Phase Noise Effects on OFDM Chirp Communication Systems: Characteristics and Compensation
Abstract
:1. Introduction
- A mathematical model that generalizes the effects of phase noise on OFDM chirp communication systems is deduced, from which we find that the phase noise can result in common phase error (CPE) and intercarrier interference (ICI) in the OFDM chirp communication system, just like that of the OFDM communication system.
- An exact closed-form expression for the signal-plus-interference-to-noise ratio (SINR) in the OFDM chirp communication system is derived and some critical parameters are analyzed.
- Two common estimation approaches, maximum likelihood (ML) and linear minimum mean square error (LMMSE), are applied to estimate the phase noise. Then, based on the phase noise estimation, we further adopt decorrelation and cancellation algorithms to compensate the phase noise impairment.
2. System Model
2.1. Phase Noise Model
2.2. OFDM Chirp Communication Signal Model
2.3. OFDM Chirp Communication System with Phase Noise
3. Exact SINR Expression
4. Phase Noise Mitigation
4.1. Phase Noise Estimation
4.2. Phase Noise Compensation
4.3. Computational Complexity Analysis
5. Numerical Results
5.1. SINR Analysis
5.2. Phase Noise Mitigation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Received Symbols after DFT
Appendix B. Energy of Pm(r)
References
- Larsson, E.G.; Edfors, O.; Tufvesson, F.; Marzetta, T.L. Massive MIMO for next generation wireless systems. IEEE Commun. Mag. 2014, 52, 186–195. [Google Scholar] [CrossRef]
- Sturm, C.; Pancera, E.; Zwick, T.; Wiesbeck, W. A novel approach to OFDM radar processing. IEEE Natl. Radar Conf. Proc. 2009, 99, 9–12. [Google Scholar] [CrossRef]
- Sturm, C.; Wiesbeck, W. Waveform design and signal processing aspects for fusion of wireless communications and radar sensing. Proc. IEEE 2011, 99, 1236–1259. [Google Scholar] [CrossRef]
- Garmatyuk, D.; Schuerger, J.; Morton, Y.T.; Binns, K.; Durbin, M.; Kimani, J. Feasibility study of a multi-carrier dual-use imaging radar and communication system. In Proceedings of the 2007 European Radar Conference, EURAD, Munich, Germany, 9–12 October 2007; pp. 194–197. [Google Scholar] [CrossRef]
- Tigrek, R.F.; De Heij, W.J.A.; Van Genderen, P. OFDM Signals as the Radar Waveform to Solve Doppler Ambiguity. IEEE Trans. Aerosp. Electron. Syst. 2012, 48, 130–143. [Google Scholar] [CrossRef]
- Shi, C.; Wang, F.; Sellathurai, M.; Zhou, J.; Salous, S. Power minimization-based robust OFDM radar waveform design for radar and communication systems in coexistence. IEEE Trans. Signal Process. 2018, 66, 1316–1330. [Google Scholar] [CrossRef]
- Liu, Y.; Liao, G.; Xu, J.; Yang, Z.; Zhang, Y. Adaptive OFDM Integrated Radar and Communications Waveform Design Based on Information Theory. IEEE Commun. Lett. 2017, 21, 2174–2177. [Google Scholar] [CrossRef]
- Tian, M.; Liu, Y.; Li, C.; Peng, W.; Wu, T.; Duan, C.; Chen, C. Multiobjective optimal waveform design for TDS-OFDM integrated radar and communication systems. In Proceedings of the 2021 CIE International Conference on Radar (Radar), Haikou, China, 15–19 December 2021; pp. 2907–2911. [Google Scholar] [CrossRef]
- Sit, Y.L.; Reichardt, L.; Sturm, C.; Zwick, T. Extension of the OFDM joint radar-communication system for a multipath, multiuser scenario. In Proceedings of the IEEE National Radar Conference—Proceedings, Kansas City, MO, USA, 23–27 May 2011; pp. 718–723. [Google Scholar] [CrossRef]
- Sit, Y.L.; Nuss, B.; Zwick, T. On mutual interference cancellation in a MIMO OFDM multiuser radar-communication network. IEEE Trans. Veh. Technol. 2018, 67, 3339–3348. [Google Scholar] [CrossRef]
- Sen, S. PAPR-constrained pareto-optimal waveform design for OFDM-STAP radar. IEEE Trans. Geosci. Remote Sens. 2014, 52, 3658–3669. [Google Scholar] [CrossRef]
- Kim, J.H.; Younis, M.; Moreira, A.; Wiesbeck, W. A novel OFDM chirp waveform scheme for use of multiple transmitters in SAR. IEEE Geosci. Remote Sens. Lett. 2013, 10, 568–572. [Google Scholar] [CrossRef]
- Wang, W.Q. MIMO SAR Chirp Modulation Diversity Waveform Design. IEEE Trans. Geosci. Remote Sens. 2014, 11, 1644–1648. [Google Scholar] [CrossRef]
- Wang, W.Q. MIMO SAR OFDM chirp waveform diversity design with random matrix modulation. IEEE Trans. Geosci. Remote Sens. 2015, 53, 1615–1625. [Google Scholar] [CrossRef]
- Ouyang, X.; Zhao, J. Orthogonal chirp division multiplexing. IEEE Trans. Commun. 2016, 64, 3946–3957. [Google Scholar] [CrossRef]
- Dida, M.A.; Hao, H.; Wang, X.; Ran, T. Constant envelope chirped OFDM for power-efficient radar communication. In Proceedings of the 2016 IEEE Information Technology, Networking, Electronic and Automation Control Conference, ITNEC 2016, Chongqing, China, 20–22 May 2016; pp. 298–301. [Google Scholar] [CrossRef]
- Lu, F.; Cheng, L.; Xu, M.; Wang, J.; Shen, S.; Chang, G.K. Orthogonal and sparse chirp division multiplexing for MMW fiber-wireless integrated systems. IEEE Photonics Technol. Lett. 2017, 29, 1316–1319. [Google Scholar] [CrossRef]
- Zhu, P.; Xu, X.; Tu, X.; Chen, Y.; Tao, Y. Anti-multipath orthogonal chirp division multiplexing for underwater acoustic communication. IEEE Access 2020, 8, 13305–13314. [Google Scholar] [CrossRef]
- Bouvet, P.J.; Auffret, Y.; Aubry, C. On the analysis of orthogonal chirp division multiplexing for shallow water underwater acoustic communication. In Proceedings of the OCEANS 2017—Aberdeen, Aberdeen, UK, 19–22 June 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Lan, X.; Zhang, M.; Wang, L.T. OFDM Chirp Waveform Design Based on Imitating the Time–Frequency Structure of NLFM for Low Correlation Interference in MIMO Radar. IEEE Geosci. Remote Sens. Lett. 2021, 18, 286–290. [Google Scholar] [CrossRef]
- Omar, M.S.; Ma, X. Spectrum Design for Orthogonal Chirp Division Multiplexing Transmissions. IEEE Wirel. Commun. Lett. 2020, 9, 1990–1994. [Google Scholar] [CrossRef]
- Omar, M.S.; Ma, X. Performance Analysis of OCDM for Wireless Communications. IEEE Trans. Wirel. Commun. 2021, 20, 4032–4043. [Google Scholar] [CrossRef]
- Wang, J.; Chen, L.Y.; Liang, X.D.; Ding, C.B.; Li, K. Implementation of the OFDM chirp waveform on MIMO SAR systems. IEEE Trans. Geosci. Remote Sens. 2015, 53, 5218–5228. [Google Scholar] [CrossRef]
- Li, M.J.; Wang, W.Q.; Zheng, Z. Communication-embedded OFDM chirp waveform for delay-Doppler radar. IET Radar Sonar Navig. 2017, 12, 353–360. [Google Scholar] [CrossRef]
- Jia, W.; Wang, W.Q.; Hou, Y.; Zhang, S. Integrated communication and localization system with OFDM-Chirp waveform. IEEE Syst. J. 2020, 14, 2464–2472. [Google Scholar] [CrossRef]
- Angelotti, A.M.; Gibiino, G.P.; Santarelli, A.; Traverso, P.A. Broadband Measurement of Error Vector Magnitude for Microwave Vector Signal Generators Using a Vector Network Analyzer. IEEE Trans. Instrum. Meas. 2022, 71, 1–11. [Google Scholar] [CrossRef]
- Bladel, T.P.M.V.; Moeneclaey, M. BER Sensitivity of OFDM systems to carrier frequency offset and wiener phase noise. IEEE Trans. Commun. 1995, 43, 191–193. [Google Scholar]
- Tomba, L. On the effect of wiener phase noise in OFDM systems. IEEE Trans. Commun. 1998, 46, 580–583. [Google Scholar] [CrossRef]
- Liu, G.; Zhu, W. A new method of phase noise detection and compensation in OFDM systems. In Proceedings of the 2004 International Conference on Communications, Circuits and Systems (IEEE Cat. No.04EX914), Chengdu, China, 27–29 June 2004; Volume 1, pp. 308–312. [Google Scholar] [CrossRef]
- Wu, S.; Bar-Ness, Y. OFDM systems in the presence of phase noise: Consequences and solutions. IEEE Trans. Commun. 2004, 52, 1988–1996. [Google Scholar] [CrossRef]
- Armada, A.G. Understanding the effects of phase noise in Orthogonal Frequency Division Multiplexing (OFDM). IEEE Trans. Broadcast. 2001, 47, 153–159. [Google Scholar] [CrossRef]
- Wu, S.; Liu, P.; Bar-Ness, Y. Phase noise estimation and mitigation for cognitive OFDM systems. IEEE Trans. Wirel. Commun. 2006, 5, 3616–3625. [Google Scholar] [CrossRef]
- Ngebani, I.; Li, Y.; Xia, X.G.; Zhao, M. EM-based phase noise estimation in vector OFDM systems using linear MMSE receivers. IEEE Trans. Veh. Technol. 2016, 65, 110–122. [Google Scholar] [CrossRef]
- Petrovic, D.; Rave, W.; Fettweis, G. Effects of phase noise on OFDM systems with and without PLL: Characterization and compensation. IEEE Trans. Commun. 2007, 55, 1607–1616. [Google Scholar] [CrossRef]
- Zhao, Y.; Häggman, S.G. Intercarrier interference self-cancellation scheme for OFDM mobile communication systems. IEEE Trans. Commun. 2001, 49, 1185–1191. [Google Scholar] [CrossRef]
- Kim, K.H.; Kim, H.M. An ICI suppression scheme based on the correlative coding for alamouti SFBC-OFDM system with phase noise. IEEE Trans. Wirel. Commun. 2011, 10, 2023–2027. [Google Scholar] [CrossRef]
- Wang, W.Q.; Peng, Q.; Cai, J. Waveform-diversity-based millimeter-wave UAV SAR remote sensing. IEEE Trans. Geosci. Remote Sens. 2009, 47, 691–700. [Google Scholar] [CrossRef]
- Ouyang, X.; Zhao, J. Orthogonal chirp division multiplexing for coherent optical fiber communications. J. Light. Technol. 2016, 34, 4376–4386. [Google Scholar] [CrossRef]
- Edfors, O.; Sandell, M.; Beek, J.J.V.D.; Wilson, S.K.; Borjessonl, P.O.; Lafayette, W. OFDM Channel Estimation by Singular Value Decomposition. IEEE Trans. Commun. 1998, 46, 931–999. [Google Scholar] [CrossRef]
- Jeon, W.G.; Chang, K.H.; Cho, Y.S. An equalization technique for orthogonal frequency-division multiplexing systems in time-variant multipath channels. IEEE Trans. Commun. 1999, 47, 27–32. [Google Scholar] [CrossRef]
- IEEE Std P802.11a/D7; IEEE Draft Supplement to Standard For Information Technology-Telecommunications and Information Exchange Between Systems-Local and Metropolitan Area Networks-Specific Requirements-Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Supplement to IEEE Std 802.11-1999. IEEE Standards Association: Piscataway, NJ, USA, 1999.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Wang, W. Phase Noise Effects on OFDM Chirp Communication Systems: Characteristics and Compensation. Information 2024, 15, 221. https://doi.org/10.3390/info15040221
Li M, Wang W. Phase Noise Effects on OFDM Chirp Communication Systems: Characteristics and Compensation. Information. 2024; 15(4):221. https://doi.org/10.3390/info15040221
Chicago/Turabian StyleLi, Mengjiao, and Wenqin Wang. 2024. "Phase Noise Effects on OFDM Chirp Communication Systems: Characteristics and Compensation" Information 15, no. 4: 221. https://doi.org/10.3390/info15040221
APA StyleLi, M., & Wang, W. (2024). Phase Noise Effects on OFDM Chirp Communication Systems: Characteristics and Compensation. Information, 15(4), 221. https://doi.org/10.3390/info15040221