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Abstract: This paper presents a practical contamination detection system for camera lenses using
image analysis with deep learning. The proposed system can detect contamination in camera digital
images through contamination learning utilizing deep learning, and it aims to prevent performance
degradation of intelligent vision systems due to lens contamination in cameras. This system is
based on the object detection algorithm YOLO (v5n, v5s, v5m, v5l, and v5x), which is trained with
4000 images captured under different lighting and background conditions. The trained models
showed that the average precision improves as the algorithm size increases, especially for YOLOv5x,
which showed excellent efficiency in detecting droplet contamination within 23 ms. They also
achieved an average precision (mAP@0.5) of 87.46%, recall (mAP@0.5:0.95) of 51.90%, precision
of 90.28%, recall of 81.47%, and F1 score of 85.64%. As a proof of concept, we demonstrated the
identification and removal of contamination on camera lenses by integrating a contamination detec-
tion system and a transparent heater-based cleaning system. The proposed system is anticipated
to be applied to autonomous driving systems, public safety surveillance cameras, environmental
monitoring drones, etc., to increase operational safety and reliability.

Keywords: object detection; classification; contamination detection; autonomous driving systems;
machine leaning

1. Introduction

Traffic accidents are one of the primary causes of death worldwide. These accidents
are often caused by factors such as driver inattentiveness, failure to follow traffic rules, and
distractions [1,2]. Particularly, the lack of safety mechanisms in vehicles has been identified
as a principal factor contributing to traffic accidents [3]. For these reasons, the automobile
industry is adopting electronic safety devices. The U.S. National Highway Traffic Safety
Administration (NHTSA) passed a law requiring vehicles to have rear visibility starting in
2018 [4], and Europe is enacting similar regulations to enhance vehicle safety features.

As a result, the automotive industry is rapidly growing research vision-based recog-
nition systems that use optical sensors, like cameras and lidar, which act as the vehicle’s
‘eyes’. These systems assist in safe driving by detecting the driving environment, objects,
and potential hazards and by providing warning signals [5]. Such capabilities are essential
for making safe decisions and responding quickly, even in abnormal situations. The effec-
tiveness of these systems is highly dependent on the quality of image acquisition devices
such as cameras [6,7]. However, these devices are vulnerable to contamination, such as
rain, snow, and fog, due to exposure to the external environment.

To solve this issue, various active cleaning technologies are being developed. These
technologies employ methods such as electrowetting [8,9], surface acoustic waves [10,11],
and heat [12,13] to remove contamination from lens surfaces. For instance, Lee et al. [14]
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developed a cleaning device using electrowetting, applying an electrical signal to con-
trol the interfacial tension of droplets on the surface, thus moving and removing them.
Song et al. [15] developed a cleaning device that uses surface acoustic waves and applies an
electric signal to the device to push and remove droplets in the direction of surface acoustic
waves. Park et al. [16] developed a cleaning device using heat to evaporate and remove
droplets on the surface. As such, various active cleaning technologies are being developed,
and the application of these devices in real-world scenarios requires the development of
contamination detection technology so that the cleaning device can detect contamination
and operate on its own.

Robbins and Nelson [17] developed a system for detecting the presence of contamina-
tion on the lens of cameras equipped with digital image sensors. This system comprises a
light source, an image sensor, and a light source located between the lens cover and the
digital image sensor. When contamination occurs on the lens, the light emitted from the
light source is scattered by the contamination. The image sensor detects this scattered
light and converts it into a digital signal. Utilizing this signal, the system determines
the presence of lens contamination and provides a warning to the user. Zhang et al. [18]
researched detecting camera lens contamination using a static region segmentation algo-
rithm and a wave decomposition-based blurred edge detection algorithm. The static region
segmentation algorithm detects non-moving regions obscured by contamination in the
images acquired through a camera, and the blurred edge detection algorithm identifies the
blurred outlines of objects due to contamination. However, Robbins and Nelson’s system
requires precise control of the light source and sensitivity adjustment of the image sensor,
and Zhang’s algorithm requires complex processing to accurately identify static areas and
blurry edges. This process requires a high level of technical knowledge and resources and
has limitations, such as being inapplicable in a variety of lighting conditions. To overcome
these issues, we attempted to solve these problems by utilizing deep learning algorithms
that are easier to develop and more adaptable to different environments.

Recently, with the advancement of Graphic Processing Unit (GPU) technology, deep
learning algorithms detection technologies have attracted attention that can precisely
analyze various objects and situations in complex environments. Chi Cheng Lai et al. [19]
developed a windshield rain detection system using deep learning on more than 150 k
global background images of rainy situations. Huanjie Tao et al. [20] developed a pixel-
level supervised learning neural network to build an advanced detection system that
can recognize forest smoke. Similarly, Yining Cao et al. [21] developed an MCS-YOLO
algorithm to implement a high-precision real-time object detection system optimized for
autonomous driving environments. Despite these advances, there is a lack of development
of specialized contamination detection systems that precisely analyze and recognize the
location and characteristics of contamination to develop self-cleaning systems that can
effectively clean various contaminants on the surface of a camera lens.

This paper proposes an advanced droplet contamination cleaning system for improv-
ing the visibility of automotive vision systems. This system consists of a transparent
heater-based advanced droplet cleaning device and a deep learning-based contamination
detection system utilizing YOLO (You Only Look Once), an object detection model based
on CNN architecture [22,23]. The advanced droplet contamination cleaning system pre-
cisely recognizes the location of droplet contamination and enables customized cleaning
technology based on it, enabling continuous high-definition image acquisition without
degrading the performance of the camera lens. The operational scenario of this system is
shown in Figure 1. If the camera installed in a vehicle is contaminated, the analytical model
trained on the contamination receives this distorted image. The YOLO algorithm embedded
within this model analyzes the image to determine the presence of contamination. When
contamination is detected, the analysis image is transmitted to the vehicle’s display to
visually inform the driver of the contamination situation. Concurrently, a digital signal
is transmitted to the vehicle’s internal lens cleaning system to remove the contamination
attached to the lens. This research focuses on using deep learning technology for the
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detection of camera lens contamination. Ultimately, through a demonstration, it shows the
enhancement of camera visibility through integration with a previously developed lens
cleaning system [24].
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2. Network
2.1. Convolution Neural Network (CNN)

A CNN is a deep learning algorithm inspired by the structure and functional princi-
ples of the human brain. Deep learning algorithms have evolved from Artificial Neural
Networks (ANNs) to Deep Neural Networks (DNNs) and finally to CNNs. An ANN
consists of an input layer that receives data, a hidden layer where data processing occurs,
and an output layer that produces the final results. However, ANNs were limited to low
accuracy and slow learning times. To solve these problems, DNNs were developed. DNNs
are more complex, featuring two or more deep hidden layers [25,26]. DNNs autonomously
create classification labels and categorize data, producing optimal results through repeated
processes. While DNNs excel in object classification and recognition, they struggle with
processing high-dimensional data that require extensive computation.

CNNs were developed based on the foundational concepts of DNNs to overcome
these limitations [27,28]. CNNs are specifically structured to efficiently learn local features
within an image. This structure reduces computational requirements and enhances image
processing accuracy. The CNN architecture is used for image classification, recognition,
and detection and is based on a paper by Yann LeCun et al. in 1998 [29]. The operation
of CNN architecture is divided into two major steps (Figure 2) [30,31]. The first step is
a feature extraction. This step includes a convolutional layer and a pooling layer. The
convolutional layer uses a kernel filter to compute a convolutional operation on the input
image to extract the underlying features. Pooling reduces the dimensionality of the feature
data and converts the two-dimensional data into a one-dimensional array. The second
step is classification, in which the fully connected layer learns the relationships between
the extracted features and uses them to determine which category the image belongs to,
outputting a classification result. Through this process, CNN architecture contributes to
reducing the complexity of the data while retaining important information, resulting in
high accuracy and efficient image processing.
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2.2. You Only Look Once (YOLO) [33]

The YOLO (You Only Look Once) series is a prominent example of a single-stage
detector in object detection technology. Single-stage detectors generally comprise three
main components: the backbone, neck, and head. The backbone extracts both low-level
and high-level features from the images. The neck fuses the features extracted by the
backbone. This process enriches the semantic information of the features and transfers
them to the head, as well as bridging the gap between feature extraction (achieved by
the backbone) and object detection (achieved by the head), ensuring a smooth transition
of informative features. The head is the final stage of object detection and classification.
This stage performs the head based on the features received from the neck, predicting the
location and class of objects.

YOLO divides the image into grids and predicts the presence or absence of objects
and their bounding boxes within each grid region. This treats the object detection problem
as a single regression problem, allowing the model to predict the location and class of
the object with just one inference on the input image. Each grid cell is responsible only
for objects centered within its area and predicts many bounding boxes and a confidence
score for them. Ultimately, each bounding box provides a five-dimensional output that
represents the location of the object (coordinates) and the probability that the object exists.
The five-dimensional outputs are the coordinates of the object’s center point (x, y), the width
and height of the bounding box (w, h), and the probability that the object exists within that
box. Here, x and y are coordinates that represent the location of the center of the object
within the image, and w and h are the width and height of the bounding box surrounding
the object. Confidence represents the probability that an object exists within the box, which
is a metric of the model’s detection performance. These five dimensions of information
allow YOLO to accurately predict the location, size, and probability of the existence of
objects in an image. Early versions of YOLO were very fast in inference speed but had
limitations in terms of accuracy. However, subsequent versions, such as YOLOv3, YOLOv4,
and YOLOv5, have greatly improved accuracy through various technical improvements.

2.3. YOLOv5

YOLOv5 is widely favored in various research circles due to its seamless integration
with specific libraries and frameworks, its ability to perform rapid inferences, and its
notable accuracy [34–36]. An overview of the YOLOv5 architecture is presented in Figure 3.
At its core, YOLOv5 employs CSPDarknet, an enhanced version of darknet, augmented
with a cross-stage partial network (CSPNet) [37]. CSPNet efficiently addresses the issue
of redundant gradient information in the network, enhancing the learning process while
preserving accuracy and reducing complexity. The spatial pyramid pooling (SPP) block, a
key component of the backbone, broadens the receptive field and isolates critical features
from the base network. This block generates feature maps from the input image through its
convolutional layers. The YOLOv5 architecture’s neck features a Path Aggregation Network
(PANet), which facilitates optimal information flow. PANet incorporates an innovative
Feature Pyramid Network (FPN) design, with layers arranged in both bottom-up and
top-down configurations, enhancing the transfer of low-level features within the algorithm.
This structure is particularly effective in boosting localization accuracy at lower layers,
thus enabling more precise object localization [38]. The head of the YOLOv5 architecture is
tailored for multi-level predictions, generating feature map outputs at three distinct levels.
This multi-tiered approach allows the detection of objects of varying sizes, from small to
large, with rapid inference speeds and high accuracy. Such capabilities render YOLOv5
exceptionally suitable for real-time object detection systems [39,40].
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3. Methodology

The development of a deep learning-based real-time droplet detector using the YOLO
algorithm involves the process of building a development environment and training the
algorithm in that environment. The hardware configuration utilized included a computer
equipped with a 12th Gen Intel® Core™ i7-12700 processor, an NVIDIA RTX4080 graphics
card, and 32 GB of RAM. The software environment, operating on the Windows system,
extensively used various programs, including Anaconda 3-2021.11, Python 3.7, PyCharm-
Professional-2021, and PyQt 5.15.4. Training of the YOLO algorithm consists of three steps,
as shown in the sections below.

3.1. Step 1. Create an Image Dataset

This dataset was created by collecting images where the lens was contaminated by
multiple droplets under various background conditions and labeling the collected images
as ‘droplet’. The dataset contains a bounding box containing information about the location
and size of the droplet. To collect images contaminated by multiple droplets, a glass mea-
suring 20 mm across and 20 mm long was attached to the lens of a mobile IP camera. The
surface of the glass was coated with a 1 µm thick CYTOP as the hydrophobic coating. By in-
creasing the contact angle between the droplet and the glass plate through the hydrophobic
coating, the boundary, shape, and size of the droplet can be accurately determined. Next, a
large number of droplets were sprayed onto the glass surface using a droplet spray device
under various hue, saturation, and brightness conditions, and 4000 images of the same size
of 640 × 640 pixels were collected. Figure 4 shows representative samples.
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Figure 4. Images of the dataset for training and validation.

We used DarkLabel [42], an open-source graphical image labeling tool to label the
collected images with ‘droplet’. Image labeling provides the information a model needs to
identify and classify objects within an image. The results of labeling are the coordinates,
sizes, and bounding boxes. As shown in Figure 5, each droplet within the digital image was
manually labeled to generate a label file containing the coordinate information of the object.
This file documents the object’s class, as well as the height and width of the bounding box
for each object. In this scenario, as there is only one class, all droplets are labeled under the
same class. The file format is textual (.txt).
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3.2. Step 2. Training of Algorithms

The second step involves setting the training variables and learning droplets from
the dataset using the YOLO algorithm. The training utilized a dataset of 4000 images,
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partitioned into training and validation sets at a 7:3 ratio, amounting to 2800 images for
training and 1200 for validation. In our research, YOLO (v5n, v5s, v5m, v5l, and v5x) was
trained by tuning the batch size and number of epochs. We experimented with batch sizes (4,
8, and 16), observing that training time was inversely proportional to batch size. However,
model performance, such as model accuracy and loss rates, were unaffected by variations in
batch size. Based on these results, we trained the model with a batch size of 16. Additionally,
the image resolution was set to 640 × 640 pixels for computational efficiency and precision
accuracy [43]. The training of the detection model was performed with the YOLO (v5n,
v5s, v5m, v5l, and v5x) algorithm, each using a different number of convolutional layers
and filters [44]. YOLOv5n features the least number of convolutional layers and filters,
optimizing the model size and computational demands, whereas YOLOv5x has the most,
enhancing accuracy and complex feature learning capability. Table 1 shows the main
training parameters used in training.

Table 1. The detailed training strategies applied to model training and information used in the
training process.

Model Training
Parameters Optimizer Learning

Rate Momentum Image Size Batch
Size Epochs

YOLOv5n 1,900,000 SGD 0.001 0.937 640 × 640 16 150
YOLOv5s 7,200,000 SGD 0.001 0.937 640 × 640 16 150
YOLOv5m 21,200,000 SGD 0.001 0.937 640 × 640 16 150
YOLOv5l 46,500,000 SGD 0.001 0.937 640 × 640 16 150
YOLOv5x 86,700,000 SGD 0.001 0.937 640 × 640 16 150

In the training process, repetition can be divided into two stages: First, we ap-
ply the training dataset to the algorithm, and the algorithm automatically adjusts the
weights according to the loss values. The loss value is calculated through the GIOU Loss
function [45,46]. Subsequently, the validation dataset is applied, and the loss value is recal-
culated with updated weights, serving as a key indicator of model performance. The final
model was constructed using PyTorch [47,48].

3.3. Step 3. Quantitatively Evaluation of the Detection Performance

In the third step, the performance of the model developed through algorithm training
is evaluated using four performance metrics: precision, recall, F1 score, and average
precision [49]. Firstly, precision and recall are calculated using Equations (1) and (2):

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

TP (True Positive) represents the number of objects accurately identified, while FP
(False Positive) refers to the count of objects incorrectly identified, and FN (False Negative)
signifies the number of objects that were not detected. The quantification of these objects
is based on the IoU (Intersection over Union) metric, which involves calculating and
thresholding. IoU evaluates the accuracy of detection by comparing the extent of overlap
between the predicted bounding boxes and the actual ones, as illustrated in Figure 6 [50].
Following this, we compute the F1 score, a balanced measure of precision and recall, using
the formula presented in Equation (3).

F1 = 2 × Precision × Recall
Precision + Recall

(3)
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tive) signifies the number of objects that were not detected. The quantification of these 
objects is based on the IoU (Intersection over Union) metric, which involves calculating 
and thresholding. IoU evaluates the accuracy of detection by comparing the extent of over-
lap between the predicted bounding boxes and the actual ones, as illustrated in Figure 6 
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Lastly, AP (Average Precision) is computed through Equation (4), with mAP (Mean
Average Precision) derived by averaging the AP across categories.

AP =
N

∑
i=1

precision(k)× ∆recall(k) (4)

In Equation (4), ‘n’ denotes the total number of images in the dataset, precision(k) is the
precision at the kth image, and ∆recall(k) is the recall difference between the k − 1th and
kth images.

4. Result
4.1. Training Loss Analysis of Architectures

Figure 7 illustrates the training and validation loss for the five architectures. Training
and validation loss tended to be inversely proportional to the number of epochs, number of
convolution layers, and number of filters. Training and validation loss observed decreases
as epochs increase and for architecture with more convolution layers and filters. From
these results, it was confirmed that the model trained with YOLOv5x, which is a complex
architecture, can achieve lower training and validation loss than other trained models and
has the lowest training loss of 0.0348 at epoch 150.
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4.2. Compare the Detection Performance of Trained Models

Figure 8 and Table 2 detail the quantitative performance evaluations of trained models
with the YOLO (v5n, v5s, v5m, v5l, and v5x) architectures. The results show that the preci-
sion and inference time of the trained models is proportional to the number of convolution
layers and filters. Architectures with more convolution layers and filters have more compu-
tation capability, which improves precision by identifying more complex features but also
increases inference time. As a result, the trained model with the YOLOv5n architecture
demonstrates the lowest performance with 76.07% mAP@0.5, 34.87% mAP@0.5:0.95, 77.81%
precision, 64.66% recall, and a 70.62% F1 score. In contrast, the trained model with the
YOLOv5x architecture demonstrates the highest performance among others with 87.46%
mAP@0.5, 51.90% mAP@0.5:0.95, 90.28% precision, 81.47% recall, and 85.64% F1 score. Also,
the inference times of trained models with YOLO (v5n, v5s, v5m, v5l, and v5x) architecture
were recorded as 3.3 ms, 4.8 ms, 8.9 ms, 14.7 ms, and 23 ms, respectively.
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Table 2. Comparison of trained models with the YOLO (v5n, v5s, v5m, v5l, and v5x) architectures.

Model mAP
0.5 (%)

mAP
0.5:0.95 (%) Precision (%) Recall F1 Score GFLOPS Inference Time

Millisecond (ms)

YOLOv5n 76.07 34.87 77.81 67.66 70.62 4.2 3.3
YOLOv5s 80.47 38.88 80.69 73.65 77.00 16.0 4.8
YOLOv5m 84.70 44.16 86.02 78.97 82.34 448.2 8.9
YOLOv5l 86.50 48.74 88.90 80.68 84.59 108.2 14.7
YOLOv5x 87.46 51.90 90.28 81.47 85.64 204.4 23.0

4.3. Detection Results

Figure 9 shows the result of using a model trained in real time to detect droplets
generated on the surface of a camera lens. The experimental results show that a sig-
nificant number of droplets can be successfully detected from backgrounds of varying
hue, saturation, and brightness. This demonstrates the ability of the trained model with
YOLOv5x architecture to effectively identify droplets even under complex and diverse
environmental conditions. Furthermore, these results demonstrate the application of the
real-time droplet detector in the diverse real world where environmental conditions are
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variable and unpredictable. The trained model is open source at https://github.com/
TransparentHeaterYKKIM/Droplet-detector.git (accessed on 29 January 2024).
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4.4. Integrating Contamination Detection Models with Cleaning Systems

Finally, an effective contamination detection and cleaning system was implemented
by integrating the proposed deep learning-based detector with a previously developed
contamination cleaning system using a transparent heater [24]. The system consists of
a camera, a transparent heater for droplet removal, a server for image analysis, and a
monitor for real-time contamination detection and cleaning verification (Figure 10a). The
transparent heater consists of optical glass, mesh copper electrodes (electrode width: 10 µm,
gap: 350 µm), and insulating film (Cytop, thickness 1 µm). The manufactured transparent
heater is attached to the outside of the camera lens and is directly exposed to external
contamination. To simulate lens contamination, multiple droplets were sprayed. When
droplets adhere to the transparent heater, the digital image input to the image sensor
through the camera lens is distorted. These digital images are transmitted in real time from
the camera to the analysis server, which uses a pre-trained YOLOv5 model to determine
whether the image is contaminated (Figure 10(b1)). When contamination is detected, the
analysis server transmits a command signal to drive the transparent heater to the Arduino
switch. Direct current voltage is applied to the transparent heater through this switch, and
the transparent heater generates heat by resistance heat. Through this process, several
droplets evaporate and are removed from the lens surface (Figure 10(b2)). This experiment
successfully demonstrated that when the image is distorted due to contamination on the
lens surface, the contamination detection model can be used to identify the contamination,
and the cleaning system can be used to effectively restore the image. This result is significant
in that it established an efficient and automated lens contamination cleaning system by
combining a lens cleaning system and a deep learning-based detector. On development
hardware, the YOLO v5x model has an inference time of 23 ms, which corresponds to a
processing power of 43 fps. This performance exceeds the traditional real-time threshold of
30 fps, which can provide smooth video in a real-time monitoring environment. However,
as the performance of the model is related to the operating environment, many factors need
to be considered comprehensively to design an efficient system for real-world applications.
Lightweight deep-learning models (ex. YOLO v5n) optimized for less powerful hardware
may be a suitable alternative for detecting contamination in environments where computing
resources are limited.

https://github.com/TransparentHeaterYKKIM/Droplet-detector.git
https://github.com/TransparentHeaterYKKIM/Droplet-detector.git
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Figure 10. Demonstration of the proposed system integrating lens contamination detection and
transparent heater cleaning: (a) experimental setup of the proposed system; (b1,b2) sequential
snapshot of detecting lens contamination using the deep learning-based detection system and the
removal of the contamination by the transparent heater-based cleaning system.

5. Discussion

Our proposed system, trained on a diverse range of environmental data, shows great
promise in accurately recognizing and categorizing contamination under a broad spectrum
of conditions. This stands in contrast to traditional contamination detection methods,
which operate effectively only in limited environments. The application of deep learning
technology enables more precise detection, even in variable and uncontrolled environ-
ments, thus expanding the scope of real-world applications. This research represents the
first application of AI in the field of sensor cleaning technology, demonstrating practical
viability through a series of demo experiments. Our future endeavors include enriching
the existing single-class dataset with additional images to enhance the accuracy of the
contamination detection model. Given that deep learning models perform optimally with
larger datasets, we plan to collect data across a wider array of environments and implement
data augmentation techniques such as cropping, brightening, and blurring. These methods
will enable the model to adapt more effectively to complex conditions, thus enhancing its
practicality and reliability for real-world applications. Initially focused on droplet contami-
nation commonly found on external camera lenses, our future objective is to expand the
detectable range of contamination. We aim to construct a multi-class dataset that includes
not only droplets but also dust, mud, and insects. This expansion will enable the model to
detect a wider variety of contamination types more efficiently.

6. Conclusions

We introduced an innovative lens contamination detection system designed to address
the accuracy challenges in contamination detection for vehicle vision sensors. Our approach
leverages various object detection architectures, including YOLO (versions v5n, v5s, v5m,
v5l, and v5x), enabling the real-time detection of contaminants in digital images. To
actualize this system, we compiled a dataset comprising 4000 images, each depicting
droplet contamination under diverse conditions. To implement the proposed approach, we
constructed a dataset consisting of 4000 images contaminated by droplets under various
conditions. Model training, validation, and testing were performed on datasets generated
using a computer equipped with a 12th Generation Intel® Core™ i7-12700 processor, an



Information 2024, 15, 134 12 of 14

NVIDIA RTX4080 graphics card, and 32 GB RAM. The results show that the model trained
with the YOLOv5x architecture was the most successful and achieved significant results.
The model achieved an average precision (mAP@0.5) of 87.46%, (mAP@0.5:0.95) of 51.90%,
accuracy of 90.28%, recall of 81.47%, and F1 score of 85.64%, with an inference time of
23.0 ms. Moreover, we successfully integrated this deep learning-based detection system
with a heater-based cleaning mechanism on a vehicle camera, showcasing its ability to
detect and eliminate contaminants in real time.

We anticipate that the proposed system will find utility not only in vehicle vision
sensors but also in a multitude of practical applications such as autonomous driving,
surveillance cameras, and drone imaging systems. Furthermore, by adapting to complex
and diverse environments, this system holds the potential for significant roles in industrial
robots, smart agriculture, disaster response, and rescue operations, contributing to creating
safer and more efficient environments through real-time pollution detection.
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