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Abstract: Responding to the critical health crisis triggered by respiratory illnesses, notably COVID-19,
this study introduces an innovative and resource-conscious methodology for analyzing chest X-ray
images. We unveil a cutting-edge technique that marries neural architecture search (NAS) with
genetic algorithms (GA), aiming to refine the architecture of convolutional neural networks (CNNs)
in a way that diminishes the usual demand for computational power. Leveraging transfer learning
(TL), our approach efficiently navigates the hurdles posed by scarce data, optimizing both time and
hardware utilization—a cornerstone for sustainable AI initiatives. The investigation leverages a
curated dataset of 1184 COVID-positive and 1319 COVID-negative chest X-ray images, serving as the
basis for model training, evaluation, and validation. Our methodology not only boosts the precision
in diagnosing COVID-19 but also establishes a pioneering standard in the realm of eco-friendly and
effective healthcare technologies. Through comprehensive comparative analyses against leading-
edge models, our optimized solutions exhibit significant performance enhancements alongside a
minimized ecological impact. This contribution marks a significant stride towards eco-sustainable
medical imaging, presenting a paradigm that prioritizes environmental stewardship while adeptly
addressing modern healthcare exigencies. We compare our approach to state-of-the-art architectures
through multiple comparative studies.

Keywords: optimization in AI diagnostics; genetic algorithm; transfer learning; sustainable healthcare
solutions

1. Introduction

Computer vision plays a pivotal role in diagnosing various health issues, particularly
in medical settings that rely on visual examinations [1–3]. It serves as a valuable diagnostic
tool for identifying potential signs of skin cancer on the skin. Moreover, computer vision
is instrumental in detecting abnormalities within the body, including issues with tissues,
blood vessels, and joints. In the field of ophthalmology, it aids in the early identification
of conditions like diabetic retinopathy, preventing the onset of blindness. Its effectiveness
extends to medical procedures and treatments. Various types of medical imaging are har-
nessed by computer vision systems. Notably, the primary challenge in using chest X-rays
(CXR) for identifying COVID-19 patients is the limited availability of qualified physicians,
especially in rural areas. Additionally, the unique radiological characteristics of COVID-19
are often unfamiliar to healthcare professionals who may not have prior experience with
COVID-19-positive CXRs. To address this, we propose a straightforward and cost-effective
deep learning approach for categorizing COVID-19-positive and -negative cases through
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CXR images. This method achieves high precision in seconds, offering a reliable means
of diagnosis even in the absence of a radiologist or in cases of differing medical opinions.
Over the past decade, deep learning has witnessed significant progress across multiple
domains, including transportation, emergency prediction, and medical applications. This
progress has spurred researchers to harness deep convolutional neural networks (DCNNs)
for diagnosing chest conditions through radiography. Deep learning, with its transforma-
tional powers, has left an indelible imprint on a plethora of fields over the last decade,
as proven by significant advances in numerous areas of research and application [4–8].
Among the numerous areas where deep learning has had an impact, the categorization of
both natural and medical photographs [2,9] stands out. This crucial breakthrough has fu-
eled academics’ and scholars’ examination of deep convolutional neural networks (DCNNs)
as an indispensable tool in the detection of chest problems using chest radiography [4].
As we delve into the complexities of deep learning, we discover a realm of innovation
and unprecedented potential. The combination of ever-improving techniques and the
unwavering dedication of researchers have enabled deep learning to not only redefine the
boundaries of what we thought possible, but also to address some of the most difficult
issues that exist. The classification of natural and medical images has been a pioneering
area of investigation within this domain. Researchers have delved into the complexities
of DCNNs, utilizing their strong abilities to dissect and comprehend complex visual data.
In the field of medical imaging, there is a strong focus on chest radiography and diagnosing
chest diseases. This is crucial because timely and accurate diagnoses are vital for health-
care. Deep learning algorithms, especially those powered by deep convolutional neural
networks (DCNNs), have evolved into essential tools for doctors and researchers. They
enable quicker and more precise diagnoses, reducing the impact of diseases, improving
patient care, and advancing our knowledge of health conditions.

Only a few studies [4,10,11] have employed individual deep learning techniques with
CXR images to predict COVID19 +ve and −ve. An effort has been made to design a unique
network. Despite CNNs’ remarkable performance, their architectural design remains a key
problem for academics and practitioners. To optimize the CNN architecture’s design, a large
number of hyperparameters must be fine-tuned. According to past research, a wide range
of CNN designs, including DenseNet and AlexNet, are already available. Unfortunately,
no suggestions exist for developing a specific architecture for a certain purpose; as a result,
the design of such an architecture remains extremely subjective and primarily relies on the
talent and expertise of data scientists.

Addressing the critical global health issue of diseases affecting the chest, with a par-
ticular focus on COVID-19, our study proposes a method that stands at the intersection
of sustainability and advanced diagnostic technology [12,13]. We introduce an innovative
technique that marries neural architecture search (NAS) with genetic algorithms (GA) to
refine the framework of convolutional neural networks (CNN), aiming to decrease the
typically high demand on computational resources. Leveraging transfer learning (TL),
our approach adeptly navigates the hurdles presented by scant data while promoting
the conservation of both temporal and computational assets, an essential consideration
for the advancement of sustainable AI methodologies. The dataset employed in our re-
search encompasses 1184 COVID-positive and 1319 COVID-negative chest X-ray images,
serving as the foundation for our model’s training, testing, and evaluation phases. Our
methodology not only elevates the precision of COVID-19 detection but also pioneers
in establishing a new paradigm in the domain of sustainable and efficacious healthcare
innovations. Through rigorous comparative analyses against leading-edge models, our
optimized architectures showcase substantial enhancements in efficacy coupled with a
minimized ecological impact. This investigation heralds a progressive leap in sustain-
able medical imaging, delivering a solution that is both eco-friendly and proficient in
surmounting contemporary health crises. Moreover, this work delves into the application
of transfer learning (TL) using convolutional neural networks, harnessing pre-acquired
insights from analogous tasks to augment performance on new challenges. This strategy
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has proven instrumental in mitigating data scarcity issues and optimizing both time and
hardware expenditure. In this document, we outline an approach that leverages automated
evolutionary algorithms to optimize the block configurations within CNN architectures,
specifically aimed at enhancing the categorization of X-ray images. By pinpointing the
most effective CNN block arrangements, we then apply transfer learning (TL) to bolster
the model’s capability on novel tasks, drawing upon the wealth of knowledge previously
amassed from related endeavors. Below, we present a summary of the pivotal contributions
made by our research:

• Optimizing CNN Block Structures with Genetic Algorithms: One of our research
study’s key contributions is the use of genetic algorithms to methodically investigate
and fine-tune ideal convolutional neural network (CNN) block topologies. These
structures are very reliant on the precise CNN hyperparameters, and our research is
the first to use evolutionary algorithms in this setting. As a result, we obtain a better
grasp of how to design CNN structures to improve performance and efficiency, giving
useful insights for the wider field of deep learning.

• A Novel Integration of CNN Architecture Search and Transfer Learning: The inven-
tion of an evolutionary strategy that merges CNN architecture search with transfer
learning structures is a ground-breaking feature of our study. This novel strategy
differs significantly from existing methods in that it enables large-scale tests to thor-
oughly validate its effectiveness. For the first time, we combine these two strong
strategies to expand model accuracy, generalization, and scalability. We provide a
new viewpoint on how deep learning may be used to address complicated issues in a
variety of disciplines.

• Thorough Evaluation of X-ray Classification Architecture: Our research focuses on a
thorough investigation of the X-ray classification architecture we have constructed.
We evaluate not just its utility but also its adaptability to a variety of settings. Our
study examines the architecture’s performance in a variety of contexts, including real-
world medical applications. We want to see how well it generalizes across different
datasets and diagnostic tasks, as well as how resilient and versatile it is. We give vital
insights that can inform breakthroughs in the fields of medical imaging and artificial
intelligence, eventually benefiting healthcare and diagnostics, through this in-depth
examination.

2. Related Work
2.1. Evolutionary Neural Architecture Search

A wide range of machine learning problems have successfully used evolutionary
optimization approaches in recent years [1]. This achievement may be credited to the
outstanding global search skills inherent in population-based metaheuristics, which allow
them to expertly negotiate the complex landscape of potential solutions, avoiding local
optima while narrowing in on near-global optimum solutions. Three major methodological
pillars have arisen within the area of neural architecture search (NAS): reinforcement
learning (RL)-based NAS, gradient (GD)-based NAS, and evolutionary computation (EC)-
based NAS, also known as Efficient NAS (ENAS).

Zhong et al. [14] investigated efficient block-wise NAS for convolutional neural net-
works (CNNs) using the Q-learning technique and an early stopping strategy, demonstrat-
ing the ability to achieve competitive performance at a faster rate than traditional Block-
QNN approaches. Differentiable architecture search (DARTS), developed by Liu et al. [15],
is at the cutting edge of GD-based NAS techniques. DARTS, which is based on the concept
of continuous relaxation, continually shapes architectural representations and uses gradient
descent to locate ideal models within the vast search space. Meanwhile, Shinozaki et al. [16]
used genetic algorithms (GAs) to optimize deep neural networks (DNNs)’ complicated
structural configurations and parameters. When examining CMA-ES, a predominantly
continuous optimizer that employs an indirect encoding scheme to transform discrete
structural variables into real-valued representations, a stark contrast emerges, whereas GA
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relies on binary vectors, faithfully mirroring the DNN’s architecture as a directed acyclic
graph. In a similar quest to enhance recognition accuracy, Xie et al. [17] pioneered an
innovative approach by encoding network topologies into binary strings. Their innovation,
while commendable, was not without its challenges, notably the high computational cost,
necessitating testing with smaller datasets. Sun et al. [18] introduced an evolutionary
strategy that optimizes and initializes the weights of CNNs. Their method incorporated
novel techniques, such as innovative weight setup procedures, diverse chromosome cod-
ing strategies with varying lengths, a slack binary tournament selection process, and a
highly effective fitness evaluation mechanism. Lu et al. [19] ventured into the domain of
multi-objective modeling for architectural search problems, aiming to curtail the number of
floating-point operations (FLOPS) while concurrently reducing classification error rates,
offering an innovative perspective on network optimization. The core of NAS, Efficient
NAS (ENAS), encapsulates the EC paradigm, incorporating network structures within
the evolutionary genetic algorithm process to unearth the most optimal CNN topologies.
Sun et al. [20] offered fresh insights into the realm of GA-based CNN architecture design,
employing variable-length encoding techniques to describe CNN structures with varying
depths, featuring the construction of CNN networks through convolutional and pooling
layers, thus enriching the arsenal of CNN design strategies. Neural architecture search
(NAS) methodologies have consistently outperformed manually crafted network designs,
showcasing their significant capabilities [21]. However, the challenge of optimizing NAS
for both performance and computational efficiency is pivotal. This research aimed to
harness Enhanced NAS (ENAS) to streamline the development of convolutional neural
networks (CNNs), aiming for heightened efficiency and reduced computational demand.
Previous investigations into ENAS, notably by Liu et al. [22] and Real et al. [23], have
employed evolutionary algorithms (EAs) for discovering optimal large-scale CNN architec-
tures, yielding impressive results. These methods typically involve encoding evolutionary
components (EC) to structure the CNN, with blocks often linking the evolutionary pro-
cess and the CNN’s architecture, facilitating the network’s construction. In the realm of
medical imaging, particularly for COVID-19 detection, CNNs have proven superior in
classifying X-ray images, marking a significant advance in diagnostic practices. Despite
the traditional reliance on manually designed architectures, like VGGNet [24], ResNet [25],
and DenseNet [26], recent studies have explored various computational approaches for
diagnosing thoracic ailments through chest X-rays. Among these, Wang et al. [27] proposed
a semi-supervised framework that combines different DCNN techniques for multi-label
classification. Similarly, innovative network designs by Islam et al. [28] and the utiliza-
tion of DenseNet for pneumonia detection by Rajpurkar et al. [29] have shown notable
accuracy improvements. Additionally, efforts by Yao et al. [30], Irvin et al. [31], and Pra-
bira et al. [32] have focused on optimizing performance through statistical label analysis,
advanced learning networks, and deep feature collections for SVM classification, respec-
tively. For COVID-19 diagnosis using X-ray imaging, studies leveraging diverse datasets
have been instrumental in enhancing diagnostic methodologies. Research by Gusztav
Gaal et al. [33], Asmaa Abbas et al. [34], Ali Narin et al. [35], and others has utilized various
datasets, ranging from small collections to extensive compilations of chest radiographs,
to investigate COVID-19 imaging characteristics and improve diagnosis accuracy. These
studies highlight the importance of diverse data sources and innovative approaches in ad-
vancing X-ray-based COVID-19 diagnosis, contributing significantly to the global response
to the pandemic.

2.2. Transfer Learning for X-ray Image Classifcation

Transfer learning (TL), originating from cognitive science theories, suggests that knowl-
edge from previously learned tasks can enhance performance on new, similar tasks. This
concept is rooted in the understanding that humans apply prior learning to succeed in new
tasks. Pan and Yang [36] provided a formal framework for TL, introducing the notions of
domains and tasks. A domain comprises a feature space X and its marginal probability
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distribution P(X), where X = x1, . . . , xnϵX. A domain, denoted as Do = X, P(X), pairs
with a task T = Y, f (.), identifying a label space Y and a predictive function f (.). Transfer
learning aims to enhance the target predictive function fT(.) in domain DT by utilizing
knowledge from the source domain DS and task TS. In the context of CNNs, TL involves
transferring learned parameters, especially useful in medical imaging tasks where pre-
trained CNN models on general images are adapted for specific medical analyses. CNNs,
initially conceptualized by Fukushima and further developed by Fukushima et al. [37],
have seen extensive application in medical imaging, including brain tumor detection from
MRI scans, breast cancer identification, and disease classification from X-ray images [37,38].
For instance, Ciresan et al. [39] demonstrated that CNNs could segment neurons’ mem-
branes effectively. Wang et al. [27] compiled a novel dataset of X-ray images, achieving
promising results with deep CNNs. Rajpurkar et al. [29] designed a deep CNN with 121
layers for diagnosing 14 diseases from chest X-rays. Zhou et al. [40] applied InceptionV3
architecture and TL to distinguish between cancer types. Deniz et al. [41] utilized a pre-
trained VGG-16 for breast cancer classification, while other studies leveraged pre-trained
networks like GoogLeNet and AlexNet for tasks such as glioma grading, with GoogLeNet
showing superior performance [42]. TL has proved invaluable in medical image analysis
by addressing data limitations and conserving time and computational resources. Despite
the abundance of CNN architectures, designing task-specific architectures remains a largely
intuitive process, dependent on data scientists’ expertise. Existing TL approaches typically
start with manually developed architectures. The exploration of TL for automatically gen-
erated architectures, particularly in the context of evolving optimization and deep learning
for tasks like COVID-19 detection, presents a novel and unexplored avenue, as illustrated
in the proposed approach for COVID-19 detection using evolutionary optimization and a
deep TL-based model (Figure 1).

Figure 1. The proposed approach: Optimization and transfer learning workflow for enhanced
COVID-19 detection using CNNs.

3. Proposed Approach

1. RQ1: Our methodology is inspired by two fundamental inquiries that address the com-
plexities of convolutional neural network (CNN) design and the efficient utilization
of existing models to address new problems.

2. RQ2: Faced with the challenge of complex models that require substantial computa-
tional resources, how can we leverage existing models to address similar tasks without
the need to train new models from scratch?

To address these questions, we propose a novel approach that integrates evolutionary
algorithms (EAs) for optimizing CNN architectures with a sophisticated transfer learning
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strategy. This approach aims to refine the process of manual CNN architecture design,
which is often cumbersome and inefficient. Our method focuses on exploring a vast array of
network block topologies to discover more streamlined and effective designs that enhance
accuracy without unnecessary complexity. Initially, our strategy involves identifying the
most suitable block structures for CNNs. Subsequently, we employ a deep learning system
based on transfer learning to detect COVID-19 in chest X-ray images. This process, depicted
in Figure 1, leverages evolutionary optimization to streamline architecture development
and incorporates advanced transfer learning techniques for efficient model adaptation.

3.1. Blocks Search Operators
3.1.1. Strategy for Encoding and Decoding

To catalyze the evolution of CNN architectures, we have devised specialized genetic
manipulations, including block-level crossover and mutation operations. These procedures
are designed to merge and alter the encoded block structures, engendering offspring that
may exhibit superior fitness. The fitness of each entity is gauged based on its prowess
in image classification, emphasizing the reduction in error rates and the optimization
of computational efficacy. Our approach utilizes genetic algorithms (GAs) for the initial
population generation, where each individual represents a potential CNN architecture.
This process, involves randomly generating block structures for each individual within the
population, ensuring a diverse starting point for evolutionary optimization. Each block
within the CNN is encoded as a string, facilitating the application of GA operations, such
as crossover and mutation, to evolve more effective network architectures. To initialize
a generation of solutions for a genetic algorithm (GA), where SizeG represents the total
number of individuals in the population:

• Start Generation Counter: Set the generation counter g to 1.
Population Generation Loop: While g ≤ SizeG, perform the following steps to create
each individual in the population:

a. Individual Initialization: For each individual i within the generation, initialize
the sequence Si to an empty set and start the block counter m at 1.

b. Block Generation Loop: While m ≤ 5, generate a block for the individual:

i. Random Block Generation: Generate a random number tmp using randint
function with a range from 0 to m − 1. This simulates the selection of a
random connection or feature within the block.

ii. Block Update: Add the generated random number tmp to the sequence Si to
represent the individual’s architecture.

iii. Increment Block Counter: Increase the block counter m by 1 to proceed to
the next block until all 5 blocks are generated.

c. Individual Update: Once all blocks for the individual are generated, increment
the individual counter i to create the next individual in the population.

• Population Update: After all individuals have been created for the generation, incre-
ment the generation counter g by 1 to proceed to the next generation if required.

• Finalization: Once the population has been fully initialized, finalize the generation
by setting S as the collection of all sequences S1, S2, . . . , Sn representing the initialized
population.

The algorithm yields an initialized population S, ready for further processing within
the GA framework, such as fitness evaluation, selection, crossover, and mutation operations.
The proposed encoding strategy transforms each CNN block into a string representation,
enabling the application of genetic operations. This method allows for a straightforward
mapping between the encoded strings and the corresponding CNN architectures, ensur-
ing that each individual within the population can be directly translated into a unique
CNN design. The block structures are conceptualized as directed acyclic graphs (DAGs),
with virtual nodes representing inputs and outputs. This encoding facilitates the explo-



Information 2024, 15, 189 7 of 20

ration of various block configurations, optimizing the network’s structure for efficiency
and accuracy.

If the encoding string for block i is Si, then the whole encoding representation can
be written as S = {S1, S2, Sn}. By using this method of encoding, each individual can be
decoded into a full deep CNN network, and a one-to-one match can be made between the
person and the CNN network. The block’s structure resembles a directed acyclic graph
(DAG). The virtual nodes “In” and “Out” serve as the input and output tensors for the
block. According to the block’s connection rule, a node j may choose just one input node k
that satisfies its conditions (j > k). Node N1 can only choose N0 as its input, but node N5
may choose from N0 through N4 as its input. As its encoding string, the selection inputs
of the computational nodes are compiled. The input selection of the block’s nodes i are
0, 0, 2, 2, 3; the encoding string is 00223. Given that the encoding string is a collection of
the chosen inputs of the computational nodes, it may also be used to decode the unique
block structure, indicating that the block structure and its encoding satisfy the criteria of
a one-to-one match. A suitable connection between In and Out may be constructed by
connecting the block structure as the DAG according to these criteria. “In” and “Out” are
combined into one convenient shorthand in the block. This building’s possible connections
are: N0 − N2 − N3 − N5 − Out. Aside from the virtual nodes NO and Out, there are a
total of three computational nodes in this architecture, making the depth of the encoding
00223 3. Using this method, you may encode numbers between 0 (for 01234) and 0 (for
00000) with a maximum depth of 5 and a minimum depth of 1. The CNN network’s block
structure may be optimized by evolutionary algorithms (GA) since the underlying data are
represented as strings that can be processed by these algorithms.

The starting point for evolution in GA is the population initialization. Each person
is assigned at random using an informed distribution. The random blocks are formed for
each individual in the generation. For the m-th node in the i-th block, its initial value is
randomint(m-1), which means that it randomly picks one of its front nodes as its input,
provided that it satisfies the block’s connection rule. With this form of initialization, it is
possible to create each block in every individual generation. In order to develop the new
population and generation of GA people, the children are produced with the expectation
that they will have greater fitness values than their parents. In the suggested technique,
several crossover and mutation operators are built for the offspring generation. Parents are
picked at random for the population based on their fitness levels.

3.1.2. Crossover Operator

The block level crossover operators include the one-point crossover, the two-point
crossover, and the uniform block crossover. In the context of optimizing convolutional
neural networks (CNNs) using genetic algorithms (GAs), one critical operation is the block-
level crossover between two parent architectures. This operation aims to generate new
offspring architectures that combine characteristics of the parents, potentially leading to
improved performance. Given two parent architectures from the population, denoted as p1
and p2, our objective is to produce two new offspring, S1 and S2. The procedure begins
with setting an iteration counter i to 1, which will be used to navigate through the blocks of
the parent architectures. For each block i, up to the total number of blocks n, we perform
the following steps:

• Extract the ith block from both p1 and p2, referred to as Spar1
i and Spar2

i , respectively.
• Apply a crossover operation to these blocks, resulting in two new blocks. These

new blocks are denoted as S1
i and S2

i , which are parts of the offspring S1 and S2,
respectively.

• Increment i by 1 and repeat the process until all blocks have been processed.

After iterating through all blocks, we compile the offspring by combining the newly
formed blocks into coherent architectures. The first offspring, S1, is constructed as S1

1, S1
2, . . . , S1

n,
and similarly, the second offspring, S2, is constructed as S2

1, S2
2, . . . , S2

n. These offspring
represent new CNN architectures that inherit characteristics from both parents, potentially
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leading to novel and efficient solutions for the task at hand. These block-level crossover
operators are performed on the block of the individual. The crossover is among the three
block level crossover operators. The crossover operator at the individual level uses the
individual’s own blocks to perform crossover and produce a new individual. Before any-
thing further, we create two brand-new index vectors, ind1 index and ind2 index, for the
parents p1, p2. The crossover is performed, and the results are recorded in two index
vectors, the offspring1 index and the offspring2 index, whose lengths are identical to the
number of blocks in the individual. Last, the o f f spring1index would be used to build the
next generation of S1 offspring1 and S2 offspring2.

3.1.3. Mutation Operator

In the present investigation, we employ a mutation strategy that closely mirrors
the principles underlying the uniform crossover technique. This mutation mechanism
can be conceptualized as akin to performing a two-point crossover, yet uniquely, it in-
volves the introduction of a freshly initiated individual into the process. This particular
form of crossover, which is executed at the block level, adheres to the methodology of
uniform crossover.

To elaborate, the mutation operator introduced herein serves as a pivotal component of
our genetic algorithm framework, designed to introduce variability into the population of
neural network architectures. Unlike traditional mutation operations that might randomly
alter a single gene (or block, in the context of CNN architectures), our approach draws inspi-
ration from the uniform crossover mechanism. This method ensures that every block within
an individual architecture has an equal chance of undergoing mutation, thereby promoting
a diverse exploration of the architectural space. The operation begins by selecting a target
individual from the current population, which will undergo mutation. Concurrently, a new
individual is generated from scratch, embodying a set of potential genetic alternatives for
each corresponding block in the target architecture. The mutation process then system-
atically reviews each block within the target individual, deciding at each step whether
to retain the original block or replace it with its counterpart from the newly generated
individual. This decision-making process is governed by a predefined probability, ensuring
that the mutation is neither too aggressive (which might lead to the loss of beneficial traits)
nor too conservative (which could stymie exploration). By adopting a methodology that
mirrors the two-point crossover, but with the unique twist of involving a new individual,
our mutation operator facilitates a nuanced exploration of the solution space. It allows for
the injection of fresh genetic material into the population, thereby enhancing the genetic
diversity available for subsequent generations. This approach is particularly advantageous
in the context of optimizing convolutional neural network architectures, where the balance
between exploration (searching through new, untested configurations) and exploitation
(refining known, high-performing architectures) is critical for achieving optimal results.

Evaluating the fitness of each individual plays a pivotal role in the genetic algorithm
(GA) process, as it directly influences the selection of parents for subsequent generations.
In this investigation, we integrate the assessment of fitness with the training regime of
convolutional neural networks (CNNs). Given the substantial computational demands
associated with training CNNs, our methodology does not require the exhaustive training
of the entire network for fitness evaluation. Instead, we employ a cyclical approach that
alternates between the genetic algorithm’s evolutionary steps and targeted training of the
CNN, thereby achieving optimization and training efficiency.

For the purpose of error measurement, we adopt the holdout validation strategy,
allocating 70% of the dataset for training purposes and the remaining 30% for testing,
chosen randomly. To mitigate the potential for overfitting, we further refine the training
dataset management by segmenting 70% of it into five equal parts, implementing five-
fold cross-validation during the training phase. This method allows for the averaging of
classification accuracy across all five partitions, ensuring a robust evaluation of model
performance. The validation approach utilized in our study is depicted in Figure 2, with the
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final classification error rates being calculated based on the 30% of data designated for
testing. This approach ensures both the efficiency of training and the accuracy of the model
in classifying new data.

Figure 2. The nested validation strategy.

3.2. Transfer Learning Techniques

In computer vision, neural networks usually seek to identify edges in the first layer,
shapes in the second layer, and task-specific parameters in the third layer. The early and
middle layers are used for transfer learning, but the latter layers are just retrained. It utilizes
the labeled data from the training task. A pre-trained model is a stored network that has
been previously trained on a large dataset, typically on a large-scale image classification
task. The intuition behind transfer learning for image classification is that if a model is
trained on a sufficiently large and general dataset, this model will effectively serve as a
generic model. We can then leverage these learned feature maps without having to start
from scratch by training a large model on a large dataset. Our transfer learning strategy
builds upon the foundational layers of pre-existing CNN models, adapting them for the
specific task of COVID-19 detection in chest X-ray images. This process involves several
key steps:

• Obtain pre-trained model: We begin by selecting a pre-trained CNN architecture
that serves as the foundation for our model. This architecture is chosen based on its
relevance to our target task and its proven effectiveness in related image classification
challenges.

• Create a base model: The selected base model is then adapted to our specific require-
ments. This may involve adjusting the model’s architecture, such as modifying the
output layer to match the number of desired classifications. The initial layers of the
model are frozen to retain learned features, while new layers are added to tailor the
model to our specific task.

• Add new trainable and train the new layers: The new layers added to the model are
trained using our dataset, allowing the model to learn features specific to COVID-
19 detection. This training leverages the foundational knowledge encoded in the
pre-trained model, enhancing the efficiency and effectiveness of the learning process.

• Fine-tune your model: Finally, we fine-tune the entire model, including both the pre-
trained and newly added layers, to optimize its performance on the target task. This
fine-tuning process involves careful adjustment of learning rates to prevent overfitting
and ensure that the model achieves the highest possible accuracy.

Through this comprehensive approach, combining evolutionary optimization of CNN
architectures with advanced transfer learning techniques, we aim to significantly enhance
the efficiency and effectiveness of image classification models, particularly for the critical
task of COVID-19 detection in chest X-ray images.
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4. Experiments
4.1. Benchmarks

The evaluation framework known as the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) serves as a robust assessment tool for large-scale object detection and
image categorization methods (Figure 3). One overarching goal of this framework is to
facilitate a broader comparison of progress in object detection across a diverse spectrum
of objects, effectively leveraging the considerable effort invested in labeling tasks. The ex-
tensive ImageNet dataset comprises a staggering 14,197,122 images, meticulously labeled
according to the WordNet hierarchy. Since its inception in 2010, this dataset has served as
the cornerstone of the ImageNet Large Scale Visual Recognition Challenge (ILSVRC), an es-
teemed benchmark for image classification and object recognition. The publicly accessible
dataset features images that have undergone meticulous manual annotation. Moreover,
a subset of test images intentionally excludes these manual annotations, enhancing the rigor
of the benchmark. ILSVRC annotations assume two primary forms: Firstly, image-level an-
notations capture binary labels indicating the presence or absence of an object class within
an image. For instance, these annotations might convey the message “this image contains
cars” while simultaneously noting “there are no tigers present”. Secondly, object-level
annotations offer comprehensive bounding boxes and class labels for individual object
instances in images. These meticulous annotations enhance the benchmark’s ability to
address both image and object-level recognition challenges.

Figure 3. Samples of normal X-ray images [4].

The collection of chest X-rays from patients with COVID-19 was sourced from an
open-access data repository. This database encompasses a comprehensive set of chest X-ray
images, comprising 1184 images of individuals confirmed as COVID-positive and 1319 im-
ages of individuals without COVID-19 diagnosis. Our investigation is fundamentally
grounded in this database, which organizes chest radiography images into two distinct cat-
egories, as visually represented in Figure 4. The categories include individuals who exhibit
no infection and individuals who have been diagnosed with COVID-19. To facilitate our
research and maintain robust evaluation practices, we randomly partitioned this dataset
into two distinct subsets. The division allocated 80% of the images for the training phase,
enabling model development and refinement, while the remaining 20% were reserved for
testing, serving as an independent validation dataset. This partitioning strategy ensures a
reliable assessment of our models and their generalization capabilities.

Figure 4. Sample of infected X-ray images [4].
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4.2. Performance Metrics

In the realm of image classification using deep neural networks, the most commonly
employed performance metrics, as indicated by the literature [43,44], are accuracy (Acc),
specificity, and sensitivity. Accuracy (Acc), denoted by Equation (1), is defined as the
ratio of true positives (TP) and true negatives (TN) to the total number of cases (NE).
Addressing class imbalance, the geometric mean, or G-mean, emerges as a valuable metric.
Computed from the binary confusion matrix, G-mean serves as the geometric mean of the
actual rates for both positive and negative cases. Its purpose is to balance classification
performance between majority and minority classes, offering resilience to data disparities,
as expressed in Equation (2). The G-mean, calculated as the square root of the product
of the true positive rate (TPR) and the true negative rate (TNR), is a critical measure of a
model’s ability to perform consistently across both classes in binary classification tasks.
TPR, or sensitivity, reflects the proportion of actual positives correctly identified, while
TNR, or specificity, gauges the proportion of actual negatives accurately recognized. This
holistic performance metric is essential in our context of COVID-19 detection, ensuring that
our model’s effectiveness is not biased towards either class. A higher G-mean indicates a
balanced classification accuracy for both COVID-positive and negative cases, underlining
the model’s diagnostic reliability.

Acc = (TP + TN)/NE (1)

G-mean =
√

TRP.TNR (2)

In this study, parameter tuning for comparative algorithms was carried out through the
conventional trial-and-error method. Notably, the parameter configuration for “Our work”
involved a batch size of 128, a stochastic gradient descent (SGD) learning rate of 0.01,
a momentum value of 0.91, and a weight decay factor of 0.00001 for the optimization
process. The search method incorporated 60 generations, a population size of 50, a crossover
rate of 0.9, and a mutation rate of 0.1, with these parameter choices significantly shaping
the study’s conditions and approach. The implementation employed the TensorFlow
framework in conjunction with Python (version 3.5), while CNN structures were assessed
using eight Nvidia 2080Ti GPU cards, designed and tested with the provided data.

4.3. Network Parameters Improvement: Enhancing Diagnostic Efficiency

In our study, the convolutional neural network (CNN) architecture specifically tailored
for chest X-ray image analysis is meticulously optimized through a synergy of neural
architecture search (NAS) and genetic algorithms (GA), embodying a sophisticated blend
of convolutional, pooling, and fully connected layers. This architecture, emerging from
empirical evaluations, begins with convolutional layers characterized by a 3 × 3 kernel
size—initiating with 32 filters that double every two layers to intricately capture the
complexity of the input images, utilizing a stride of 1 and padding to maintain feature
map dimensions, and leveraging the rectified linear unit (ReLU) activation function to
introduce non-linearity and enhance the network’s pattern learning capability. Pooling
layers employing a 2 × 2 max pooling scheme follow every pair of convolutional layers,
strategically reducing spatial dimensions and computational demands, culminating in fully
connected layers that lead to a softmax output layer, which categorizes images into COVID-
positive or negative diagnoses, the structure of which is informed by the complexity of the
dataset and the intricacy of learned features. The network’s training and optimization are
governed by stochastic gradient descent (SGD) with a learning rate of 0.001, momentum of
0.9, and a mini-batch size of 32, focusing on minimizing the cross-entropy loss function.
The essence of our methodology lies in leveraging NAS to delineate a vast search space
that represents all conceivable network configurations, which GA then navigates through
selection, crossover, and mutation processes to evolve a population of architectures across
generations, each appraised for its precision in validation set classification. This iterative
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refinement zeroes in on architectures showcasing peak performance until a predetermined
generational count or performance convergence criterion is met, leading to the selection
of an optimized CNN architecture. This comprehensive optimization process not only
significantly boosts diagnostic accuracy by minimizing false positives and negatives but also
underscores the method’s computational efficiency, expediting convergence and reducing
resource consumption. The culmination of this detailed parameterization and rigorous
optimization strategy not only furnishes a highly accurate tool for COVID-19 diagnosis from
chest X-ray images but also propels the field of sustainable AI forward in the healthcare
domain, highlighting our methodology’s profound impact on enhancing CNN performance
for medical imaging tasks.

4.4. Comparative Results

X-ray image-based COVID-19 identification has recently witnessed significant ad-
vancements, thanks to the integration of various artificial intelligence techniques. Our
methodology is poised for a rigorous comparative assessment against the most prominent
contributions in the realm of convolutional neural network (CNN) architecture gener-
ation [45]. The distilled findings of this comparison, encapsulated in Table 1, offer a
comprehensive overview of the architectural landscapes cultivated by the various CNN
design strategies targeting X-ray images.

A glance at Table 1 unearths a range of classification accuracy (Acc) figures within the
domain of X-ray-based COVID-19 diagnosis, spanning from 88.39% to a remarkable 98.12%.
Notably, Biraja Ghoshal et al. [45] manifest the relatively modest end of this spectrum,
achieving an Acc of 88.39%. Linda Wang et al. [46], in terms of classification accuracy,
attain a commendable 92.4% concerning the COVIDx dataset. Meanwhile, Asmaa Ab-
bas et al. [34] shine with an Acc of 95.12%, fortified by an impressive sensitivity of 97.91%
and a specificity of 91.87%. Prabira Kumar Sethy et al. [32] also make a notable entry,
securing an Acc of 95.38%. Ioannis D. Khalid EL Asnaoui et al. [47], Muhammad Farooq
and Abdul Hafeez [48], and Gusztav Gaal et al. [33] bolster the upper echelons of this
spectrum, boasting Acc rates of 96.23% and 97.5%, as delineated in Table 1. Furthermore,
we present a compelling contrast based on the visual representations in Figures 5 and 6. Our
methodology emerges as a front-runner, achieving higher Acc values in comparison to the
methodologies that fall within the purview of this scrutiny. Several factors underpin these
remarkable findings. Firstly, manual CNN creation is a laborious and intricate endeavor,
demanding a high degree of expertise from the user. The sheer diversity of potential
architectural designs further compounds the intricacy, making it a formidable task even
for seasoned practitioners. In this context, our investigations highlight the preeminence
of evolutionary algorithms, a testament to their intrinsic capacity for optimizing accuracy
throughout the search process [32]. The allure of evolutionary algorithms lies in their
inherent proclivity for global exploration. This trait enables them to venture beyond local
optima, delving deep into the entirety of the search space. Notably, the probability of
accepting suboptimal structures through the mating selection operator adds a layer of ro-
bustness to the optimization process. As corroborated by the insights gleaned from Figure 7,
our proposed approach exhibits an innate aptitude for crafting task-specific architectural
designs [47]. Our method’s ability to automatically formulate CNN architectures with en-
hanced accuracy to those contemplated by our peers is a testament to its prowess. Crafting
CNNs remains an intricate challenge, even for those with extensive domain knowledge.
Notably, automated design strategies triumph over their handcrafted counterparts when
dealing with radiographic images. This can be attributed to the inexhaustible permutations
of potential designs, where each topology significantly influences the interactions between
neural network nodes, thereby wielding a profound impact on classification performance.
The paradigm of automatic architecture generation thus emerges as a promising frontier in
the pursuit of higher accuracy and efficiency in the domain of medical image analysis [48].
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Table 1. Comparative performance of CNN architectures for COVID-19 detection in chest X-ray
imaging.

Research Model Approach Test Acc (%) G-Mean

Gusztav Gaal et al. [33] Integration of U-Net with AT, contrast enhancement 97.49 97.13

Abbas et al. [34] CNN with FD and enhancement using ImageNet and ResNet (DeTraC) 95.12 94.69

Narin et al. [35] Adaptation of ResNet50 via transfer learning 97.00 96.7

Wang et al. [46] Application of TL to COVID-Net 92.4 91.06

Asnaoui et al. [47] Exploration of multiple architectures including Xception, VGG16-19,
and DenseNet201 96 95.98

Sethy et al. [32] Combination of Resnet50 deep features with support vector machines 95.3 94.1

Ioannis et al. [49] Fine-tuning of models like Xception, VGG19, and Inception for enhanced
accuracy 95.57 93.44

Ghoshal et al. [45] Implementation of Bayesian CNN with Dropweights for uncertainty
estimation 88.39 89.91

AbdulHafeez [48] Utilization of a pre-trained ResNet50 architecture with COVIDx dataset 96.22 95.8

Louati et al. [50] Optimization of CNN architecture via topology 98.1 97.91

Our Work – 99.03 98.83

Figure 5. Training and validation accuracy over epochs for CNN-based COVID-19 detection.

Figure 6. Training and validation loss over epochs for CNN-based COVID-19 detection.
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Figure 7. The model’s diagnostic capability to differentiate between normal and COVID-19-affected
lung radiographs.

Results Discussion

In the realm of leveraging X-ray imagery for the diagnosis of COVID-19, various
studies have made significant contributions. These investigations, each utilizing distinct
classification models and techniques, have demonstrated varied levels of accuracy and
G-mean scores, reflecting their effectiveness in identifying COVID-19 from X-ray images.
The following summarizes the methodologies and outcomes of these notable works:

• The study by Gusztav Gaal et al. [33] combined U-Net with adversarial techniques
and contrast-limited adaptive histogram equalization, achieving an accuracy of 97.5%
and a G-mean of 97.14.

• Abbas and colleagues [34] employed a CNN with feature decomposition and model
transfer, integrating ImageNet and ResNet enhancements (DeTraC), resulting in 95.12%
accuracy and a 94.69 G-mean.

• Narin et al. [35] utilized a pre-trained ResNet50 model adapted through transfer
learning, attaining a 97% accuracy and 96.78 G-mean. The research by Wang et al. [46]
focused on applying transfer learning to COVID-Net, recording a 92.4% accuracy and
a 91.06 G-mean.

• Asnaoui et al. [47] explored various architectures including Xception, VGG16-19,
DenseNet201, Inception-ResNet-V2, InceptionV3, Resnet50, and MobileNet-V2, achiev-
ing 96% accuracy and a 95.98 G-mean.

• Sethy et al. [32] combined Resnet50’s deep features with support vector machines,
achieving a 95.38% accuracy and a 94.14 G-mean.

• Ioannis et al. [49] refined models like Xception, VGG19, Inception, and Resnet V2,
resulting in 95.57% accuracy and a 93.44 G-mean.

• Ghoshal et al. [45] implemented Bayesian CNN with Dropweights, achieving 88.39%
accuracy and an 89.91 G-mean.

• AbdulHafeez [48] leveraged a pre-trained ResNet50 architecture with the COVIDx
dataset to achieve a 96.23% accuracy and a 95.81 G-mean. Louati et al. [50] focused on
optimizing the topology of CNN architecture, achieving an accuracy of 98.12% and a
G-mean of 97.90%.

These outcomes may be explained using the following arguments. The manual design
of CNNs is an extremely difficult and time-consuming process that demands a high level
of user skill. Even with a high level of skill, coming up with a decent design is very
difficult since there are so many potential architectures. To automate this design effort,
evolutionary approaches have been devised and have shown greater performance than
human design due to their capacity to search across the vast search space of feasible
architectures automatically. Nevertheless, evolutionary approaches are able to avoid local
optimums and scan the whole search space because of their global search capabilities and
the probability acceptance of underperforming structures by the mating selection operator.

These findings further confirm our proposed algorithm’s potential to create task-
dependent designs automatically when using EAs for block design. This might be explained
by the fact that CNN design is very difficult, even for those with extensive experience.
On radiographic images, automatic design approaches outperform manually constructed
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systems. The reason for this is that there is a vast variety of alternative architectures. These
outcomes may be explained by the significance of network topology optimization. As each
topology determines how the neural network nodes connect to each other, it has a big effect
on how well the neural network can classify things. Transfer learning is then used to save
time and resources by eliminating the need to train several machine learning models from
the beginning in order to fulfill comparable tasks, which enables quick development and
enhanced performance. Figure 8 depicts a sample of random activations in the second
convolutional layer. Figure 8 illustrates the activation patterns in the second convolutional
layer of our CNN model when processing chest X-ray images. The varying intensities of
yellow and blue indicate the level of activation across different areas of the input feature
map. High activations in yellow suggest regions where the convolutional filters are most
responsive, detecting specific features or patterns relevant to the model’s task. Conversely,
areas with minimal activation are shown in blue, indicating less relevance to the features
the layer is designed to capture. Such visualizations provide insight into which features
within the X-ray images the CNN is focusing on, potentially correlating to diagnostically
significant regions for COVID-19 detection. Interpretability in deep learning, particularly in
medical applications, is crucial for gaining clinicians’ trust and providing insights into the
network’s decision-making process. To this end, we introduce a dedicated analysis using
state-of-the-art interpretability methods to demystify our network’s behavior and provide
interpretable outputs that elucidate the basis of its predictions. One of the techniques
we employ is gradient-weighted class activation mapping (Grad-CAM), which generates
visual explanations for decisions made by convolutional neural networks. Grad-CAM
highlights the regions in the input image that are important for predictions, offering a
visual understanding of which features contribute most significantly to the network’s
output. By applying Grad-CAM to our network, we can visually demonstrate how the
model focuses on specific areas of chest X-rays that are indicative of COVID-19, thus
validating the clinical relevance of the features it learns to identify. Furthermore, we
explore the use of layer-wise relevance propagation (LRP), a technique that attributes
the prediction of a deep neural network to its input features, providing a pixel-level
explanation of network decisions. LRP helps in identifying the radiographic features,
such as ground-glass opacities or bilateral infiltrates, that the network deems critical for
diagnosing COVID-19. This pixel-wise decomposition of the network’s output into inputs
offers an intuitive understanding of its behavior, bridging the gap between complex model
predictions and clinical interpretations. Incorporating these interpretability techniques
enables us to not only bolster the credibility and acceptance of our proposed network
among healthcare professionals, but also provides an invaluable tool for medical research by
uncovering new radiographic features associated with COVID-19. The insights gained from
these interpretability analyses contribute to a more comprehensive understanding of the
network’s performance, offering explanations beyond conventional performance metrics
and paving the way for a more informed and interpretable AI-driven diagnostic process.

Figure 8. Depiction of sampling activations within the 2 convolutional layer.

4.5. Elucidating the Superiority of the Proposed Network Architecture

Central to our network’s design is the innovative use of neural architecture search
(NAS) coupled with genetic algorithms (GA), which collectively empower our model to
dynamically tailor its architecture for optimal feature extraction from chest X-ray images.
This dynamic adaptability allows for the exploration and iterative refinement of network
configurations, enabling the identification of structures that are intricately optimized for the
complex patterns characteristic of medical imaging data. The genetic algorithm-driven opti-
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mization further distinguishes our approach, leveraging selection, crossover, and mutation
processes to efficiently navigate the architectural search space, thus honing in on models
that exhibit a pronounced reduction in overfitting and superior generalization capabilities.
Moreover, our network employs advanced feature extraction techniques, incorporating
variable kernel sizes and specialized activation functions to discern more intricate and sub-
tle radiographic features indicative of COVID-19, setting our methodology apart from more
generic models. The integration of transfer learning (TL) further bolsters our network’s
performance, allowing it to utilize pre-learned features from extensive datasets, thereby
enhancing learning efficiency and diagnostic precision even in the face of the limited speci-
ficity that plagues medical imaging datasets. Additionally, our customized loss function
and innovative regularization strategies are tailored to minimize prediction errors and curb
overfitting, ensuring robustness against input data variations and contributing significantly
to the network’s diagnostic accuracy. These strategic implementations, from adaptive layer
configurations to efficient data utilization and beyond, underscore the unique advantages
of our proposed network architecture. By addressing the specific challenges inherent in
the analysis of medical imaging for COVID-19 diagnosis, our network not only sets a
new benchmark for accuracy but also marks a leap in computational efficiency, offering
a detailed explanation for its outstanding performance in comparison to traditional deep
neural network approaches.

5. X-ray-14 Images Diagnosis

The Chest X-ray14 dataset encompasses a comprehensive collection of 112,120 frontal
chest X-ray images sourced from 30,805 patients. This extensive compilation was meticu-
lously assembled leveraging radiological summaries archived within hospital-based image
storage and communication frameworks, subsequently refined through advanced natu-
ral language processing techniques. Each image within the dataset may exhibit signs of
one or several common pulmonary conditions, with images labeled as “Normal” indi-
cating a complete absence of detectable thoracic abnormalities (refer to Figure 9 for an
illustration). The dataset is accessible for research and application at the following URL:
https://nihcc.app.box.com/v/ChestXray-NIHCC (accessed on 2 February 2024).

The comparative evaluation of various CNN design methodologies reveals intriguing
insights into the performance of different optimization approaches. The obtained area
under the receiver operating characteristic (AUROC) scores offer a gauge of each method’s
effectiveness. The AUROC scores for manual optimization methods demonstrate a range
from 78% to 84%. Yao et al.’s [30] manual approach yielded a respectable test AUROC
of 79.79%, while Wang et al. achieved a competitive 73.81%. Meanwhile, the CheXNet
method, also employing manual optimization, excelled with a test AUROC of 84.41.

Figure 9. Frequent pulmonary conditions identified through chest X-ray imaging [51].

https://nihcc.app.box.com/v/ChestXray-NIHCC
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In contrast, Google AutoML, a non-manual approach utilizing reinforcement learning
(RL) for optimization, exhibited a relatively lower test AUROC of 79.72%. However, as the
narrative unfolds, the trajectory of AUROC values takes an upward turn. Notably, LEAF,
employing evolutionary algorithms (EA) for optimization, achieved a test AUROC of
84.29%, marking a notable improvement. This trend continued with NSGANet-X, another
EA-based optimization approach, demonstrating impressive results with a test AUROC
of 84.61%.

However, the pinnacle of achievement in this comparative landscape is exemplified
by our method, denoted in the table. Operating under the framework of evolutionary
algorithms (EA) for optimization, our approach delivered an outstanding test AUROC
of 87.74%. This remarkable performance sets a new standard, surpassing the capabilities
of previously explored methodologies and reaffirming the prowess of our approach in
the realm of AUROC results on the ChestX-ray14 dataset. These results underscore the
exceptional potential of our method in the pursuit of highly effective CNN architectures.

Discussion on Robustness, Generalizability, and Future Direction

We aim to underscore the robustness and general applicability of our proposed method-
ology, particularly through its performance on the X-ray-14 Images Diagnosis dataset.
The diversity and complexity of this dataset present a rigorous testing ground for any
diagnostic algorithm. Our methodology’s adaptability to this dataset is a testament to its
robustness. By employing neural architecture search (NAS) with genetic algorithms (GA),
coupled with transfer learning (TL), our approach not only addressed the specific challenge
of COVID-19 diagnosis but also proved its capability in identifying various other thoracic
pathologies. This adaptability is crucial, as it demonstrates our model’s ability to generalize
from one specific task (COVID-19 detection) to a broader range of diagnostic challenges.
The performance of our optimized convolutional neural network (CNN) architectures on
the X-ray-14 dataset stands as a robust indicator of our method’s efficacy. Not only did our
approach achieve commendable accuracy, specificity, sensitivity, and G-mean scores, but it
also demonstrated comparable or superior performance against state-of-the-art models
specifically designed for the diverse pathologies represented in the X-ray-14 dataset. This
comparative analysis highlights the competitive edge of our methodology, showcasing
its potential as a versatile tool in the realm of medical imaging. The successful applica-
tion of our method to the X-ray-14 dataset further illustrates its resilience to data scarcity
challenges. Through the strategic use of transfer learning (TL), our approach leverages
pre-acquired knowledge, enabling it to adapt to varied and limited datasets effectively.
This capability is essential for the development of sustainable AI initiatives, particularly
in healthcare contexts where data availability may be constrained. The successful applica-
tion of our method to the X-ray-14 dataset further illustrates its resilience to data scarcity
challenges. Through the strategic use of transfer learning (TL), our approach leverages
pre-acquired knowledge, enabling it to adapt to varied and limited datasets effectively.
This capability is essential for the development of sustainable AI initiatives, particularly
in healthcare contexts where data availability may be constrained. The demonstrated
robustness and generalizability of our approach, particularly through its application to the
X-ray-14 Images Diagnosis dataset, encourage further exploration and adaptation of our
methodology across other medical imaging tasks. Future research will focus on extending
our approach to additional datasets and diagnostic challenges, reinforcing its potential to
contribute significantly to advancements in medical imaging and diagnosis.

6. Conclusions

The quest for a well-suited architecture for deep convolutional neural networks
(DCNN) remains an ongoing and enthralling challenge in the dynamic world of deep
learning. Over the years, following manual design, an array of alternative approaches
has surfaced, predominantly driven by evolutionary optimization techniques and some
adopting a multi-objective viewpoint. This landscape has fostered a myriad of potential
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network topologies, each bearing a unique set of attributes and configurations. What fur-
ther complicates this process is the lack of a one-size-fits-all guideline for crafting a specific
architecture for a given task, making architectural design a highly subjective endeavor that
heavily depends on the experience and expertise of data scientists. In the context of our re-
search, we introduce an innovative evolutionary approach that enhances the development
of CNN architectures. This approach is centered on the exploration of the best sequence
of block topologies and the transfer of knowledge to a smaller dataset, with the ultimate
goal of achieving superior precision in the detection of COVID-19 infections. Our empirical
experiments have not only validated the effectiveness of this proposed methodology, but
have also demonstrated its superiority over numerous other architectural designs when
assessed against a benchmark dataset of X-ray images. This breakthrough prompts us to
envision a broader perspective that stands to revolutionize the landscape of deep learning
and architectural design. One of the most compelling perspectives that directly stems from
our work is the development of an interactive model. This model aspires to put the power
of architectural design into the hands of users. It envisions users actively participating
in the architectural evolution process, scrutinizing generated architectures, identifying
recurrent patterns, and contributing to the formulation of recommendations, encompassing
both soft and hard constraints. These recommendations will serve as invaluable guidance
for generating CNN architectures that align with the preferences and expertise of domain
experts. This not only introduces the prospect of a more user-centric and adaptable ap-
proach to network design but also signifies the evolving nature of deep learning, where
architectural decisions are becoming more democratic and flexible, fostering a more inclu-
sive and collaborative approach to AI model development. This transformative shift holds
the promise of democratizing deep learning architecture, allowing experts and non-experts
alike to contribute and benefit from tailored solutions for a myriad of applications. It
envisions a future where the collective intelligence of the AI community fuels architectural
innovation, fostering a richer and more diversified landscape in the world of deep learning.
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