Improving Blood Vessel Segmentation and Depth Estimation in Laser Speckle Images Using Deep Learning
Abstract
:1. Introduction
2. Laser Speckle Contrast Imaging
3. Experimental Setup for Data Acquisition
4. Experiments and Results
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nagahara, M.; Tamaki, Y.; Araie, M.; Umeyama, T. The acute effects of stellate ganglion block on circulation in human ocular fundus. Acta Ophthalmol. Scand. 2001, 79, 45–48. [Google Scholar] [CrossRef] [PubMed]
- Paul, J.S.; Luft, A.R.; Yew, E.; Sheu, F.S. Imaging the development of an ischemic core following photochemically induced cortical infarction in rats using Laser Speckle Contrast Analysis (LASCA). NeuroImage 2006, 29, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Basak, K.; Manjunatha, M.; Dutta, P.K. Review of laser speckle-based analysis in medical imaging. Med. Biol. Eng. Comput. 2012, 50, 547–558. [Google Scholar] [CrossRef] [PubMed]
- Moy, W.J.; Patel, S.J.; Lertsakdadet, B.S.; Arora, R.P.; Nielsen, K.M.; Kelly, K.M.; Choi, B. Preclinical in vivo evaluation of Npe6-mediated photodynamic therapy on normal vasculature. Lasers Surg. Med. 2012, 44, 158–162. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.S.D.; Packulak, E.F.; Sowa, M.G. Development of a laser speckle imaging system for measuring relative blood flow velocity. In Proceedings of the SPIE—The International Society for Optical Engineering, Quebec City, QC, Canada, 5–8 June 2006; Developpement Economique Canada: Montreal, QC, Canada; TeraXion: Quebec City, QC, Canada, 2006; Volume 6343. [Google Scholar] [CrossRef]
- Kozlov, I.O.; Stavtcev, D.D.; Konovalov, A.N.; Grebenev, F.V.; Piavchenko, G.A.; Meglinski, I. Real-Time Mapping of Blood Perfusion during Neurosurgical Interventions. In Proceedings of the 2023 IEEE 24th International Conference of Young Professionals in Electron Devices and Materials (EDM), Novosibirsk, Russia, 29 June–3 July 2023; pp. 1460–1463. [Google Scholar] [CrossRef]
- Piavchenko, G.; Kozlov, I.; Dremin, V.; Stavtsev, D.; Seryogina, E.; Kandurova, K.; Shupletsov, V.; Lapin, K.; Alekseyev, A.; Kuznetsov, S.; et al. Impairments of cerebral blood flow microcirculation in rats brought on by cardiac cessation and respiratory arrest. J. Biophotonics 2021, 14, e202100216. [Google Scholar] [CrossRef] [PubMed]
- Konovalov, A.; Grebenev, F.; Stavtsev, D.; Kozlov, I.; Gadjiagaev, V.; Piavchenko, G.; Telyshev, D.; Gerasimenko, A.Y.; Meglinski, I.; Zalogin, S.; et al. Real-time laser speckle contrast imaging for intraoperative neurovascular blood flow assessment: Animal experimental study. Sci. Rep. 2024, 14, 1735. [Google Scholar] [CrossRef]
- Flammer, J.; Orgül, S.; Costa, V.P.; Orzalesi, N.; Krieglstein, G.K.; Serra, L.M.; Renard, J.P.; Stefánsson, E. The impact of ocular blood flow in glaucoma. Prog. Retin. Eye Res. 2002, 21, 359–393. [Google Scholar] [CrossRef]
- Postnov, D.D.; Tuchin, V.V.; Sosnovtseva, O. Estimation of vessel diameter and blood flow dynamics from laser speckle images. Biomed. Opt. Express 2016, 7, 2759. [Google Scholar] [CrossRef]
- Bernard, C.; Wenbin, T.; Wangcun, J. The Role of Laser Speckle Imaging in Port-Wine Stain Research: Recent Advances and Opportunities. IEEE J. Sel. Top. Quantum Electron. 2017, 4, 6800812. [Google Scholar] [CrossRef]
- Sharif, S.A.; Taydas, E.; Mazhar, A.; Rahimian, R.; Kelly, K.M.; Choi, B.; Durkin, A.J. Noninvasive clinical assessment of port-wine stain birthmarks using current and future optical imaging technology: A review. Br. J. Dermatol. 2012, 167, 1215–1223. [Google Scholar] [CrossRef]
- Carlson, A.P.; Denezpi, T.; Akbik, O.S.; Mohammad, L.M. Laser speckle imaging to evaluate scalp flap blood flow during closure in neurosurgical procedures. Surg. Neurol. Int. 2021, 12, 632. [Google Scholar] [CrossRef] [PubMed]
- Konovalov, A.; Gadzhiagaev, V.; Grebenev, F.; Stavtsev, D.; Piavchenko, G.; Gerasimenko, A.; Telyshev, D.; Meglinski, I.; Eliava, S. Laser Speckle Contrast Imaging in Neurosurgery: A Systematic Review. World Neurosurg. 2023, 171, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Spetzler, R.F.; Yashar, M.; Kalani, S.; Nakaji, P. Neurovascular Surgery; Georg Thieme Verlag: New York, NY, USA, 2015. [Google Scholar] [CrossRef]
- Richards, L.M.; Towle, E.L.; Fox, D.J.; Dunn, A.K. Intraoperative laser speckle contrast imaging with retrospective motion correction for quantitative assessment of cerebral blood flow. Neurophotonics 2014, 1, 1. [Google Scholar] [CrossRef] [PubMed]
- Parthasarathy, A.B.; Weber, E.L.; Richards, L.M.; Fox, D.J.; Dunn, A.K. Laser speckle contrast imaging of cerebral blood flow in humans during neurosurgery: A pilot clinical study. J. Biomed. Opt. 2010, 15, 066030. [Google Scholar] [CrossRef] [PubMed]
- Ideguchi, M.; Kajiwara, K.; Yoshikawa, K.; Goto, H.; Sugimoto, K.; Inoue, T.; Nomura, S.; Suzuki, M. Avoidance of ischemic complications after resection of a brain lesion based on intraoperative real-time recognition of the vasculature using laser speckle flow imaging. J. Neurosurg. 2017, 126, 274–280. [Google Scholar] [CrossRef] [PubMed]
- Hecht, N.; Woitzik, J.; König, S.; Horn, P.; Vajkoczy, P. Laser Speckle Imaging Allows Real-Time Intraoperative Blood Flow Assessment During Neurosurgical Procedures. J. Cereb. Blood Flow Metab. 2013, 33, 1000–1007. [Google Scholar] [CrossRef] [PubMed]
- Nomura, S.; Inoue, T.; Ishihara, H.; Koizumi, H.; Suehiro, E.; Oka, F.; Suzuki, M. Reliability of Laser Speckle Flow Imaging for Intraoperative Monitoring of Cerebral Blood Flow During Cerebrovascular Surgery: Comparison with Cerebral Blood Flow Measurement by Single Photon Emission Computed Tomography. World Neurosurg. 2014, 82, e753–e757. [Google Scholar] [CrossRef]
- Miller, D.R.; Ashour, R.; Sullender, C.T.; Dunn, A.K. Continuous blood flow visualization with laser speckle contrast imaging during neurovascular surgery. Neurophotonics 2022, 9, 021908. [Google Scholar] [CrossRef]
- Werkmeister, E.; Kerdjoudj, H.; Marchal, L.; Stoltz, J.F.; Dumas, D. Multiphoton microscopy for blood vessel imaging: New non-invasive tools (Spectral, SHG, FLIM). In Clinical Hemorheology and Microcirculation; IOS Press: Amsterdam, The Netherlands, 2007; Volume 37, pp. 77–88. [Google Scholar]
- Xi, G.; Cao, N.; Guo, W.; Kang, D.; Chen, Z.; He, J.; Ren, W.; Shen, T.; Wang, C.; Chen, J. Label-free imaging of blood vessels in human normal breast and breast tumor tissue using multiphoton microscopy. Scanning 2019, 2019, 5192875. [Google Scholar] [CrossRef]
- Siegel, A.M.; Boas, D.A.; Stott, J.J.; Culver, J.P. Volumetric diffuse optical tomography of brain activity. Opt. Lett. 2003, 28, 2061–2063. [Google Scholar] [CrossRef]
- Ogawa, S.; Lee, T.M.; Kay, A.R.; Tank, D.W. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc. Natl. Acad. Sci. USA 1990, 87, 9868–9872. [Google Scholar] [CrossRef] [PubMed]
- Humeau-Heurtier, A.; Abraham, P.; Mahé, G. Analysis of laser speckle contrast images variability using a novel empirical mode decomposition: Comparison of results with laser doppler flowmetry signals variability. IEEE Trans. Med. Imaging 2015, 34, 618–627. [Google Scholar] [CrossRef] [PubMed]
- Fredriksson, I.; Larsson, M.; Strömberg, T. Measurement depth and volume in laser Doppler flowmetry. Microvasc. Res. 2009, 78, 4–13. [Google Scholar] [CrossRef] [PubMed]
- Draijer, M.; Hondebrink, E.; Van Leeuwen, T.; Steenbergen, W.; van Leeuwen, T.; Steenbergen, W.; Van Leeuwen, T.; Steenbergen, W. Review of laser speckle contrast techniques for visualizing tissue perfusion. Lasers Med Sci. 2009, 24, 639–651. [Google Scholar] [CrossRef] [PubMed]
- Regan, C.; Hayakawa, C.; Choi, B. Momentum transfer Monte Carlo for the simulation of laser speckle imaging and its application in the skin. Biomed. Opt. Express 2017, 8, 5708. [Google Scholar] [CrossRef] [PubMed]
- Basak, K.; Dey, G.; Mahadevappa, M.; Mandal, M.; Dutta, P.K. In vivo laser speckle imaging by adaptive contrast computation for microvasculature assessment. Opt. Lasers Eng. 2014, 62, 87–94. [Google Scholar] [CrossRef]
- Briers, J.D.; Webster, S. Laser speckle contrast analysis (LASCA): A nonscanning, full-field technique for monitoring capillary blood flow. J. Biomed. Opt. 1996, 1, 174. [Google Scholar] [CrossRef]
- Verkruysse, W.; Choi, B.; Zhang, J.R.; Kim, J.; Nelson, J.S. Thermal depth profiling of vascular lesions: Automated regularization of reconstruction algorithms. Phys. Med. Biol. 2008, 53, 1463–1474. [Google Scholar] [CrossRef]
- Kim, J.; Oh, J.; Choi, B. Magnetomotive laser speckle imaging. J. Biomed. Opt. 2010, 15, 011110. [Google Scholar] [CrossRef]
- Son, T.; Yoon, J.; Ko, C.Y.; Lee, Y.H.; Kwon, K.; Kim, H.S.; Lee, K.J.; Jung, B. Contrast enhancement of laser speckle skin image: Use of optical clearing agent in conjunction with micro-needling. J. Opt. Soc. Korea 2008, 17, 86–90. [Google Scholar] [CrossRef]
- Kalchenko, V.; Israeli, D.; Kuznetsov, Y.; Meglinski, I.; Harmelin, A. A simple approach for non-invasive transcranial optical vascular imaging (nTOVI). J. Biophotonics 2015, 8, 897–901. [Google Scholar] [CrossRef] [PubMed]
- Kalchenko, V.; Meglinski, I.; Sdobnov, A.; Kuznetsov, Y.; Harmelin, A. Combined laser speckle imaging and fluorescent intravital microscopy for monitoring acute vascular permeability reaction. J. Biomed. Opt. 2019, 24, 1. [Google Scholar] [CrossRef] [PubMed]
- Molodij, G.; Sdobnov, A.; Kuznetsov, Y.; Harmelin, A.; Meglinski, I.; Kalchenko, V. Time-space Fourier κω′ filter for motion artifacts compensation during transcranial fluorescence brain imaging. Phys. Med. Biol. 2020, 65, 075007. [Google Scholar] [CrossRef] [PubMed]
- Kalchenko, V.; Sdobnov, A.; Meglinski, I.; Kuznetsov, Y.; Molodij, G.; Harmelin, A. A robust method for adjustment of laser speckle contrast imaging during transcranial mouse brain visualization. Photonics 2019, 6, 80. [Google Scholar] [CrossRef]
- Morales-Vargas, E.; Peregrina-Barreto, H.; Ramirez-San-Juan, J.C. Adaptive processing for noise attenuation in laser speckle contrast imaging. Comput. Methods Programs Biomed. 2021, 212, 106486. [Google Scholar] [CrossRef] [PubMed]
- Han, G.; Li, D.; Wang, J.; Guo, Q.; Yuan, J.; Chen, R.; Wang, J.; Wang, H.; Zhang, J. Adaptive window space direction laser speckle contrast imaging to improve vascular visualization. Biomed. Opt. Express 2023, 14, 3086–3099. [Google Scholar] [CrossRef] [PubMed]
- Ren, C.; Chen, T.; Chen, M.; Shen, Y.; Li, B. Enhancing laser speckle contrast imaging based on adaptive scale and directional kernel during V-PDT. In Proceedings of the Sixteenth International Conference on Photonics and Imaging in Biology and Medicine (PIBM 2023), Haikou, China, 29 March–1 April 2023; Luo, Q., Wang, L.V., Tuchin, V.V., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2023; Volume 12745, p. 1274509. [Google Scholar] [CrossRef]
- Han, G.; Li, D.; Yuan, J.; Lu, J.; Wang, H.; Wang, J. Study of adaptive window space direction contrast method in transmission speckle contrast imaging. In Proceedings of the Optics in Health Care and Biomedical Optics XIII, Beijing, China, 14–16 October 2023; Luo, Q., Li, X., Gu, Y., Zhu, D., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2023; Volume 12770, p. 1277028. [Google Scholar] [CrossRef]
- Rege, A.; Senarathna, J.; Li, N.; Thakor, N.V. Anisotropic processing of laser speckle images improves spatiotemporal resolution. IEEE Trans. Bio-Med Eng. 2012, 59, 1272–1280. [Google Scholar] [CrossRef]
- Morales-Vargas, E.; Sosa-Martinez, J.; Peregrina-Barreto, H.; Rangel-Magdaleno, J.; Ramirez-San-Juan, J. A morphological approach for locating blood vessels in laser contrast speckle imaging. In Proceedings of the I2MTC 2018—2018 IEEE International Instrumentation and Measurement Technology Conference: Discovering New Horizons in Instrumentation and Measurement, Houston, TX, USA, 14–17 May 2018. [Google Scholar] [CrossRef]
- Fu, S.; Xu, J.; Chang, S.; Yang, L.; Ling, S.; Cai, J.; Chen, J.; Yuan, J.; Cai, Y.; Zhang, B.; et al. Robust vascular segmentation for raw complex images of laser speckle contrast based on weakly supervised learning. IEEE Trans. Med Imaging 2023, 43, 39–50. [Google Scholar] [CrossRef]
- Chen, R.; Tong, S.; Tong, S.; Miao, P. Deep-learning-based 3D blood flow reconstruction in transmissive laser speckle imaging. Opt. Lett. 2023, 48, 2913–2916. [Google Scholar] [CrossRef]
- Zhu, J.Y.; Park, T.; Isola, P.; Efros, A.A. Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2242–2251. [Google Scholar] [CrossRef]
- Lopez-Tiro, F.; Peregrina-Barreto, H.; Rangel-Magdaleno, J.; Ramirez-San-Juan, J.C. Localization of blood vessels in in-vitro LSCI images with K-means. In Proceedings of the Conference Record—IEEE Instrumentation and Measurement Technology Conference, Glasgow, UK, 17–20 May 2021. [Google Scholar] [CrossRef]
- Morales-Vargas, E.; Padilla-Martinez, J.P.; Peregrina-Barreto, H.; Garcia-Suastegui, W.A.; Ramirez-San-Juan, J.C. Adaptive Feature Extraction for Blood Vessel Segmentation and Contrast Recalculation in Laser Speckle Contrast Imaging. Micromachines 2022, 13, 1788. [Google Scholar] [CrossRef]
- Cheng, H.; Duong, T.Q. Simplified laser-speckle-imaging analysis method and its application to retinal blood flow imaging. Opt. Lett. 2007, 32, 2188. [Google Scholar] [CrossRef]
- Qiu, J. Spatiotemporal laser speckle contrast analysis for blood flow imaging with maximized speckle contrast. J. Biomed. Opt. 2010, 15, 016003. [Google Scholar] [CrossRef]
- Duncan, D.D.; Kirkpatrick, S.J. Spatio-temporal algorithms for processing laser speckle imaging data. In Proceedings of the Optics in Tissue Engineering and Regenerative Medicine II, San Jose, CA, USA, 20–21 January 2008; Kirkpatrick, S.J., Wang, R.K., Eds.; SPIE: Bellingham, WA, USA, 2008; Volume 6858, p. 685802. [Google Scholar] [CrossRef]
- Perez-Corona, C.E.; Peregrina-Barreto, H.; Rangel-Magdaleno, J.; Ramos-Garcia, R.; Ramirez-San-Juan, J.C. Space-directional laser speckle contrast imaging to improve blood vessels visualization. In Proceedings of the I2MTC 2018—2018 IEEE International Instrumentation and Measurement Technology Conference: Discovering New Horizons in Instrumentation and Measurement, Houston, TX, USA, 14–17 May 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Morales-Vargas, E.; Peregrina-Barreto, H.; Ramirez-San-Juan, J.C. Exposure Time and Depth Effect in Laser Speckle Contrast Images under an Adaptive Processing. In Proceedings of the 2022 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), Ixtapa, Mexico, 9–11 November 2022; Volume 6, pp. 1–6. [Google Scholar] [CrossRef]
- Zherebtsov, E.; Dremin, V.; Popov, A.; Doronin, A.; Kurakina, D.; Kirillin, M.; Meglinski, I.; Bykov, A. Hyperspectral imaging of human skin aided by artificial neural networks. Biomed. Opt. Express 2019, 10, 3545–3559. [Google Scholar] [CrossRef]
Parameter | Range | Transform |
---|---|---|
numFilters | {8, 16, 32} | none |
encoderDepth | {2, 4, 6} | none |
filterSize | {3, 5, 7} | none |
learnRateDropFactor | [0.5–0.9] | log |
initialLearnRate | [0.001–0.1] | log |
loss | {c, w, d} | none |
Method | Validation Set (IoU) | Test Set (IoU) |
---|---|---|
global | 0.760 ± 0.190 | 0.595 ± 0.149 |
k-means | 0.762 ± 0.189 | 0.598 ± 0.148 |
morphological | 0.882 ± 0.119 | 0.723 ± 0.119 |
k-means with features | 0.883 ± 0.117 | 0.725 ± 0.117 |
UNet | 0.928 ± 0.075 | 0.784 ± 0.090 |
UNet + ET + LA | 0.940 ± 0.054 | 0.795 ± 0.091 |
R-UNet | 0.943 ± 0.073 | 0.803 ± 0.080 |
R-UNet + ET + LA | 0.944 ± 0.065 | 0.812 ± 0.080 |
k | R-UNet + ET + LA | R-UNet | Total |
---|---|---|---|
0.00770.0247 | 0.01370.0367 | 0.01070.0314 | |
0.01000.0270 | 0.0161 0.0407 | 0.13000.0347 | |
ak | 0.00840.0329 | 0.01720.0519 | 0.01280.0437 |
sdk | 0.00960.0277 | 0.01200.0383 | 0.01080.0335 |
0.00960.0328 | 0.01490.0480 | 0.01220.0412 | |
0.00610.0163 | 0.01280.0359 | 0.00950.0281 | |
Total | 0.00850.0275 | 0.01440.0423 | 0.01140.0358 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morales-Vargas, E.; Peregrina-Barreto, H.; Fuentes-Aguilar, R.Q.; Padilla-Martinez, J.P.; Garcia-Suastegui, W.A.; Ramirez-San-Juan, J.C. Improving Blood Vessel Segmentation and Depth Estimation in Laser Speckle Images Using Deep Learning. Information 2024, 15, 185. https://doi.org/10.3390/info15040185
Morales-Vargas E, Peregrina-Barreto H, Fuentes-Aguilar RQ, Padilla-Martinez JP, Garcia-Suastegui WA, Ramirez-San-Juan JC. Improving Blood Vessel Segmentation and Depth Estimation in Laser Speckle Images Using Deep Learning. Information. 2024; 15(4):185. https://doi.org/10.3390/info15040185
Chicago/Turabian StyleMorales-Vargas, Eduardo, Hayde Peregrina-Barreto, Rita Q. Fuentes-Aguilar, Juan Pablo Padilla-Martinez, Wendy Argelia Garcia-Suastegui, and Julio C. Ramirez-San-Juan. 2024. "Improving Blood Vessel Segmentation and Depth Estimation in Laser Speckle Images Using Deep Learning" Information 15, no. 4: 185. https://doi.org/10.3390/info15040185
APA StyleMorales-Vargas, E., Peregrina-Barreto, H., Fuentes-Aguilar, R. Q., Padilla-Martinez, J. P., Garcia-Suastegui, W. A., & Ramirez-San-Juan, J. C. (2024). Improving Blood Vessel Segmentation and Depth Estimation in Laser Speckle Images Using Deep Learning. Information, 15(4), 185. https://doi.org/10.3390/info15040185