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Abstract: While 5G has become a reality in several places around the world, some countries are
still in the process of assigning frequency bands and deploying networks. In this context, there
is a significant opportunity to explore new market models for the management and utilization of
the radio spectrum. Access to the radio spectrum results in diverse competition schemes, where
market behavior varies based on the regulator-defined access scheme and the competitive strategies
of different actors. To thoroughly analyze potential competition scenarios, this work introduces a
model that enhances the comprehension of market variables, emphasizing behaviors influenced by
relationships. The model’s development leverages the potential of artificial intelligence and historical
data from Colombia’s mobile telecommunications market. Intelligent spectrum sensing, based on
Software Defined Radio, augments the model’s construction, utilizing lightweight AI algorithms
to acquire real data on spectrum occupancy. In this way, the model provides novel insights into
market dynamics, enabling the formulation of informed decision-making policies for regulatory
bodies. Additionally, the application of causal machine learning (CausalML) helps understand
the underlying causes of market behaviors, facilitating the design of guiding policies to maximize
spectrum usage and foster competition. This approach demonstrates how AI-driven approaches
and a deeper understanding of market dynamics can lead to effective 5G spectrum management,
fostering a more competitive and efficient wireless communication landscape.

Keywords: spectrum management; causal machine learning; telecommunications policy; market models

1. Introduction

The rapid evolution of wireless communications and the proliferation of devices
requiring wireless connectivity, such as commercial 5th generation (5G) networks and
the Internet of Things (IoT), underscore the necessity for the efficient management of the
limited radio resources available [1]. In this evolving landscape, new business models,
market structures, and network architectures are beginning to take shape. For instance, the
emergence of alternatives focused on the development of dynamic spectrum access models
is observable, and this, in turn, has revitalized the role of market players, generating a
new competitive landscape [2]. Consequently, the limitation of the radio spectrum and
the lack of control over how available resources are allocated to users remain persistent
challenges when contemplating the requirements of next-generation wireless systems.
These challenges constitute a mandatory element of analysis in attempting to understand
the sector’s behavior and how competition will impact the development and adoption of
technology [3].

Additionally, it is crucial to consider that Article 75 of the Political Constitution of
Colombia [4] defines the electromagnetic spectrum as an inalienable and imprescriptible
public asset subject to the management and control of the State. Equality of opportunities in
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accessing its use is guaranteed in accordance with the terms established by law. Therefore,
to ensure information pluralism and competition, the State will intervene by mandate of
the law to prevent monopolistic practices in the use of the electromagnetic spectrum. It is
important to note that while spectrum management has been practiced for over a hundred
years, since the first law in the UK Parliament was enacted in 1903, it remains a matter
of general interest [5]. The main factors driving the need for new spectrum management
models include changes in technology, the increasing demand for this resource, and global
demographic changes [6].

New proposals for a secondary spectrum market are gaining increasing momentum.
This management model allows the buying and selling of rights to use the radio frequency
spectrum among different entities once these rights have been initially assigned by a reg-
ulatory or governmental body. Instead of operators exclusively holding the frequencies
allocated to them, they have the option to transfer or trade these frequencies with other
participants in the secondary market [7]. The primary idea behind a secondary spectrum
market is to enable a more efficient and flexible allocation of spectrum resources. Rea-
sons for the existence and operation of a secondary market include optimizing resources,
stimulating competition, adapting to changes in demand, incentivizing innovation, and
providing regulatory flexibility. It is crucial to note that the establishment and regulation of
a secondary spectrum market are intricate tasks requiring active participation and over-
sight from regulatory authorities to ensure the efficient and equitable use of the spectrum.
Furthermore, the specific details of how such a market operates may vary depending on
the jurisdiction and local regulations.

Moreover, the advancements in 6G go beyond these developments, as 6G technolo-
gies are positioned to provide unmatched performance, reliability, and security, achieving
unprecedented societal connectivity. In this context, new spectrum market models and
spectrum management are imperative for understanding and rectifying errors made in the
past [8]. In the context of 6G environments, the significance of developing new models
for the radioelectric spectrum cannot be overstated. Traditional spectrum management
approaches may prove inadequate as we advance toward the next generation of wireless
communication, characterized by unprecedented performance and connectivity demands.
Innovative models are essential to accommodate the unique requirements of 6G, consid-
ering factors such as increased data rates, low latency communication, massive device
connectivity, and diverse applications. These models should optimize spectrum utilization
and address challenges associated with dynamic and heterogeneous network scenarios.
A reimagining of spectrum allocation, management, and utilization becomes imperative
to harness the potential of 6G technologies fully, fostering a more efficient and adaptive
use of the radio frequency spectrum [9]. Additionally, novel market models tailored to the
unique demands of 6G are crucial to fostering innovation, competition, and sustainable
growth. These models should not only accommodate the diverse spectrum of services but
also incentivize investments in research and infrastructure. By embracing forward-thinking
market approaches, stakeholders can unlock the full economic potential of 6G, encouraging
the development of cutting-edge technologies and services. This shift towards innovative
market paradigms aligns with the dynamic nature of 6G networks, enabling the creation of
ecosystems that promote collaboration and ensure the efficient allocation of resources to
drive the next phase of wireless communication evolution [10].

In the 6G landscape, the future of network technology hinges on several key recom-
mendations. It is imperative for upcoming networks to ensure end-to-end connectivity
by providing robust support through virtualization, intelligent decision-making, network
automation, and slicing. Interoperability is essential, allowing seamless interaction be-
tween heterogeneous networks, with mobile nodes equipped with multiple radio interfaces.
Compatibility should be a priority, allowing the coexistence of new protocols, network
architectures, and services with existing technologies. Exclusive support for time-critical
services, such as Industry 4.0, autonomous driving, and robotic surgery, is crucial. Edge
computing capabilities, integrating artificial intelligence (AI) into network entities, ultra-
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smart devices, cell-free networking, and support for diverse media demand innovation.
Additionally, amalgamating sensing, communication, and positioning, and adopting a
multi-level architecture distributed across user, edge, and cloud levels, are vital for future
networks to meet evolving demands efficiently [11].

It is important to emphasize that the objective of this work is not to solve issues
related to Dynamic Spectrum Access or present novel developments in that direction. The
aim is to demonstrate how a technically deeper understanding of spectrum management,
based on real-world data and AI-involved models, can provide regulatory bodies with
tools to facilitate the adoption of these technologies once the technical challenges of their
implementation are addressed, and to optimize the use of the spectral resource.

Another aspect that cannot be overlooked is that the economic standpoint of this work
focuses on the market and the exploration of new mechanisms to incentivize competition.
For this reason, the experiments conducted and the use of technical information were
aimed at exploring different approaches to market policies. Therefore, the economic aim
is to showcase the usage of the spectral resource in a different way from the traditional
approach. This may lead to reconsidering aspects such as the cost of MHz in certain bands,
the maximum and minimum amounts of spectrum to be allocated per operator, or even
determining who can and cannot opt for a portion of the spectrum. This constitutes an
economic impact not just of the paper but of the project’s results that frame it.

In this context, the intricate competitive landscape for the radio spectrum provides a
promising platform for the application of artificial intelligence techniques to analyze com-
petition models for spectrum utilization and their impact on telecommunications markets.
Consequently, the objective of this paper is to create new pathways for understanding,
planning, and managing the telecommunications market through the analysis of real spec-
trum occupancy and historical data using artificial intelligence techniques. To achieve this
goal, we first examine spectrum availability using Software-Defined Radio (SDR) devices.
Subsequently, we propose a causal model to identify key variables in market behavior and
how modifications in policies can lead to a more dynamic market. Throughout this process,
we employ artificial intelligence techniques at both the spectrum sensing level and in the
analysis of historical data. The main contribution of this work can be outlined as follows:

1. We present a techno-economic model for spectrum management, encompassing two
strategic perspectives: one focusing on spectrum management use, and the other
adopting a novel market model approach.

2. The proposed model is built upon a fusion of actual spectrum occupation data and
historical data supplied by the regulatory agency. This amalgamation enables us to
devise a model that incorporates real behaviors, offering insights that have not been
previously considered.

3. Although the model was initially formulated based on a specific geographic region,
its conclusions can be generalized to other scenarios and applied to the evolving 6G
ecosystem currently in the design process.

4. A novel machine learning causal approach is utilized to analyze historical data,
enabling us to comprehend the root causes of specific historical market behaviors and
unveil underlying elements that may not have been observed previously.

The remainder of the document is organized as follows: Section 2 presents some related
works. In Section 3 the problem statement is presented. Section 4 discusses methodological
approach and the techniques used. Section 5 introduces the model and the results obtained.
Finally, Section 6 provides the conclusions and outlines future avenues of work.

2. Related Work

In the contemporary landscape of spectrum management, market models have un-
dergone a notable evolution to address the imperative need for efficient utilization in
the era of 5G. Various approaches have been proposed and implemented, transitioning
from traditional auction-based models to more dynamic frameworks that focus on flexible
allocation and spectrum sharing among market participants. For instance, over the past few
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years, two contemporary frameworks for spectrum management have been widely studied:
Licensed Shared Access (LSA), formulated in Europe, and Citizens Broadband Radio Ser-
vices (CBRS), developed in the United States (US). In [12], the impact of these schemes on
spectrum sharing initiatives is analyzed, emphasizing that beyond their prominent regula-
tory functions, the significance of these frameworks lies in their role as influential models.
This importance is particularly highlighted in the context of the imminent adoption of the
fifth generation (5G) of mobile communications technology, especially within the C-band.
Recent discussions have positioned them as noteworthy cases to consider in shaping the
trajectory of 5G implementation. Additionally, it is important to note that the International
Telecommunication Union—Radiocommunications (ITU-R) has a series focused on the
“Economic Aspects of Spectrum Management” (SM series). This document served as one
of the main references for the work presented in this paper [13].

Despite advancements, regulatory challenges persist, impacting the effective imple-
mentation of spectrum management mechanisms for 5G. Achieving a delicate balance
between promoting competition, preventing monopolies, and ensuring equitable spectrum
access remains a focal point of intense research and regulatory development. Innovative
regulatory strategies are increasingly needed to facilitate a seamless transition to more
efficient and competitive 5G environments [14]. Additionally, it is important to note that
5G is a complex ecosystem where the spectrum serves as the enabler for its different seg-
ments and heterogeneous services. For example, the concept of utilizing Unmanned Aerial
Vehicles (UAVs) for communication has garnered substantial attention from the industry,
particularly in the context of the vision to establish widespread connectivity for networks
beyond 5G (B5G). In [15], a novel approach to spectrum sharing through a decentralized
competitive open market model is presented, enabling mobile network operators (MNOs)
to lease spectrum to UAV base stations (UAV-BSs) for additional revenue. The proposed
sharing mechanism is based on logarithmic utility functions and the willingness to pay of
each UAV-BS, leading to a trade-off analysis between spectrum sharing and the offered
prices by MNOs. Similarly, [16] explores liquidity in secondary markets by scrutinizing
factors that might have hindered the development of liquid secondary markets for the radio
spectrum. The authors also examine potential modifications to enhance the promotion of
secondary markets. Diverse configurations for secondary market design are investigated,
considering the inherent physical constraints of the electromagnetic spectrum. Additionally,
the study explores technical alternatives with the aim of creating a tradable commodity
related to spectrum use, specifically, the virtualization of spectrum resources into fungible
units. However, to reach a scenario with the possibility of establishing a secondary market,
several technical and regulatory issues must be addressed [17].

Traditionally, regulatory agencies have assigned radio spectrum in a static manner.
This has resulted in a spectrum that is nearly fully allocated but underutilized, with
uneven usage. Adapting to the growing demand for wireless communications has become
increasingly challenging. Therefore, various mechanisms to improve spectrum efficiency
have been proposed. For example, schemes where licensed operators could lease their
unused bandwidth to unlicensed users in secondary markets have been suggested to meet
real-time user demands [18].

Proposing novel models for spectrum management involves the integration of cutting-
edge technologies. In this context, concepts like cognitive radio have surfaced. Cognitive
radio is a technology that facilitates dynamic spectrum access, empowering radio devices to
intelligently and autonomously adjust their communication parameters based on the real-
time analysis of the radio frequency environment. However, the implementation of schemes
supported by cognitive radio necessitates the formulation of new regulatory frameworks,
which must be carefully considered by national authorities [19]. Moreover, a comprehen-
sive understanding of spectrum usage is imperative for the successful implementation of
dynamic spectrum management schemes.

It is important to note that different works have been undertaken with the aim to
propose techno-economical models focused on the spectrum management process. For
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example, in [20], the authors analyze contemporary challenges and assess the relative
social welfare by scrutinizing diverse aspects of technology and market conditions in Korea.
Employing results from techno-economic simulations, the paper presents a mixed spectrum
management framework for forthcoming wireless services, intended to aid policymakers in
their decision-making processes. While in the referenced work the conceptual foundation
regarding the spectrum market is like ours, it is important to note that our primary contri-
bution lies in the use of real data and the application of new artificial intelligence techniques
for processing. Similarly, it should be mentioned that in our work, we incorporate spectrum
measurements supported by Software-Defined Radio (SDR), enabling a correspondence of
the conclusions drawn with the current reality.

Other approaches have studied the spectrum as an asset and its impact on market
development. In this way, [21] presents a study regarding the stakeholder perceptions of
the mobile communication radio spectrum across the value chain, considering technical,
economic, and techno-economic aspects. The study emphasizes the growing significance of
spectrum management and stakeholder analysis in technology, regulation, and business
management. While this conceptual approach is valid and rigorous, in our work, we aimed
to go a step further by complementing the theoretical perspective with practical elements
related to radio spectrum management.

Similarly, analytical processes have been employed to establish optimal policies in
spectrum management tasks. For instance, the study outlined in [22] focuses on deter-
mining the optimal lease duration that maximizes the net customer demand served by
wireless operators within an action model. The investigation involves a system model
where customer demand, revenue, and bids of wireless operators follow stochastic pro-
cesses. Operators make decisions to enter the market based on expected revenue and lease
duration thresholds. The challenge lies in striking a balance between the competing effects
of lease duration—shorter durations enhance spectrum allocation efficiency, while longer
durations stimulate market competition by attracting more operators.

Another topic of growing interest is the customization of emerging technologies, no-
tably artificial intelligence (AI) and machine learning, for understanding and optimizing the
5G environment [23]. Therefore, market models incorporating these advanced technologies
enable intelligent and dynamic spectrum allocation, adapting to ever-changing market
demands and fostering the emergence of innovative services and applications. Given
the above, it is paramount to take advantage of the various historical data available to
understand the evolution of technological markets and identify possible alternatives for the
future. Some works have adopted this approach, as presented in [24], where information
from UN COMTRADE was used to create ICT services trade networks spanning the period
from 2004 to 2020. The authors employed complex network analysis techniques to explore
various facets of ICT services trade, including trade patterns, connections, and the countries
involved, aiming to understand the evolving characteristics of the ICT services trade.

Another important element is that, undeniably, artificial intelligence is changing all the
dynamics that define market research and modeling, as it allows for the integration of data
concerning costs, time, distribution, and the utilization of strategic resources. The use of
algorithms and machine learning enables a faster and more cost-effective analysis process
when a representative dataset is available. The ability to incorporate data from a variety of
sources is another fundamental shift, as it is possible to combine information from active
and passive behavior, which can transform market understanding from a retrospective
analytical function to a future-focused discipline [25].

Finally, it is important to note that the development of market models is a paramount
topic today. For example, Seho and others [26] conducted a discrete choice experiment and
analyzed the marginal utilities of attributes using a mixed logit model. However, as the
authors mentioned, their study lacks real data, some of which our research has. Similarly,
in [27], a simulation model of a socio-technical system transition is presented to analyze
China’s acceptance of ride-hailing services in the socio-technical system context set up for
legacy services. Finally, Gupta and Jain [28] make a comparison between the influence of
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macro and micro factors (i.e., governmental policies, and other market and user dynamics)
on the diffusion of mobile telephony and its services in India.

According to the above, it becomes paramount to emphasize the criticality of advanc-
ing 5G market models, with a specific focus on spectrum management. By incorporating
AI-driven models, we address not only the nuanced challenges of spectrum management
but also gain a deeper understanding of market dynamics. These models, drawing insights
from historical data and deploying sophisticated analytical techniques, provide an unpar-
alleled comprehension of the market’s ebb and flow. This holistic understanding, in turn,
empowers regulatory bodies to formulate policies that are not only informed by but also
responsive to the evolving needs of the wireless communication landscape.

3. Problem Statement

Developing data-driven market models is paramount due to the pivotal role of data
science in decision-making processes. The significance lies in providing data-driven re-
sponses to “what-if” inquiries, necessitating a deep understanding of the causal factors
influencing events and actionable insights to enhance future outcomes. However, while
traditional techniques allow for reasonably accurate projections of behavior within a partic-
ular industry or product sector, the complexity of the telecommunications market and its
stakeholders is such that new tools are needed to approach this problem [29].

Therefore, it is necessary to construct models capable of synthesizing the components,
their relationships, the structure, and the dynamics of the system to analyze the under-
lying interactions and behaviors among its actors. In this context, there arises a need to
understand how different competitive positions for the spectrum will impact the market’s
behavior in the medium and long term, as this will enhance sector understanding and
assist regulatory authorities in decision-making and policy formulation.

In the same line, it should be emphasized that the current landscape presents an
excellent opportunity to deepen our understanding of the sector, particularly how internal
market dynamics affect overall behavior. We are currently in a unique conjunction where
technological tools and data availability facilitate the development of analytical scenarios
that foster the generation of new knowledge regarding the impact of competitive positions
on the country’s economic and social development.

Additionally, considering the ongoing global efforts to design specifications for future
6G systems, it becomes important to explore alternative spectrum management scenarios.
This exploration would enable the formulation of new market models that cater to the
demands of upcoming mobile communication systems. For this reason, we identify the
need to propose an artificial intelligence-supported model that enhances the processes
of analyzing and synthesizing the state and dynamics of the market, particularly in the
competition for the use of the radio spectrum and how different access mechanisms to
this resource impact market behavior, so much so that it is not negligible that the use
of spectrum and artificial intelligence are two of the pillars that have been proposed for
6G [11].

The methodological design of the project involves analyzing technological aspects
related to spectrum sensing and other market-related variables that determine competition
for the resource. Considering the above, the following figure conceptually illustrates the
elements to be considered in achieving the project’s objectives.

As depicted in Figure 1, the project consists of two major components. The first one is
related to spectrum sensing to determine the actual occupancy of the spectrum bands in
urban and rural environments in Colombia. The collected data will be used to assess the
feasibility of dynamically assigning spectral resources for interested parties. The second
stage is oriented towards analyzing historical data to understand the interaction between
different market variables and to conduct analyses of alternative development scenarios
using causal inference supported by machine learning.
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4. Methodological Approach

As stated previously, the developed work focused on two objectives. Initially, we used
SDR to determine the actual occupancy of the spectrum in specific bands of interest. This
stage of the research was employed to validate the hypothesis that spectrum sharing is fea-
sible under certain conditions (location, hours of the day, etc.). The second objective aimed
to comprehend the market structure. For this purpose, we utilized causal machine learning
with a “what-if” approach. In the following subsections, we present the methodological
development of each of these approaches.

4.1. Spectrum Sensing Using SDR

This subsection will methodologically describe how the sensing campaigns based on
Software-Defined Radio (SDR) were designed to identify the actual occupancy of the bands
of interest. The objective of this experiment was to utilize the designed sensing system
(hardware + software) to measure/estimate the spectrum occupancy allocated and assigned
for the operation of mobile cellular systems in Colombia, especially 4G systems (LTE, LTE-
A, and LTE-A Pro). With the aim of having homogeneous data reflecting the behavior of
different usage scenarios, the experiment was designed considering the following elements:
high-population-density zones and low-population-density zones. For the former, areas in
proximity to hospitals, shopping centers, and/or public spaces were selected, while for the
latter, a university campus during low occupancy hours and a suburban area were used as
test scenarios. The process diagram is shown in Figure 2, and since the parameterization is
configurable in the developed software component, it is possible to modify the bands of
interest that will be sensed in the geographical area.
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This approach is designed to maximize coverage in areas with significant spectrum
activity and importance, aiming for a balance between practical deployment constraints
and the need for comprehensive data. By strategically situating SDRs in key locations
within a 3D city or any other region, we aim to capture a diverse range of spectrum usage
scenarios, allowing for meaningful insights into the dynamic spectrum environment.

The bands of interest, the spectrum portions to be sensed, and the operators assigned
to each band are summarized in Table 1. The bands selected for the experiment are
paired (operating in FDD mode), and sensing was performed on the downlink sub-bands,
considering that it is easier and more reliable to measure them since transmission is carried
out from a single point, the BTS (Base Transceiver Station).

Table 1. Details of the spectrum portions sensed.

BAND SUB-BAND Operators

700 758–803 MHz (45 MHz) Tigo (20 MHz), WOM (10 MHz), Claro (10 MHz), NA (10 MHz)

850 849–894 MHz (45 MHz) Duplex (20 MHz), Claro (11 + 1.5 MHz), Movistar (10 + 2.5 MHz)

1900 1945–1990 MHz (45 MHz) NA (2.5 MHz), Movistar (10 + 5 MHz), Claro (7.5 MHz), Tigo (20 MHz)

1700 2110–2155 MHz (45 MHz) WOM (15 MHz), Movistar (15 MHz), Tigo (15 MHz)

2600 2645–2690 MHz (45 MHz) Claro (30 MHz), DirecTV (15 MHz)

The parametrization of the sensing system was carried out considering LTE parame-
ters such as bandwidths, separation between subcarriers, specifications of resource blocks,
and subframe duration. The algorithm that parametrizes the system takes as input the
bandwidth to be sensed, the central frequency of that spectrum portion, and the number
of samples to be taken within a reference bandwidth of 15 kHz (corresponding to the
separation between LTE subcarriers). The algorithm recalculates the total bandwidth to
be sensed to adjust the total number of samples to be a multiple of the number of samples
per reference bandwidth, facilitating the calculation, visualization, and interpretation of
the results. From these data, the sampling frequency fs, the number of samples per mea-
surement (NFFT, size of the Fourier Transform to be calculated for analysis), the frequency
step ∆f (frequency resolution), the sampling period Ts, and the sampling duration T are
then calculated. With these parameters, the software configures the SDR and initiates the
sensing algorithm (measurement). The parameters for sensing (measurement) are shown
in Table 2.

Table 2. Parameters for the sensing process.

BT [MHz] 225 K [] 60

NCH [] 5 NF [] 900,000 Band fo [MHz]

B [MHz] 45 Tproc [ms] (estimated) 0.167 700 780.5

fs [MH] 45 Tobs [ms] 0.5 850 871.5

Ts [ns] 22.2 TR [ms] 2.5 1900 1967.5

Nm [] 5 TI [min] 1 1700 2132.5

NFFT [points] 15,000 NI [] 60 2600 2667.5

∆f [kHz] 3 TT [min] 60

T [ms] 0.33

The abbreviations in Table 2 correspond to the following:

• BT: Total bandwidth of the observed band.
• NCH: Number of channels (or frequency sub-blocks) scanned during the TR period.

It depends on the specific observation objectives and hardware limitations used
for measurements.
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• B: Bandwidth to sense in each iteration period. B = BT/NCH.
• fs: Sampling frequency. fs = B.
• Ts: Sampling period. Ts = 1/fs.
• NFFT: FFT size.
• ∆f: Frequency step (frequency resolution). ∆f = B/NFFT.
• T: Sampling duration (duration of the waveform sampled at fs Hz). T = ∆f × NFFT.
• K: Number of times the sampling is repeated on a channel.
• NF: Total number of samples taken per measurement. NF = K × NFFT.
• TM: Actual (net) measurement time for a channel or frequency. TM = NF × Ts = K × T.
• Tproc: Processing time (includes tuning, post-processing, storage, etc.). It is estimated

that approximately Tproc = ½ TM.
• Tobs: Observation time (TM + Tproc).
• TR: Iteration time. It is the time needed to measure all channels/frequencies (perform

a scan). TR = Nch × Tobs. If only one channel is measured, TR = Tobs.
• TI: Integration time, referring to how often an iteration is performed. TI > TR. It can

be 5 min, 1 h, 1 day, or TT.
• NI: Number of iterations (integrations) performed during the TT.
• TT: Observation duration. TT = NI × TI. If only one iteration is performed, TT = TI.
• NT: Total number of samples taken over the entire bandwidth BT (during the TR time).

NT = NF × Nch.
• N: Total number of samples taken in the channel during the TI.
• NO: Number of measurements whose level was above the threshold.
• TO: Occupation time. TO = NO × TR.
• U: Threshold that defines whether there is occupation or not.
• FCO: Occupation of the frequency channel. FCO = TO/TI; if TI is constant, FCO = NO/N.
• FBO: Occupation of the frequency band. FBO = NO/N, considering the entire band.
• SRO: Spectrum resource occupation. SRO = NO/N, considering the entire measured

spectrum. If only one channel is measured, SRO = FCO.

These measurements were taken for each band at 1 min intervals over a duration of
1 h. This provides insight into the behavior of signals in the spectrum, as shown in Figure 3.
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In the spectrogram, it is possible to observe the intensity of frequencies sampled over
time. Darker or more intense shades represent higher levels of energy at those frequencies,
while lighter or less intense shades represent lower energy levels.

The next step in the process is to average the Nm samples taken for every 15 kHz of
sensed spectrum, which is a configurable parameter. In the case where LTE technology
is implemented in the band, this corresponds to the number of times the sensing system
samples each subcarrier.

The averaged spectrum obtained is used as input for the occupancy detection algo-
rithm. The threshold is calculated using one of the three described methods: (1) considering
samples (subcarriers) known not to carry data; (2) considering all samples obtained in
the band; and (3) using the 20% of samples, corresponding to the ones with the lowest
magnitude. With this calculated threshold, the algorithm determines whether the sample
(subcarrier) corresponds to occupancy or not.

Considering the LTE specifications, a subchannel is considered to correspond to a
bandwidth of 180 kHz, in this case, to 12 subcarriers obtained in the previous process.
The subcarrier occupancy vector serves as input for another algorithm that determines
the occupancy or non-occupancy of the subchannels, which correspond to LTE RBs in
this case, but whose parameters are configurable in the sensing tool. The criterion is
simple: if there is at least one occupied subcarrier within a subchannel (RB in this case),
the subchannel is considered occupied. This way, a new binary vector is obtained for
each iteration, containing information about the states of the subchannels at the sensing
instant. As these measurements are taken for each band at 1 min intervals over a duration
of 1 h, essentially, the initial spectrogram becomes two occupancy matrices: one for the
subcarriers and another for the subchannels (RB). Both the occupancy matrices and the
vectors containing the results constitute the output of the implemented occupancy detection
system and serve as some of the inputs that the Spectrum Competition Model will receive
to define market policies.

Figure 4 depicts the respective occupancy characterizations for both urban and rural
environments based on the sensing data illustrated thus far (2600 MHz band, urban and
rural environments, morning hours).
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As can be observed from the occupancy analysis, there is significant potential in the
Colombian environment to implement new market mechanisms for better leveraging the
available spectrum. However, before proposing new schemes, it is essential to understand
how the market has been structured over the past years and what key variables impact
its behavior. For this reason, the second part of the project’s methodological approach
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is geared towards conducting a causal analysis to comprehend how interactions among
different market variables have shaped the current scenario.

4.2. Causal Inference Supported by AI

Many tasks related to data analysis involve decision-making. In this context, the
analyst must have the ability to use available information to support decision-makers in
making the best possible use of data to achieve desired outcomes. For example, when
determining a market policy, hypothetical questions may be posed whose answers require
an understanding of the causes of an event and how to take actions to improve future results.
Thus, causal inference allows for the identification and understanding of cause-and-effect
relationships between variables.

According to the definition provided by Amit Sharma and Emre Kiciman in [30], causal
inference is the process of identifying and understanding cause-and-effect relationships
between variables, making it crucial for understanding the effects of interventions, policies,
or programs.

Causal inference also helps predict the outcome of changes in variables, which can
be especially useful in experimental design and decision-making. In this regard, causal
inference is the process by which causes are inferred from data and can be applied to any
type of data provided there is enough information available. Thus, causality is associated
with interventions and actions. Meanwhile, standard statistics deal with correlations, but
they can lead to erroneous assumptions.

In this context, let us suppose we want to find the causal effect of taking an action A
on the outcome Y. To define the causal effect, two worlds must be considered:

• World 1 (Real World), where action A was taken, and as a result, Y was observed.
• World 2 (Counterfactual World), where action A was not taken (but everything else

remains the same).

The causal effect (CE) is the difference between the values of Y achieved in the real
world and in the counterfactual world:

CE = E[Yreal, A = 1] − E[Ycounterfactual, A = 0]. (1)

where E denotes the expectation (average), Yreal, A = 1 is the outcome when action A is
taken in the real world, and Ycounterfactual, A = 0 is the outcome when action A is not taken in
the counterfactual world.

Causal inference is essential in informed decision-making because it enables the
discovery of the true data generation processes beyond mere associations found in pre-
dictive models. This approach will allow for the estimation of intervention effects and
counterfactual outcomes. In this sense, an analysis that goes beyond correlation-based
analysis is crucial for generalizing knowledge and gaining a genuine understanding of the
relationships presented among different market variables.

4.2.1. General Framework for Causal Analysis

As stated previously, causal analysis is a systematic examination of the cause-and-
effect relationships within a system or phenomenon. It aims to identify the factors that
contribute to a particular outcome and understand how these factors interact. In this
analytical approach, variables are assessed not only for their correlation but also for their
causal relationships, helping researchers uncover the underlying mechanisms driving
observed patterns. The main stages of this methodological approach are described below:

(1) Modeling cause-effect relationships using a Structural Causal Model (SCM). The initial
phase involves establishing cause-and-effect relationships among variables pertinent
to our use case. This is accomplished by constructing a causal graph, represented as
a directed acyclic graph (DAG) where an edge from A to B signifies that A causes B.
From a statistical perspective, a causal graph captures the conditional independence
relations between variables.
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However, to tackle causal queries using causal graphs, it is crucial to comprehend
the underlying data-generating process of variables. A causal graph, as a diagram, does
not inherently contain information about the data-generating process. To integrate this
data-generating process, we utilize a Structural Causal Model (SCM) built upon our causal
graph, establishing a direct relationship with the dataset.

The causal model we constructed previously empowers us to attribute causal mecha-
nisms to each node through functional causal models. In this context, these mechanisms
can be assigned manually, especially when there is prior knowledge about specific causal
relationships, or automatically, using the auto module of the DoWhy library [31].

(2) Fitting the SCM to the data. In the real world, the data come as an opaque stream
of values, where we typically do not know how one variable influence another. The
graphical causal models can help us to deconstruct these causal relationships again,
even though we did not know them before [31]. To do this, DoWhy provides a fit
function to train the SCM. Fitting means that we learn the generative models of the
variables in the SCM according to the data.

(3) Answering a causal query based on the SCM. The last activity is to address a causal
question, such as “What will occur to the variable C if I intervene on B?”. This
intervention implies disregarding any causal effects of A on B and fixing every value
of B to a specific value. Consequently, the distribution of A remains unaltered,
while the values of B are set to a constant value, and C reacts in accordance with its
causal model.

Once the stage of familiarization with the problem has been addressed, it is essential
to precisely define the relevant aspects of the system to be analyzed and describe them
in a simple and clear manner. This approach enables a higher level of understanding,
conciseness, and depth regarding its characteristic behaviors. To develop our model,
historical data available in “Postdata—CRC” (Colombian Communications Regulation
Commission) [32], reflecting the behavior of the variables of interest in the mobile internet
market over the past ten years, were used.

4.2.2. Components of the Model

Considering that a market is defined as a group of buyers and sellers who, through
their real or potential interactions, determine the price of a product or a set of prod-
ucts [33], the development of the present model will consider aspects related to three
components, namely:

(1) Demand for Spectrum Usage. Within this group of variables, all those related to
economic, technological, and intent aspects that influence the buyer when deciding
on the acquisition of a good or service will be considered. In this case, it pertains to
the radio spectrum. The variables include the historical behavior of the presence of
operators in the Colombian market from different spectrum allocation moments for
mobile telephony services.

(2) Service Offer to the End User. This refers to variables directly associated with the
companies operating in the sector responsible for providing services to users. This
allows for the identification of constituent components that generate certain market
behaviors. Here, we considered the following variables:

• Evolution of the number of users of mobile internet services;
• Traffic.

(3) The Environment. This relates to components that, while not directly associated with
buyers or sellers, do influence market behavior. Examples of such factors include
macroeconomic, technological, and regulatory factors.

• Operators’ income;
• Unemployment;
• Consumer Price Index.
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Figure 5 shows a correlation matrix among the considered variables, providing insights
into the linear relationships between each pair of variables, as indicated by correlation
coefficients ranging from −1 to 1. Positive correlations imply a direct relationship, while
negative correlations suggest an inverse association. Values close to zero indicate a weak or
no linear relationship. Analyzing this matrix helps uncover patterns, dependencies, and
potential multicollinearity, crucial for statistical and modeling analyses.
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4.2.3. Potential Applications of CausalML in the Telecommunications Network
Management Process

Conventional correlational machine learning methods may encounter constraints
when dealing with substantial issues in the realm of network management and opti-
mization. Identifying the underlying reasons for outages or inefficiencies, implementing
measures to proactively prevent future network problems, determining strategic areas for
optimal investment to enhance network quality, prioritizing customer support inquiries,
and gauging the influence of subpar network experiences on customer complaints or churn
all necessitate advanced techniques beyond the scope of traditional methodologies [34].
Meeting these challenges often calls for more sophisticated models, such as those rooted
in causal reasoning based on machine learning tools. These advanced approaches aim
to provide more profound insights, bolster predictive capabilities, and furnish strategic
solutions tailored to intricate and dynamic environments.

However, even though various challenges must be addressed before achieving a
complete integration of causal machine learning into the core of network management,
the 6G ecosystem presents a favorable environment for its utilization. The most impactful
technology trends influencing the overall network architecture in 6G can be categorized into
four main areas: monetization and exposure enablers, automation of network operations,
cloud-native design and deployment, and network architecture evolution [35]. Causal
machine learning has the potential to significantly impact each of the four main areas
identified in the context of 6G network architecture trends in the following ways:

1. Monetization and exposure enablers. Causal machine learning can enhance monetiza-
tion strategies by providing a deeper understanding of causal relationships within
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the network. It enables operators to identify factors influencing revenue generation
and exposure, facilitating the development of targeted and effective monetization
strategies. In practical terms, the implementation necessitates a distributed framework
for gathering data related to the behavior of various entities. This framework utilizes
the collected data as essential elements to identify root causes and make strategic
decisions informed by these insights.

2. Automation of network operations. In the realm of network automation, causal ma-
chine learning can play a crucial role by uncovering causal links between network
events and automating responses. This ensures more intelligent and adaptive au-
tomation, reducing manual intervention and enhancing the efficiency of network
operations. By contemplating the intrinsic AI core within 6G, it becomes conceiv-
able to envision a management protocol geared towards furnishing insights to a
causal engine situated at the heart of the management and operation functions. This
strategic approach adopts a distributed framework and is feasible to integrate with
federated schemes.

3. Cloud-native design and deployment. Causal machine learning can optimize cloud-
native design by identifying causal factors that impact performance, scalability,
and resource utilization. It aids in making informed decisions about the place-
ment of workloads, dynamic scaling, and overall resource management in a cloud-
native environment.

4. Network architecture evolution. Causal machine learning contributes to the evolution
of network architectures by uncovering causal relationships between architectural
elements and performance outcomes. This knowledge supports the design of archi-
tectures that are more responsive to the diverse and evolving requirements of 6G,
ensuring better adaptability and efficiency.

5. Market Causal Model

Based on the characterization of the selected variables and a general understanding of
the market structure, we have established a Structural Causal Model that depicts the land-
scape of our target market. Figure 6 illustrates the causal graph, outlining the relationships
among the variables included in the model.
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In this causal graph, we will evaluate the specific contributions of each node to the
variance in the number of users. This approach is warranted by the hypothesis that the
number of users is indicative of a competitive market’s behavior.

5.1. Causal Attributions and Root-Cause Analysis

As mentioned earlier, the main advantage of causal analysis lies in its capacity to
explore alternative scenarios for our model. To reveal the crucial causal factors contributing
to the variance in the number of users, we utilize the intrinsic causal contribution method.
This method attributes the variance in users to upstream nodes in the causal graph, con-
sidering only information that is newly introduced by a node and not inherited from its
parents. Nodes that are simply rescaled versions of their parents, for instance, would not
have intrinsic contributions. The results obtained are shown in Figure 7 and could be
expressed as follows:
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Let us assume we have a target variable Y (Users) and four main predictor variables
X1 (Number_operators), X2 (CPI), X3 (Unemployment), and X4 (Users). The intrinsic causal
contribution of each variable Xi (where i = 1, 2, 3, 4) can be expressed as a percentage of the
total variance of Y:

Intrinsic Causal Contribution (X1) = (Variance of X1 in Y/Total Variance of Y) × 100 = 85%,

Intrinsic Causal Contribution (X2) = (Variance of X2 in Y/Total Variance of Y) × 100 = 7%,

Intrinsic Causal Contribution (X3) = (Variance of X3 in Y/Total Variance of Y) × 100 = 4%,

Intrinsic Causal Contribution (X4) = (Variance of X4 in Y/Total Variance of Y) × 100 = 7%.

These percentages indicate the proportion of the total variance in the target variable Y
that can be attributed to each of the predictor variables X1, X2, X3, and X4.

The percentages of the bar chart illustrate the extent to which each node depicted
in Figure 6 autonomously contributes to the variance in the number of users, without
inheriting variance from its parent nodes in the causal graph. It is evident from the chart
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that the number of operators in the market has the most substantial impact on the variance
in users. This observation aligns with logical expectations, considering that an increase in
the number of operators enables the deployment of technology to expand service coverage,
consequently influencing the overall number of users. Notably, factors such as the CPI and
unemployment have a relatively minor impact, suggesting that the significant variance
in the number of users can be predominantly attributed to the increased participation of
operators in the market.

Additionally, it is intriguing to observe how the variable Users influences itself. This
aligns with the behavior of telecommunications services, where the phenomenon of “posi-
tive network externality” occurs. This phenomenon describes the situation in which the
value or attractiveness of a service or product increases as more people use or participate
in it. In other words, the growing popularity or adoption of the service creates a virtuous
circle, as more users attract more users, thereby enhancing the overall experience or value
for everyone involved.

5.2. “What-If” Analysis

As mentioned earlier, one of the advantages of the causal approach is its capability
to conduct a “what-if” analysis. In our case, we are interested in determining whether
flexibility in regulatory policies, emphasizing the increase in operators’ presence in the
market, can impact the behavior of the Users variable. For instance, we propose three
potential scenarios. The first scenario aims to mirror restrictive policies resulting in an
oligopoly market with only three operators. The second scenario is more flexible, allowing
the consolidation of 10 operators over time, and finally, the third scenario reflects a doubling
of the number of operators, as has occurred in real life over time. According to the above,
the “what-if” analysis involves assessing the impact of different regulatory scenarios (R)
on the Users variable. Let U represent the Users variable, and R denote the regulatory
scenario. The analysis aims to estimate the expected number of users (E[U|R]) under
different regulatory conditions.

• Scenario 1 (Oligopoly): R = 1. E[U|R = 1] represents the expected number of users
under an oligopoly scenario with restrictive policies.

• Scenario 2 (Flexibility): R = 2. E[U|R = 2] represents the expected number of users with
increased regulatory flexibility, allowing the consolidation of 10 operators over time.

• Scenario 3 (Doubled Operators): R = 3. E[U|R = 3] represents the expected number of
users in the most flexible scenario, reflecting a doubling of the number of operators.

The expectations were computed through simulation methods facilitated by DoWhy [30],
incorporating historical data, market dynamics, and specific conditions outlined for each
scenario. The outcomes are illustrated in Figure 8, offering insights into the potential
consequences of distinct regulatory approaches. This aids in comprehending the dynamics
and implications for the user base in the market.

As can be observed, restrictive scenarios regarding the presence of operators hurt the
number of users (Scenario 1). However, reality has shown that operators can deploy more
technology over time, expanding coverage. For instance, it is plausible that the current
number of users can be reached, but at a slower pace. On the other hand, it is noticeable
that less restrictive scenarios, which allow a greater presence of operators in the market
(Scenarios 2 and 3), achieve a few users closer to the current reality in a shorter time.
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5.3. The Impact of Implementing a Secondary Market

Finally, we explore the transformative potential of implementing a secondary market
for the radio frequency spectrum, building upon the foundation established in earlier
discussions. Drawing on insights from the evolving landscape of spectrum management,
we analyze the implications of introducing a market model that allows for the leasing of
available spectrum resources.

The initial scenario to implement a secondary market is presented in Figure 9, where
it is possible to observe the available resources over time. These resources will be available
for lease to operators who hold a license for that spectrum portion.

Information 2024, 15, x FOR PEER REVIEW 18 of 24 
 

 

5.3. The Impact of Implementing a Secondary Market 
Finally, we explore the transformative potential of implementing a secondary market 

for the radio frequency spectrum, building upon the foundation established in earlier dis-
cussions. Drawing on insights from the evolving landscape of spectrum management, we 
analyze the implications of introducing a market model that allows for the leasing of avail-
able spectrum resources. 

The initial scenario to implement a secondary market is presented in Figure 9, where 
it is possible to observe the available resources over time. These resources will be available 
for lease to operators who hold a license for that spectrum portion. 

 
Figure 9. Resource occupancy over time. 

The base scenario of the secondary market can be mathematically described as a Mar-
kov Decision Process (MDP). Let us define the key components: 
1. State Space (S): 

- The state represents the current occupancy status of resources at a specific time 
step. 

- Each state is a binary vector indicating whether each resource is occupied (1) or 
unoccupied (0). 

- The state space S is discrete, and each state s in S is a vector of length n, where n 
is the number of resources, 𝑆 = ሼ0,1ሽ. 

2. Action Space (A): 
- The action space represents the set of feasible actions that an agent can take in a 

given state. 
- In this scenario, actions correspond to selecting a resource to rent. 
- The action space A is discrete, and each action a in A corresponds to choosing a 

resource index. 𝐴 = ሼ0,1, … , 𝑛 െ 1ሽ. 
3. Transition Function (P): 

- The transition function defines the probability of moving from one state to an-
other based on the chosen action. 

- In this scenario, the transition is deterministic. Given a state s and action a, the 
next state is determined by renting the selected resource: 𝑃(𝑠ᇱ|𝑠, 𝑎) = ൜1 if renting resource a transitions from state s to state s′0 otherwise.  

4. Reward Function (R): 
- The reward function specifies the immediate reward obtained by taking a par-

ticular action in a specific state. 
- In this scenario, the reward is associated with renting resources, and the goal is 

to maximize the total reward over time, 

Figure 9. Resource occupancy over time.

The base scenario of the secondary market can be mathematically described as a
Markov Decision Process (MDP). Let us define the key components:

1. State Space (S):

- The state represents the current occupancy status of resources at a specific time step.
- Each state is a binary vector indicating whether each resource is occupied (1) or

unoccupied (0).
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- The state space S is discrete, and each state s in S is a vector of length n, where n
is the number of resources, S = {0, 1}n.

2. Action Space (A):

- The action space represents the set of feasible actions that an agent can take in a
given state.

- In this scenario, actions correspond to selecting a resource to rent.
- The action space A is discrete, and each action a in A corresponds to choosing a

resource index. A = {0, 1, . . . , n − 1}.

3. Transition Function (P):

- The transition function defines the probability of moving from one state to another
based on the chosen action.

- In this scenario, the transition is deterministic. Given a state s and action a, the
next state is determined by renting the selected resource:

P
(
s′
∣∣s, a

)
=

{
1 if renting resource a transitions from state s to state s′

0 otherwise.

4. Reward Function (R):

- The reward function specifies the immediate reward obtained by taking a partic-
ular action in a specific state.

- In this scenario, the reward is associated with renting resources, and the goal is
to maximize the total reward over time,

R(s, a) = Immediate reward for renting resource a in state s

5. Discount Factor (γ):

- The discount factor represents the preference for present rewards over future rewards.
- It is a parameter that influences the agent’s strategy. A higher discount factor

values short-term rewards more,

0 ≤ γ ≤ 1.

6. Policy (π):

- The policy is the strategy followed by the agent, mapping states to actions.
- In this scenario, the agent’s goal is to learn an optimal policy that maximizes the

total expected reward over time,

π(s) → a

The overall objective is to find an optimal policy π* that maximizes the expected
cumulative reward over an infinite time horizon:

π∗ = argmaxπ ∑∞
t=0 γtR(st, π(st)).

This mathematical framework provides the foundation for applying reinforcement
learning algorithms, such as Q-learning, to learn the optimal policy for resource rental in
the secondary market scenario. The supply and demand for free resources were simulated
based on its dynamic distributions over time:

1. Supply of Free Resources.

- At each time step, the resources available for rent are identified (available_resources).
- The percentage of resources offered by landlords is adjusted (landlords_percentage).

In this case, 60% of the available resources are offered for rent.
- Resources offered by landlords are randomly selected from the list of available

resources (offered_resources).



Information 2024, 15, 197 19 of 23

- The supply of free resources at that time step is the length of the list of avail-
able resources.

2. Demand for Free Resources

- At each time step, the percentage of resources demanded by tenants is adjusted
(tenants_percentage). In this case, 40% of the available resources are demanded.

- Resources demanded by tenants are randomly selected from the list of available
resources (demanded_resources)

- The demand for free resources at that time step is the length of the list of de-
manded resources.

Based on the above, to analyze the market response to the behavior of its actors, we
initially present the characterized supply and demand in Figure 10.
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Figure 11 illustrates the market’s response to the characterized supply and demand. It
demonstrates how the system effectively meets the demand with the available resources.
This scenario is referred to as the baseline scenario.
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The baseline scenario, as illustrated in Figure 11 depicting the market’s response to
the characterized supply and demand, can be described as follows:

1. Supply of resources (S(t)):

- At each time step t, the resources available in the market are represented by S(t).
- The resources are considered as either originally occupied or rented. The total

supply at any time is the sum of originally occupied and rented resources.

(S(t)) = Sum of originally occupied and rented resources at time t.

2. Demand for Resources (D(t)):

- The demand for resources at each time step t is effectively met by the available
resources in the market.

- The demand is characterized by the system’s ability to utilize both originally
occupied and rented resources to fulfill the requirements.

D(t) = Effective utilization of resources to meet demand at time t.

3. Interaction between Supply and Demand:

- The interaction between supply and demand is such that the system optimally
allocates resources to meet the demand.

- The figure visually represents how the system balances the utilization of originally
occupied and rented resources to effectively address the demand.

- The system optimally allocates resources to meet demand, balancing both origi-
nally occupied and rented resources.

This baseline scenario serves as a reference for comparing and evaluating variations
in the market dynamics under different conditions or adjustments.

From the baseline scenario, we introduce the following adjustment: assume that
the demand for rentals (Drent) exceeds the available resources (S(t)), and renting occupied
resources is allowed. Renting an occupied resource yields a benefit of 2x, where x represents
the value of the occupied resource. However, if this action is performed more than 10% of
the time, a penalty of 3x is incurred. We simulated the behavior of this adjusted scenario
using Q-learning to identify an optimal policy (Q*).

Figure 12 provides an illustration of the potential reorganization of the supply and
demand for resources, showcasing a scenario where the total reward remains unaffected
as depicted in Figure 13. It is important to emphasize that this depiction serves as an
initial experiment, primarily intended to validate the feasibility of a secondary market.
However, it is critical to recognize that this is a preliminary exploration. Subsequently,
more comprehensive analyses will be imperative in future work to guarantee that the rights
of users initially allocated are not compromised. As the concept evolves, further scrutiny
and refinement will be essential to address potential implications and ensure the robustness
of the proposed secondary market model.

In the comparative analysis of rewards between a Q-learning policy and a random
agent, as depicted in the boxplot (Figure 13), several key observations emerge. The Q-
learning policy exhibits a significantly higher average reward. The interquartile range,
indicated by the box, for Q-learning extends from approximately 750,000 to 800,000, show-
casing the majority of rewards, while the random agent policy has a lower interquartile
range. Additionally, the presence of three outliers for Q-learning and two points for the
random agent suggests variability in performance across individual episodes. Overall,
the results affirm that the Q-learning policy tends to yield higher rewards on average and
displays a broader range of performance compared to the random agent policy.
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6. Conclusions

The emerging machine learning approaches rooted in causal reasoning principles show
considerable promise. These methods, guided by formal joint reasoning about observations
and auxiliary information, leverage stable and independent mechanisms governing a
system’s behavior. As a result, they offer robustness to exogenous changes and a precise
modeling of hypothetical scenarios, crucial for scientific experimentation, understanding,
and decision-making.

Within the project environment, effective decision-making by regulatory bodies relies
on how available information is processed. In this context, causal reasoning is fundamental
as it helps unravel the “why” behind occurrences and consequently predicts future events.
However, current machine learning models often provides information on “what” happens
without delving into the underlying reasons, posing a significant research challenge.

Finally, it is important to remark that this work underscores the importance and
implications of implementing secondary market models for radio frequency spectrum
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management, especially in the context of burgeoning 5G and IoT networks. The discussion
focused on the necessity to explore novel approaches for a more efficient and flexible spec-
trum allocation, given the increasing demand for wireless services. The dialogue covered
the evolution of market models, the application of artificial intelligence to analyze spectrum
competition, and the role of causal models in understanding market behavior. Additionally,
we delved into the potential impact of a secondary market, emphasizing the prospect of
leasing resources to operators licensed for specific spectrum portions. In summary, the
integration of emerging technologies, advanced analytics, and innovative market models
holds the potential to enhance spectrum management, creating a competitive and efficient
wireless communication environment.
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