graphics card, and 32 GB of RAM. The software environment, operating on the
Windows system, extensively used various programs, including Anaconda 3-2021.11, Py-
thon 3.7, PyCharm-Professional-2021, and PyQt 5.15.4. Training of the YOLO algorithm
consists of three steps, as shown in the sections below.

3.1. Step 1. Create an Image Dataset
This dataset was created by collecting images where the lens was contaminated by

multiple droplets under various background conditions and labeling the collected images
as ‘droplet’. The dataset contains a bounding box containing information about the loca-
tion and size of the droplet. To collect images contaminated by multiple droplets, a glass
measuring 20 mm across and 20 mm long was attached to the lens of a mobile IP camera.

Figure 3. The general architecture of YOLOv5 [41].

3. Methodology

The development of a deep learning-based real-time droplet detector using the YOLO
algorithm involves the process of building a development environment and training the
algorithm in that environment. The hardware configuration utilized included a computer
equipped with a 12th Gen Intel® Core™ i7-12700 processor, an NVIDIA RTX4080 graphics
card, and 32 GB of RAM. The software environment, operating on the Windows system,
extensively used various programs, including Anaconda 3-2021.11, Python 3.7, PyCharm-
Professional-2021, and PyQt 5.15.4. Training of the YOLO algorithm consists of three steps,
as shown in the sections below.

3.1. Step 1. Create an Image Dataset

This dataset was created by collecting images where the lens was contaminated by
multiple droplets under various background conditions and labeling the collected images
as ‘droplet’. The dataset contains a bounding box containing information about the location
and size of the droplet. To collect images contaminated by multiple droplets, a glass mea-
suring 20 mm across and 20 mm long was attached to the lens of a mobile IP camera. The
surface of the glass was coated with a 1 µm thick CYTOP as the hydrophobic coating. By in-
creasing the contact angle between the droplet and the glass plate through the hydrophobic
coating, the boundary, shape, and size of the droplet can be accurately determined. Next, a
large number of droplets were sprayed onto the glass surface using a droplet spray device
under various hue, saturation, and brightness conditions, and 4000 images of the same size
of 640 × 640 pixels were collected. Figure 4 shows representative samples.

Information 2024, 15, 134 6 of 14

Information 2024, 15, x FOR PEER REVIEW 6 of 15

The surface of the glass was coated with a 1 µm thick CYTOP as the hydrophobic coating.
By increasing the contact angle between the droplet and the glass plate through the hy-
drophobic coating, the boundary, shape, and size of the droplet can be accurately deter-
mined. Next, a large number of droplets were sprayed onto the glass surface using a drop-
let spray device under various hue, saturation, and brightness conditions, and 4000 im-
ages of the same size of 640 × 640 pixels were collected. Figure 4 shows representative
samples.

Figure 4. Images of the dataset for training and validation.

We used DarkLabel [42], an open-source graphical image labeling tool to label the
collected images with ‘droplet’. Image labeling provides the information a model needs
to identify and classify objects within an image. The results of labeling are the coordinates,
sizes, and bounding boxes. As shown in Figure 5, each droplet within the digital image
was manually labeled to generate a label file containing the coordinate information of the
object. This file documents the object’s class, as well as the height and width of the bound-
ing box for each object. In this scenario, as there is only one class, all droplets are labeled
under the same class. The file format is textual (.txt).

Figure 4. Images of the dataset for training and validation.

We used DarkLabel [42], an open-source graphical image labeling tool to label the
collected images with ‘droplet’. Image labeling provides the information a model needs to
identify and classify objects within an image. The results of labeling are the coordinates,
sizes, and bounding boxes. As shown in Figure 5, each droplet within the digital image was
manually labeled to generate a label file containing the coordinate information of the object.
This file documents the object’s class, as well as the height and width of the bounding box
for each object. In this scenario, as there is only one class, all droplets are labeled under the
same class. The file format is textual (.txt).

Information 2024, 15, x FOR PEER REVIEW 7 of 15

Figure 5. Image annotation tool DarkLabel [42].

3.2. Step 2. Training of Algorithms
The second step involves setting the training variables and learning droplets from the

dataset using the YOLO algorithm. The training utilized a dataset of 4000 images, parti-
tioned into training and validation sets at a 7:3 ratio, amounting to 2800 images for train-
ing and 1200 for validation. In our research, YOLO (v5n, v5s, v5m, v5l, and v5x) was
trained by tuning the batch size and number of epochs. We experimented with batch sizes
(4, 8, and 16), observing that training time was inversely proportional to batch size. How-
ever, model performance, such as model accuracy and loss rates, were unaffected by var-
iations in batch size. Based on these results, we trained the model with a batch size of 16.
Additionally, the image resolution was set to 640 × 640 pixels for computational efficiency
and precision accuracy [43]. The training of the detection model was performed with the
YOLO (v5n, v5s, v5m, v5l, and v5x) algorithm, each using a different number of convolu-
tional layers and filters [44]. YOLOv5n features the least number of convolutional layers
and filters, optimizing the model size and computational demands, whereas YOLOv5x
has the most, enhancing accuracy and complex feature learning capability. Table 1 shows
the main training parameters used in training.

Table 1. The detailed training strategies applied to model training and information used in the train-
ing process.

Model
Training

Parameters Optimizer
Learning

Rate Momentum Image Size
Batch
Size Epochs

YOLOv5n 1,900,000 SGD 0.001 0.937 640 × 640 16 150
YOLOv5s 7,200,000 SGD 0.001 0.937 640 × 640 16 150
YOLOv5m 21,200,000 SGD 0.001 0.937 640 × 640 16 150
YOLOv5l 46,500,000 SGD 0.001 0.937 640 × 640 16 150
YOLOv5x 86,700,000 SGD 0.001 0.937 640 × 640 16 150

In the training process, repetition can be divided into two stages: First, we apply the
training dataset to the algorithm, and the algorithm automatically adjusts the weights

Figure 5. Image annotation tool DarkLabel [42].

3.2. Step 2. Training of Algorithms

The second step involves setting the training variables and learning droplets from
the dataset using the YOLO algorithm. The training utilized a dataset of 4000 images,

Information 2024, 15, 134 7 of 14

partitioned into training and validation sets at a 7:3 ratio, amounting to 2800 images for
training and 1200 for validation. In our research, YOLO (v5n, v5s, v5m, v5l, and v5x) was
trained by tuning the batch size and number of epochs. We experimented with batch sizes (4,
8, and 16), observing that training time was inversely proportional to batch size. However,
model performance, such as model accuracy and loss rates, were unaffected by variations in
batch size. Based on these results, we trained the model with a batch size of 16. Additionally,
the image resolution was set to 640 × 640 pixels for computational efficiency and precision
accuracy [43]. The training of the detection model was performed with the YOLO (v5n,
v5s, v5m, v5l, and v5x) algorithm, each using a different number of convolutional layers
and filters [44]. YOLOv5n features the least number of convolutional layers and filters,
optimizing the model size and computational demands, whereas YOLOv5x has the most,
enhancing accuracy and complex feature learning capability. Table 1 shows the main
training parameters used in training.

Table 1. The detailed training strategies applied to model training and information used in the
training process.

Model Training
Parameters Optimizer Learning

Rate Momentum Image Size Batch
Size Epochs

YOLOv5n 1,900,000 SGD 0.001 0.937 640 × 640 16 150
YOLOv5s 7,200,000 SGD 0.001 0.937 640 × 640 16 150
YOLOv5m 21,200,000 SGD 0.001 0.937 640 × 640 16 150
YOLOv5l 46,500,000 SGD 0.001 0.937 640 × 640 16 150
YOLOv5x 86,700,000 SGD 0.001 0.937 640 × 640 16 150

In the training process, repetition can be divided into two stages: First, we ap-
ply the training dataset to the algorithm, and the algorithm automatically adjusts the
weights according to the loss values. The loss value is calculated through the GIOU Loss
function [45,46]. Subsequently, the validation dataset is applied, and the loss value is recal-
culated with updated weights, serving as a key indicator of model performance. The final
model was constructed using PyTorch [47,48].

3.3. Step 3. Quantitatively Evaluation of the Detection Performance

In the third step, the performance of the model developed through algorithm training
is evaluated using four performance metrics: precision, recall, F1 score, and average
precision [49]. Firstly, precision and recall are calculated using Equations (1) and (2):

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

TP (True Positive) represents the number of objects accurately identified, while FP
(False Positive) refers to the count of objects incorrectly identified, and FN (False Negative)
signifies the number of objects that were not detected. The quantification of these objects
is based on the IoU (Intersection over Union) metric, which involves calculating and
thresholding. IoU evaluates the accuracy of detection by comparing the extent of overlap
between the predicted bounding boxes and the actual ones, as illustrated in Figure 6 [50].
Following this, we compute the F1 score, a balanced measure of precision and recall, using
the formula presented in Equation (3).

F1 = 2 × Precision × Recall
Precision + Recall

(3)

Information 2024, 15, 134 8 of 14

Information 2024, 15, x FOR PEER REVIEW 8 of 15

according to the loss values. The loss value is calculated through the GIOU Loss function
[45,46]. Subsequently, the validation dataset is applied, and the loss value is recalculated
with updated weights, serving as a key indicator of model performance. The final model
was constructed using PyTorch [47,48].

3.3. Step 3. Quantitatively Evaluation of the Detection Performance
In the third step, the performance of the model developed through algorithm training

is evaluated using four performance metrics: precision, recall, F1 score, and average pre-
cision [49]. Firstly, precision and recall are calculated using Equations (1) and (2): Precision ൌ 𝑇𝑃𝑇𝑃 𝐹𝑃 (1)

Recall ൌ 𝑇𝑃𝑇𝑃 𝐹𝑁 (2) 𝑇𝑃 (True Positive) represents the number of objects accurately identified, while 𝐹𝑃
(False Positive) refers to the count of objects incorrectly identified, and 𝐹𝑁 (False Nega-
tive) signifies the number of objects that were not detected. The quantification of these
objects is based on the IoU (Intersection over Union) metric, which involves calculating
and thresholding. IoU evaluates the accuracy of detection by comparing the extent of over-
lap between the predicted bounding boxes and the actual ones, as illustrated in Figure 6
[50]. Following this, we compute the F1 score, a balanced measure of precision and recall,
using the formula presented in Equation (3). F1 ൌ 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑅𝑒𝑐𝑎𝑙𝑙 (3)

Lastly, AP (Average Precision) is computed through Equation (4), with mAP (Mean
Average Precision) derived by averaging the AP across categories.

AP ൌ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛ሺ𝑘ሻ × ∆𝑟𝑒𝑐𝑎𝑙𝑙ሺ𝑘ሻே
ୀଵ (4)

In Equation (4), ‘n’ denotes the total number of images in the dataset, precision(𝑘) is
the precision at the 𝑘th image, and ∆recall(𝑘) is the recall difference between the 𝑘 െ 1th
and 𝑘th images.

Figure 6. IoU calculation.

Figure 6. IoU calculation.

Lastly, AP (Average Precision) is computed through Equation (4), with mAP (Mean
Average Precision) derived by averaging the AP across categories.

AP =
N

∑
i=1

precision(k)× ∆recall(k) (4)

In Equation (4), ‘n’ denotes the total number of images in the dataset, precision(k) is the
precision at the kth image, and ∆recall(k) is the recall difference between the k − 1th and
kth images.

4. Result
4.1. Training Loss Analysis of Architectures

Figure 7 illustrates the training and validation loss for the five architectures. Training
and validation loss tended to be inversely proportional to the number of epochs, number of
convolution layers, and number of filters. Training and validation loss observed decreases
as epochs increase and for architecture with more convolution layers and filters. From
these results, it was confirmed that the model trained with YOLOv5x, which is a complex
architecture, can achieve lower training and validation loss than other trained models and
has the lowest training loss of 0.0348 at epoch 150.

Information 2024, 15, x FOR PEER REVIEW 9 of 15

4. Result
4.1. Training Loss Analysis of Architectures

Figure 7 illustrates the training and validation loss for the five architectures. Training
and validation loss tended to be inversely proportional to the number of epochs, number
of convolution layers, and number of filters. Training and validation loss observed de-
creases as epochs increase and for architecture with more convolution layers and filters.
From these results, it was confirmed that the model trained with YOLOv5x, which is a
complex architecture, can achieve lower training and validation loss than other trained
models and has the lowest training loss of 0.0348 at epoch 150.

Figure 7. Loss of five different architectures: (a) Training; (b) Validation.

4.2. Compare the Detection Performance of Trained Models
Figure 8 and Table 2 detail the quantitative performance evaluations of trained mod-

els with the YOLO (v5n, v5s, v5m, v5l, and v5x) architectures. The results show that the
precision and inference time of the trained models is proportional to the number of con-
volution layers and filters. Architectures with more convolution layers and filters have
more computation capability, which improves precision by identifying more complex fea-
tures but also increases inference time. As a result, the trained model with the YOLOv5n
architecture demonstrates the lowest performance with 76.07% mAP@0.5, 34.87%
mAP@0.5:0.95, 77.81% precision, 64.66% recall, and a 70.62% F1 score. In contrast, the
trained model with the YOLOv5x architecture demonstrates the highest performance
among others with 87.46% mAP@0.5, 51.90% mAP@0.5:0.95, 90.28% precision, 81.47% re-
call, and 85.64% F1 score. Also, the inference times of trained models with YOLO (v5n,
v5s, v5m, v5l, and v5x) architecture were recorded as 3.3 ms, 4.8 ms, 8.9 ms, 14.7 ms, and
23 ms, respectively.

Figure 7. Loss of five different architectures: (a) Training; (b) Validation.

Information 2024, 15, 134 9 of 14

4.2. Compare the Detection Performance of Trained Models

Figure 8 and Table 2 detail the quantitative performance evaluations of trained models
with the YOLO (v5n, v5s, v5m, v5l, and v5x) architectures. The results show that the preci-
sion and inference time of the trained models is proportional to the number of convolution
layers and filters. Architectures with more convolution layers and filters have more compu-
tation capability, which improves precision by identifying more complex features but also
increases inference time. As a result, the trained model with the YOLOv5n architecture
demonstrates the lowest performance with 76.07% mAP@0.5, 34.87% mAP@0.5:0.95, 77.81%
precision, 64.66% recall, and a 70.62% F1 score. In contrast, the trained model with the
YOLOv5x architecture demonstrates the highest performance among others with 87.46%
mAP@0.5, 51.90% mAP@0.5:0.95, 90.28% precision, 81.47% recall, and 85.64% F1 score. Also,
the inference times of trained models with YOLO (v5n, v5s, v5m, v5l, and v5x) architecture
were recorded as 3.3 ms, 4.8 ms, 8.9 ms, 14.7 ms, and 23 ms, respectively.

Information 2024, 15, x FOR PEER REVIEW 10 of 15

Figure 8. Quantitative results of the training process of five different architectures.

Table 2. Comparison of trained models with the YOLO (v5n, v5s, v5m, v5l, and v5x) architectures.

Model
mAP

0.5 (%)
mAP

0.5:0.95 (%)
Precision

(%) Recall F1 Score GFLOPS
Inference Time

Millisecond (ms)
YOLOv5n 76.07 34.87 77.81 67.66 70.62 4.2 3.3
YOLOv5s 80.47 38.88 80.69 73.65 77.00 16.0 4.8
YOLOv5m 84.70 44.16 86.02 78.97 82.34 448.2 8.9
YOLOv5l 86.50 48.74 88.90 80.68 84.59 108.2 14.7
YOLOv5x 87.46 51.90 90.28 81.47 85.64 204.4 23.0

4.3. Detection Results
Figure 9 shows the result of using a model trained in real time to detect droplets

generated on the surface of a camera lens. The experimental results show that a significant
number of droplets can be successfully detected from backgrounds of varying hue, satu-
ration, and brightness. This demonstrates the ability of the trained model with YOLOv5x
architecture to effectively identify droplets even under complex and diverse environmen-
tal conditions. Furthermore, these results demonstrate the application of the real-time
droplet detector in the diverse real world where environmental conditions are variable
and unpredictable. The trained model is open source at https://github.com/Transparen-
tHeaterYKKIM/Droplet-detector.git (accessed on 29 January 2024).

Figure 8. Quantitative results of the training process of five different architectures.

Table 2. Comparison of trained models with the YOLO (v5n, v5s, v5m, v5l, and v5x) architectures.

Model mAP
0.5 (%)

mAP
0.5:0.95 (%) Precision (%) Recall F1 Score GFLOPS Inference Time

Millisecond (ms)

YOLOv5n 76.07 34.87 77.81 67.66 70.62 4.2 3.3
YOLOv5s 80.47 38.88 80.69 73.65 77.00 16.0 4.8
YOLOv5m 84.70 44.16 86.02 78.97 82.34 448.2 8.9
YOLOv5l 86.50 48.74 88.90 80.68 84.59 108.2 14.7
YOLOv5x 87.46 51.90 90.28 81.47 85.64 204.4 23.0

4.3. Detection Results

Figure 9 shows the result of using a model trained in real time to detect droplets
generated on the surface of a camera lens. The experimental results show that a sig-
nificant number of droplets can be successfully detected from backgrounds of varying
hue, saturation, and brightness. This demonstrates the ability of the trained model with
YOLOv5x architecture to effectively identify droplets even under complex and diverse
environmental conditions. Furthermore, these results demonstrate the application of the
real-time droplet detector in the diverse real world where environmental conditions are

Information 2024, 15, 134 10 of 14

variable and unpredictable. The trained model is open source at https://github.com/
TransparentHeaterYKKIM/Droplet-detector.git (accessed on 29 January 2024).

Information 2024, 15, x FOR PEER REVIEW 11 of 15

Figure 9. Detection results of YOLOv5x.

4.4. Integrating Contamination Detection Models with Cleaning Systems
Finally, an effective contamination detection and cleaning system was implemented

by integrating the proposed deep learning-based detector with a previously developed
contamination cleaning system using a transparent heater [24]. The system consists of a
camera, a transparent heater for droplet removal, a server for image analysis, and a mon-
itor for real-time contamination detection and cleaning verification (Figure 10a). The
transparent heater consists of optical glass, mesh copper electrodes (electrode width: 10
µm, gap: 350 µm), and insulating film (Cytop, thickness 1 µm). The manufactured trans-
parent heater is attached to the outside of the camera lens and is directly exposed to ex-
ternal contamination. To simulate lens contamination, multiple droplets were sprayed.
When droplets adhere to the transparent heater, the digital image input to the image sen-
sor through the camera lens is distorted. These digital images are transmitted in real time
from the camera to the analysis server, which uses a pre-trained YOLOv5 model to deter-
mine whether the image is contaminated (Figure 10(b1)). When contamination is detected,
the analysis server transmits a command signal to drive the transparent heater to the Ar-
duino switch. Direct current voltage is applied to the transparent heater through this
switch, and the transparent heater generates heat by resistance heat. Through this process,
several droplets evaporate and are removed from the lens surface (Figure 10(b2)). This
experiment successfully demonstrated that when the image is distorted due to contami-
nation on the lens surface, the contamination detection model can be used to identify the
contamination, and the cleaning system can be used to effectively restore the image. This
result is significant in that it established an efficient and automated lens contamination
cleaning system by combining a lens cleaning system and a deep learning-based detector.
On development hardware, the YOLO v5x model has an inference time of 23 ms, which
corresponds to a processing power of 43 fps. This performance exceeds the traditional
real-time threshold of 30 fps, which can provide smooth video in a real-time monitoring
environment. However, as the performance of the model is related to the operating envi-
ronment, many factors need to be considered comprehensively to design an efficient sys-
tem for real-world applications. Lightweight deep-learning models (ex. YOLO v5n) opti-
mized for less powerful hardware may be a suitable alternative for detecting contamina-
tion in environments where computing resources are limited.

Figure 9. Detection results of YOLOv5x.

4.4. Integrating Contamination Detection Models with Cleaning Systems

Finally, an effective contamination detection and cleaning system was implemented
by integrating the proposed deep learning-based detector with a previously developed
contamination cleaning system using a transparent heater [24]. The system consists of
a camera, a transparent heater for droplet removal, a server for image analysis, and a
monitor for real-time contamination detection and cleaning verification (Figure 10a). The
transparent heater consists of optical glass, mesh copper electrodes (electrode width: 10 µm,
gap: 350 µm), and insulating film (Cytop, thickness 1 µm). The manufactured transparent
heater is attached to the outside of the camera lens and is directly exposed to external
contamination. To simulate lens contamination, multiple droplets were sprayed. When
droplets adhere to the transparent heater, the digital image input to the image sensor
through the camera lens is distorted. These digital images are transmitted in real time from
the camera to the analysis server, which uses a pre-trained YOLOv5 model to determine
whether the image is contaminated (Figure 10(b1)). When contamination is detected, the
analysis server transmits a command signal to drive the transparent heater to the Arduino
switch. Direct current voltage is applied to the transparent heater through this switch, and
the transparent heater generates heat by resistance heat. Through this process, several
droplets evaporate and are removed from the lens surface (Figure 10(b2)). This experiment
successfully demonstrated that when the image is distorted due to contamination on the
lens surface, the contamination detection model can be used to identify the contamination,
and the cleaning system can be used to effectively restore the image. This result is significant
in that it established an efficient and automated lens contamination cleaning system by
combining a lens cleaning system and a deep learning-based detector. On development
hardware, the YOLO v5x model has an inference time of 23 ms, which corresponds to a
processing power of 43 fps. This performance exceeds the traditional real-time threshold of
30 fps, which can provide smooth video in a real-time monitoring environment. However,
as the performance of the model is related to the operating environment, many factors need
to be considered comprehensively to design an efficient system for real-world applications.
Lightweight deep-learning models (ex. YOLO v5n) optimized for less powerful hardware
may be a suitable alternative for detecting contamination in environments where computing
resources are limited.

https://github.com/TransparentHeaterYKKIM/Droplet-detector.git
https://github.com/TransparentHeaterYKKIM/Droplet-detector.git

Information 2024, 15, 134 11 of 14Information 2024, 15, x FOR PEER REVIEW 12 of 15

Figure 10. Demonstration of the proposed system integrating lens contamination detection and
transparent heater cleaning: (a) experimental setup of the proposed system; (b1,b2) sequential snap-
shot of detecting lens contamination using the deep learning-based detection system and the re-
moval of the contamination by the transparent heater-based cleaning system.

5. Discussion
Our proposed system, trained on a diverse range of environmental data, shows great

promise in accurately recognizing and categorizing contamination under a broad spec-
trum of conditions. This stands in contrast to traditional contamination detection meth-
ods, which operate effectively only in limited environments. The application of deep
learning technology enables more precise detection, even in variable and uncontrolled en-
vironments, thus expanding the scope of real-world applications. This research represents
the first application of AI in the field of sensor cleaning technology, demonstrating prac-
tical viability through a series of demo experiments. Our future endeavors include enrich-
ing the existing single-class dataset with additional images to enhance the accuracy of the
contamination detection model. Given that deep learning models perform optimally with
larger datasets, we plan to collect data across a wider array of environments and im-
plem,ent data augmentation techniques such as cropping, brightening, and blurring.
These methods will enable the model to adapt more effectively to complex conditions,
thus enhancing its practicality and reliability for real-world applications. Initially focused
on droplet contamination commonly found on external camera lenses, our future objective
is to expand the detectable range of contamination. We aim to construct a multi-class da-
taset that includes not only droplets but also dust, mud, and insects. This expansion will
enable the model to detect a wider variety of contamination types more efficiently.

6. Conclusions
We introduced an innovative lens contamination detection system designed to ad-

dress the accuracy challenges in contamination detection for vehicle vision sensors. Our
approach leverages various object detection architectures, including YOLO (versions v5n,
v5s, v5m, v5l, and v5x), enabling the real-time detection of contaminants in digital images.
To actualize this system, we compiled a dataset comprising 4000 images, each depicting
droplet contamination under diverse conditions. To implement the proposed approach,
we constructed a dataset consisting of 4000 images contaminated by droplets under vari-
ous conditions. Model training, validation, and testing were performed on datasets gen-
erated using a computer equipped with a 12th Generation Intel® Core™ i7-12700

Figure 10. Demonstration of the proposed system integrating lens contamination detection and
transparent heater cleaning: (a) experimental setup of the proposed system; (b1,b2) sequential
snapshot of detecting lens contamination using the deep learning-based detection system and the
removal of the contamination by the transparent heater-based cleaning system.

5. Discussion

Our proposed system, trained on a diverse range of environmental data, shows great
promise in accurately recognizing and categorizing contamination under a broad spectrum
of conditions. This stands in contrast to traditional contamination detection methods,
which operate effectively only in limited environments. The application of deep learning
technology enables more precise detection, even in variable and uncontrolled environ-
ments, thus expanding the scope of real-world applications. This research represents the
first application of AI in the field of sensor cleaning technology, demonstrating practical
viability through a series of demo experiments. Our future endeavors include enriching
the existing single-class dataset with additional images to enhance the accuracy of the
contamination detection model. Given that deep learning models perform optimally with
larger datasets, we plan to collect data across a wider array of environments and implement
data augmentation techniques such as cropping, brightening, and blurring. These methods
will enable the model to adapt more effectively to complex conditions, thus enhancing its
practicality and reliability for real-world applications. Initially focused on droplet contami-
nation commonly found on external camera lenses, our future objective is to expand the
detectable range of contamination. We aim to construct a multi-class dataset that includes
not only droplets but also dust, mud, and insects. This expansion will enable the model to
detect a wider variety of contamination types more efficiently.

6. Conclusions

We introduced an innovative lens contamination detection system designed to address
the accuracy challenges in contamination detection for vehicle vision sensors. Our approach
leverages various object detection architectures, including YOLO (versions v5n, v5s, v5m,
v5l, and v5x), enabling the real-time detection of contaminants in digital images. To
actualize this system, we compiled a dataset comprising 4000 images, each depicting
droplet contamination under diverse conditions. To implement the proposed approach, we
constructed a dataset consisting of 4000 images contaminated by droplets under various
conditions. Model training, validation, and testing were performed on datasets generated
using a computer equipped with a 12th Generation Intel® Core™ i7-12700 processor, an

Information 2024, 15, 134 12 of 14

NVIDIA RTX4080 graphics card, and 32 GB RAM. The results show that the model trained
with the YOLOv5x architecture was the most successful and achieved significant results.
The model achieved an average precision (mAP@0.5) of 87.46%, (mAP@0.5:0.95) of 51.90%,
accuracy of 90.28%, recall of 81.47%, and F1 score of 85.64%, with an inference time of
23.0 ms. Moreover, we successfully integrated this deep learning-based detection system
with a heater-based cleaning mechanism on a vehicle camera, showcasing its ability to
detect and eliminate contaminants in real time.

We anticipate that the proposed system will find utility not only in vehicle vision
sensors but also in a multitude of practical applications such as autonomous driving,
surveillance cameras, and drone imaging systems. Furthermore, by adapting to complex
and diverse environments, this system holds the potential for significant roles in industrial
robots, smart agriculture, disaster response, and rescue operations, contributing to creating
safer and more efficient environments through real-time pollution detection.

Author Contributions: Conceptualization, Y.K., W.K., S.C. and D.K.; methodology, Y.K., W.K. and J.Y.;
software, Y.K., W.K. and J.Y.; validation, Y.K., W.K, S.C. and D.K.; formal analysis, Y.K., W.K. and J.Y.;
investigation, Y.K., W.K., J.Y. and D.K.; resources, S.C.; data curation, W.K. and J.Y.; writing—original
draft preparation, Y.K., W.K., J.Y. and D.K.; writing—review and editing, S.C. and D.K.; visualization,
Y.K. and W.K.; supervision, S.C. and D.K.; project administration, S.C. and D.K.; funding acquisition,
S.C. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by 2024 Research Fund of Myongji University.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: Author Daegeun Kim was employed by the company Microsystems, Inc. The
remaining authors declare that the research was conducted in the absence of any commercial or
financial relationships that could be construed as a potential conflict of interest.

References
1. Road Traffic Deaths, Global Health Observatory Data Repository by World Health Organization. Available online: https://www.

who.int/data/gho/data/themes/topics/topic-details/GHO/road-traffic-mortality (accessed on 22 November 2023).
2. Bellis, E.; Page, J. National Motor Vehicle Crash Causation Survey (NMVCCS) SAS Analytical Users Manual; Calspan Corp.: Buffalo,

NY, USA, 2008; pp. 154–196.
3. Rolison, J.J.; Regev, S.; Moutari, S.; Feeney, A. What Are the Factors That Contribute to Road Accidents? An Assessment of Law

Enforcement Views, Ordinary Drivers’ Opinions, and Road Accident Records. Accid. Anal. Prev. 2018, 115, 11–24. [CrossRef]
4. Dabral, S.; Kamath, S.; Appia, V.; Mody, M.; Zhang, B.; Batur, U. Trends in Camera Based Automotive Driver Assistance Systems

(ADAS). In Proceedings of the 2014 IEEE 57th International Midwest Symposium on Circuits and Systems (MWSCAS), College
Station, TX, USA, 3–6 August 2014; ISBN 9781479941322.

5. Yeong, D.J.; Velasco-Hernandez, G.; Barry, J.; Walsh, J. Sensor and Sensor Fusion Technology in Autonomous Vehicles: A Review.
Sensors 2021, 21, 2140. [CrossRef] [PubMed]

6. Ziebinski, A.; Cupek, R.; Erdogan, H.; Waechter, S. A Survey of ADAS Technologies for the Future Perspective of Sensor Fusion.
In Proceedings of the Computational Collective Intelligence: 8th International Conference, Halkidiki, Greece, 28–30 September
2016; Springer International Publishing: Cham, Switzerland, 2016.

7. Zang, S.; Ding, M.; Smith, D.; Tyler, P.; Rakotoarivelo, T.; Kaafar, M.A. The Impact of Adverse Weather Conditions on Autonomous
Vehicles: How Rain, Snow, Fog, and Hail Affect the Performance of a Self-Driving Car. IEEE Veh. Technol. Mag. 2019, 14, 103–111.
[CrossRef]

8. Mannetje, T.D.J.C.M.; Murade, C.U.; Van Den Ende, D.; Mugele, F. Electrically assisted drop sliding on inclined planes. Appl.
Phys. Lett. 2011, 98, 118–121. [CrossRef]

9. Hong, J.; Lee, S.J.; Koo, B.C.; Suh, Y.K.; Kang, K.H. Size-selective sliding of sessile drops on a slightly inclined plane using low
frequency AC electrowetting. Langmuir 2012, 28, 6307–6312. [CrossRef]

10. Tan, M.K.; Friend, J.R.; Yeo, L.Y. Microparticle collection and concentration via a miniature surface acoustic wave device. Lab Chip
2007, 7, 618–625. [CrossRef] [PubMed]

11. Alagoz, S.; Apak, Y. Removal of spoiling materials from solar panel surfaces by applying surface acoustic waves. J. Clean. Prod.
2020, 253, 119992. [CrossRef]

https://www.who.int/data/gho/data/themes/topics/topic-details/GHO/road-traffic-mortality
https://www.who.int/data/gho/data/themes/topics/topic-details/GHO/road-traffic-mortality
https://doi.org/10.1016/j.aap.2018.02.025
https://doi.org/10.3390/s21062140
https://www.ncbi.nlm.nih.gov/pubmed/33803889
https://doi.org/10.1109/MVT.2019.2892497
https://doi.org/10.1063/1.3533362
https://doi.org/10.1021/la2039703
https://doi.org/10.1039/b618044b
https://www.ncbi.nlm.nih.gov/pubmed/17476381
https://doi.org/10.1016/j.jclepro.2020.119992

Information 2024, 15, 134 13 of 14

12. Lee, S.; Kim, D.I.; Kim, Y.Y.; Park, S.-E.; Choi, G.; Kim, Y.; Kim, H.J. Droplet evaporation characteristics on transparent heaters
with different wettabilities. RSC Adv. 2017, 7, 45274–45279. [CrossRef]

13. Kim, H.J.; Kim, J.; Kim, Y. Afluoropolymer-coated nanometer-thick Cu Mesh film for a robust and hydrophobic transparent heater.
ACS Appl. Nano Mater. 2020, 3, 8672–8678. [CrossRef]

14. Yong Lee, K.; Hong, J.; Chung, S.K. Smart self-cleaning lens cover for miniature cameras of automobiles. Sens. Actuators B Chem.
2017, 239, 754–758. [CrossRef]

15. Song, H.; Jang, D.; Lee, J.; Lee, K.Y.; Chung, S.K. SAW-driven self-cleaning drop free glass for automotive sensors. J. Micromech.
Microeng. 2021, 31, 12. [CrossRef]

16. Park, J.; Lee, S.; Kim, D.I.; Kim, Y.Y.; Kim, S.; Kim, H.J.; Kim, Y. Evaporation-rate control of water droplets on flexible transparent
heater for sensor application. Sensors 2019, 19, 4918. [CrossRef]

17. Robins, M.N.; Bean, H.N. Camera Lens Contamination Detection and Indication System and Method. U.S. Patent US6940554B2, 6
September 2005.

18. Zhang, Y. Self-Detection of Optical Contamination or Occlusion in Vehicle Vision Systems. Opt. Eng. 2008, 47, 067006. [CrossRef]
19. Lai, C.C.; Li, C.H.G. Video-Based Windshield Rain Detection and Wiper Control Using Holistic-View Deep Learning. In

Proceedings of the IEEE International Conference on Automation Science and Engineering (CASE), Vancouver, BC, Canada,
22–26 August 2019; Section III. pp. 1060–1065. [CrossRef]

20. Tao, H.; Duan, Q.; Lu, M.; Hu, Z. Learning Discriminative Feature Representation with Pixel-level Supervision for Forest Smoke
Recognition. Pattern Recognit. 2023, 143, 109761. [CrossRef]

21. Cao, Y.; Li, C.; Peng, Y.; Ru, H. MCS-YOLO: A Multiscale Object Detection Method for Autonomous Driving Road Environment
Recognition. IEEE Access 2023, 11, 22342–22354. [CrossRef]

22. Bengio, Y.; LeCun, Y. Scaling Learning Algorithms towards AI. In Large-Scale Kernel Machines; MIT Press: Cambridge, MA, USA,
2007; Volume 34.

23. Hassan, M.; Wang, Y.; Wang, D.; Li, D.; Liang, Y.; Zhou, Y.; Xu, D. Deep Learning Analysis and Age Prediction from Shoeprints.
Forensic Sci. Int. 2021, 327, 110987. [CrossRef] [PubMed]

24. Kim, Y.; Lee, J.; Chung, S.K. Heat-Driven Self-Cleaning Glass Based on Fast Thermal Response for Automotive Sensors. Phys. Scr.
2023, 98, 085932. [CrossRef]

25. Kamilaris, A.; Prenafeta-Boldú, F.X. Deep learning in agriculture: A survey. Comput. Electron. Agric. 2018, 147, 70–90. [CrossRef]
26. Agatonovic-Kustrin, S.; Beresford, R. Basic concepts of artificial neural network (ANN) modeling and its application in pharma-

ceutical research. J. Pharm. Biomed. Anal. 2000, 22, 717–727. [CrossRef]
27. Huang, Y.; Sun, S.; Duan, X.; Chen, Z. A study on Deep Neural Networks framework. In Proceedings of the 2016 IEEE Advanced

Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), Xi’an, China, 3–5 October
2016. [CrossRef]

28. Samek, W.; Montavon, G.; Lapuschkin, S.; Anders, C.J.; Müller, K.-R. Explaining Deep Neural Networks and Beyond: A review of
Methods and Applications. Proc. IEEE 2021, 109, 247–278. [CrossRef]

29. Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-Based Learning Applied to Document Recognition. Proc. IEEE 1998, 86,
2278–2324. [CrossRef]

30. Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.;
Farhan, L. Review of Deep Learning: Concepts, CNN Architectures, Challenges, Applications, Future Directions. J. Big Data 2021,
8, 53. [CrossRef] [PubMed]

31. Kattenborn, T.; Leitloff, J.; Schiefer, F.; Hinz, S. Review on Convolutional Neural Networks (CNN) in Vegetation Remote Sensing.
ISPRS J. Photogramm. Remote Sens. 2021, 173, 24–49. [CrossRef]

32. Sarvamangala, D.R.; Kulkarni, R.V. Convolutional neural networks in medical image understanding: A survey. Evol. Intell. 2022,
15, 1–22. [CrossRef] [PubMed]

33. Guo, Z.; Wang, C.; Yang, G.; Huang, Z.; Li, G. MSFT-YOLO: Improved YOLOv5 Based on Transformer for Detecting Defects of
Steel Surface. Sensors 2022, 22, 3467. [CrossRef] [PubMed]

34. Yan, B.; Fan, P.; Lei, X.; Liu, Z.; Yang, F. A Real-Time Apple Targets Detection Method for Picking Robot Based on Improved
YOLOv5. Remote Sens. 2021, 13, 1619. [CrossRef]

35. Xue, Z.; Lin, H.; Wang, F. A Small Target Forest Fire Detection Model Based on YOLOv5 Improvement. Forests 2022, 13, 1332.
[CrossRef]

36. Wang, Z.; Wu, L.; Li, T.; Shi, P. A Smoke Detection Model Based on Improved YOLOv5. Mathematics 2022, 10, 1190. [CrossRef]
37. Wang, K.; Liew, J.H.; Zou, Y.; Zhou, D.; Feng, J. PANet: Few-Shot Image Semantic Segmentation with Prototype Alignment. In

Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2
November 2019.

38. Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017.

39. Xu, R.; Lin, H.; Lu, K.; Cao, L.; Liu, Y. A Forest Fire Detection System Based on Ensemble Learning. Forests 2021, 12, 217. [CrossRef]
40. Liu, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. Path Aggregation Network for Instance Segmentation. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018.

https://doi.org/10.1039/C7RA08888D
https://doi.org/10.1021/acsanm.0c01404
https://doi.org/10.1016/j.snb.2016.08.032
https://doi.org/10.1088/1361-6439/ac2fec
https://doi.org/10.3390/s19224918
https://doi.org/10.1117/1.2947578
https://doi.org/10.1109/COASE.2019.8843331
https://doi.org/10.1016/j.patcog.2023.109761
https://doi.org/10.1109/ACCESS.2023.3252021
https://doi.org/10.1016/j.forsciint.2021.110987
https://www.ncbi.nlm.nih.gov/pubmed/34555663
https://doi.org/10.1088/1402-4896/ace38f
https://doi.org/10.1016/j.compag.2018.02.016
https://doi.org/10.1016/S0731-7085(99)00272-1
https://doi.org/10.1109/IMCEC.2016.7867471
https://doi.org/10.1109/JPROC.2021.3060483
https://doi.org/10.1109/5.726791
https://doi.org/10.1186/s40537-021-00444-8
https://www.ncbi.nlm.nih.gov/pubmed/33816053
https://doi.org/10.1016/j.isprsjprs.2020.12.010
https://doi.org/10.1007/s12065-020-00540-3
https://www.ncbi.nlm.nih.gov/pubmed/33425040
https://doi.org/10.3390/s22093467
https://www.ncbi.nlm.nih.gov/pubmed/35591155
https://doi.org/10.3390/rs13091619
https://doi.org/10.3390/f13081332
https://doi.org/10.3390/math10071190
https://doi.org/10.3390/f12020217

Information 2024, 15, 134 14 of 14

41. Nepal, U.; Eslamiat, H. Comparing YOLOv3, YOLOv4 and YOLOv5 for Autonomous Landing Spot Detection in Faulty UAVs.
Sensors 2022, 22, 464. [CrossRef]

42. Sama, A.K.; Sharma, A. Simulated Uav Dataset for Object Detection. ITM Web Conf. 2023, 54, 02006. [CrossRef]
43. Bayer, H.; Aziz, A. Object Detection of Fire Safety Equipment in Images and Videos Using Yolov5 Neural Network. In Proceedings

of the 33rd Forum Bauinformatik, München, Germany, 7–9 September 2022. [CrossRef]
44. Jocher, G.; Stoken, A.; Borovec, J.; NanoCode012, C.; Changyu, L.; Laughing, H. ultralytics/yolov5: v3.0. 2020. Available online:

https://github.com/ultralytics/yolov5 (accessed on 20 December 2020).
45. Liu, P.; Zhang, G.; Wang, B.; Xu, H.; Liang, X.; Jiang, Y.; Li, Z. Loss Function Discovery for Object Detection via Convergence-

Simulation Driven Search. arXiv 2021, arXiv:2102.04700. [CrossRef]
46. Liu, W.; Wang, Z.; Zhou, B.; Yang, S.; Gong, Z. Real-time Signal Light Detection based on Yolov5 for Railway. IOP Conf. Ser. Earth

Environ. Sci. 2021, 769, 042069. [CrossRef]
47. Stevens, E.; Antiga, L.; Viehmann, T. Deep Learning with PyTorch; Manning Publications: Shelter Island, NY, USA, 2020.
48. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch:

An Imperative Style, High-Performance Deep Learning Library. In Proceedings of the Advances in Neural Information Processing
Systems, Vancouver, BC, Canada, 8–14 December 2019.

49. Jia, W.; Xu, S.; Liang, Z.; Zhao, Y.; Min, H.; Li, S.; Yu, Y. Real-time Automatic Helmet Detection of Motorcyclists in Urban Traffic
Using Improved YOLOv5 Detector. IET Image Process. 2021, 15, 3623–3637. [CrossRef]

50. Rezatofighi, H.; Tsoi, N.; Gwak, J.; Sadeghian, A.; Reid, I.; Savarese, S. Generalized Intersection Over Union: A Metric and a Loss
for Bounding Box Regression. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
Long Beach, CA, USA, 15–20 June 2019.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/s22020464
https://doi.org/10.1051/itmconf/20235402006
https://doi.org/10.14459/2022md1686600
https://github.com/ultralytics/yolov5
https://doi.org/10.48550/arXiv.2102.04700
https://doi.org/10.1088/1755-1315/769/4/042069
https://doi.org/10.1049/ipr2.12295

	Introduction
	Network
	Convolution Neural Network (CNN)
	You Only Look Once (YOLO) B33-information-2876098
	YOLOv5

	Methodology
	Step 1. Create an Image Dataset
	Step 2. Training of Algorithms
	Step 3. Quantitatively Evaluation of the Detection Performance

	Result
	Training Loss Analysis of Architectures
	Compare the Detection Performance of Trained Models
	Detection Results
	Integrating Contamination Detection Models with Cleaning Systems

	Discussion
	Conclusions
	References

