
Citation: Trouli, G.E.; Papadakis, N.;

Kondylakis, H. Constructing Semantic

Summaries Using Embeddings.

Information 2024, 15, 238. https://

doi.org/10.3390/info15040238

Academic Editor: Domenico

Fabio Savo

Received: 27 March 2024

Revised: 15 April 2024

Accepted: 18 April 2024

Published: 20 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Article

Constructing Semantic Summaries Using Embeddings
Georgia Eirini Trouli 1,*, Nikos Papadakis 1 and Haridimos Kondylakis 2,3

1 Department of Electrical and Computer Engineering, Hellenic Mediterranean University (HMU),
71309 Heraklion, Greece; npapadak@hmu.gr

2 Computer Science Department, University of Crete, 70013 Heraklion, Greece; kondylak@ics.forth.gr
3 Institute of Computer Science, Foundation for Research and Technology-Hellas (FORTH),

70013 Heraklion, Greece
* Correspondence: gtrouli@ics.forth.gr

Abstract: The increase in the size and complexity of large knowledge graphs now available online
has resulted in the emergence of many approaches focusing on enabling the quick exploration of
the content of those data sources. Structural non-quotient semantic summaries have been proposed
in this direction that involve first selecting the most important nodes and then linking them, trying
to extract the most useful subgraph out of the original graph. However, the current state of the
art systems use costly centrality measures for identifying the most important nodes, whereas even
costlier procedures have been devised for linking the selected nodes. In this paper, we address
both those deficiencies by first exploiting embeddings for node selection, and then by meticulously
selecting approximate algorithms for node linking. Experiments performed over two real-world big
KGs demonstrate that the summaries constructed using our method enjoy better quality. Specifically,
the coverage scores obtained were 0.8, 0.81, and 0.81 for DBpedia v3.9 and 0.94 for Wikidata dump
2018, across 20%, 25%, and 30% summary sizes, respectively. Additionally, our method can compute
orders of magnitude faster than the state of the art.

Keywords: RDF KGs; semantic summaries; graph summaries

1. Introduction

The proliferation of the semantic web has led to the creation of vast and complex
RDF knowledge graphs (KGs), posing new requirements for their exploration and under-
standing. Summarizing semantic knowledge graphs is widely acknowledged as a potent
technique for enhancing understanding, facilitating exploration, and reusing the informa-
tion contained within. Structural techniques rely on the structure of the graph to produce
a summary and can be further classified into quotient (where sets of nodes are grouped
using equivalence relations) and non-quotient (where subgraphs are extracted out of the
original graph) [1]. A structural, non-quotient semantic summary serves the purpose of
capturing the essence of the original graph by highlighting its most important elements
while concurrently reducing the graph’s size and complexity.

The Problem. Previous approaches in the domain of structural non-quotient semantic
summaries [2–8], in order to generate a summary, first exploited a single or a combination of
centrality measures (e.g., betweenness, HITS, PageRank) for selecting the most significant
nodes and then employed shortest-path or Steiner Tree approximation procedures in order
to link them. However, both computing those centrality measures and linking the selected
nodes is costly and infeasible for graphs with millions or even billions of nodes and edges.
Existing solutions carefully try to avoid tackling this problem by focusing on summarizing
only the schema/ontology part of a KG, limiting, in most cases, the problem to at most 1000
nodes. To the best of our knowledge, no structural non-quotient semantic summarization solution
is currently able to work directly on the entire KG.

Information 2024, 15, 238. https://doi.org/10.3390/info15040238 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info15040238
https://doi.org/10.3390/info15040238
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0002-9917-4486
https://doi.org/10.3390/info15040238
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info15040238?type=check_update&version=2

Information 2024, 15, 238 2 of 16

Motivating Example. Consider, for example, Wikidata, a large RDF KG that includes
millions of entities and billions of statements. Understanding and exploring such a com-
plex graph raises several challenges, as the graph is complex and contains numerous
nodes and edges. One approach that could help users is identifying the most important
nodes and edges in the form of graphical summaries, providing users with a quick un-
derstanding of the graph’s main points. Additionally, users could fine-tune the size of
the summary based on a desired percentage, such as 20%, 25%, and 30%, of the original
Wikidata graph (see Figure 1), thereby enabling them to explore various granularities of
the returned summaries.

Information 2024, 15, x FOR PEER REVIEW 2 of 16

Motivating Example. Consider, for example, Wikidata, a large RDF KG that includes
millions of entities and billions of statements. Understanding and exploring such a com-
plex graph raises several challenges, as the graph is complex and contains numerous
nodes and edges. One approach that could help users is identifying the most important
nodes and edges in the form of graphical summaries, providing users with a quick under-
standing of the graph’s main points. Additionally, users could fine-tune the size of the
summary based on a desired percentage, such as 20%, 25%, and 30%, of the original Wik-
idata graph (see Figure 1), thereby enabling them to explore various granularities of the
returned summaries.

Figure 1. The Wikidata dump 2018 graph and the corresponding summaries of 20% (a), 25% (b),
and 30% (c) of the original graph.

Our solution. In this paper, we focus on optimizing both efficiency and effectiveness
for generating high-quality semantic summaries out of a KG. We argue that using node
and property embeddings, beyond being more efficient than calculating centralities, has the po-
tential to provide a more objective view of characterizing the nodes and edges that should
be selected as the most important ones. In this direction, we explore machine learning
(ML) models, which can be trained to assign weights to the various nodes, identifying as
such the most important nodes through their embedding vectors. Using the same process,
we also add weights to the various edges. Then, having selected the most important nodes,
we attempt to capture the optimal paths for connecting the important nodes. Similar to
previous approaches in the domain, we encounter the challenge of connecting significant
nodes, akin to a Steiner Tree Problem. However, we carefully select the corresponding

Figure 1. The Wikidata dump 2018 graph and the corresponding summaries of 20% (a), 25% (b), and
30% (c) of the original graph.

Our solution. In this paper, we focus on optimizing both efficiency and effectiveness
for generating high-quality semantic summaries out of a KG. We argue that using node and
property embeddings, beyond being more efficient than calculating centralities, has the potential to
provide a more objective view of characterizing the nodes and edges that should be selected as
the most important ones. In this direction, we explore machine learning (ML) models, which
can be trained to assign weights to the various nodes, identifying as such the most important
nodes through their embedding vectors. Using the same process, we also add weights to
the various edges. Then, having selected the most important nodes, we attempt to capture
the optimal paths for connecting the important nodes. Similar to previous approaches in
the domain, we encounter the challenge of connecting significant nodes, akin to a Steiner
Tree Problem. However, we carefully select the corresponding approximate algorithm,
adopting a more efficient Steiner Tree approximate algorithm. Further, we consider also the
weights in the edges, ignored in previous approaches, in order to be more effective. More
specifically, our contributions in this paper are the following:

Information 2024, 15, 238 3 of 16

• We use RDF2Vec [9,10], a prominent approach for efficiently generating embeddings
for the nodes and edges of a KG. We explore several walking strategies for generating
embeddings (Random, Anonymous, Walklet, HALK, N-Grams) to identify the optimal
one for our problem.

• Then, we model the problem of selecting the top-k most important nodes as a re-
gression problem. For each node, we use the low-dimensional vector representation
generated by RDF2VEC to train models that maximize the quality of the generated
summary. We examine five ML regressors (i.e., Adaboost, Gradient Boosting, SVR,
Random Forests, and Decision Trees), identifying the best performances.

• We show that the problem for linking the selected nodes is NP-hard and explore Steiner
Tree approximations. We identify that little details make a difference in practice and
adopt the SDISTG, a previously ignored approximation algorithm. In addition, instead
of being oblivious in the selection of the importance of the edges for linking the
top-k nodes, assuming that they all have the same value, we use the same process
(identifying embeddings and adding weights to the using ML-models) in order to
select the most prominent ones.

• Furthermore, we present a detailed experimental analysis using two real-world KGs,
DBpedia and Wikidata, verifying that selecting the most important nodes using em-
beddings is both more effective and more efficient, whereas this holds also for our
Steiner Tree optimizations, overall constructing summaries of better quality and being
more efficient than the existing state-of-the-art systems.

To the best of our knowledge, our approach is the first to adopt embeddings for gener-
ating scalable, high-quality, structural non-quotient semantic summaries that are directly
applicable to big KGs. The remainder of the paper is structured as follows: Section 2
presents related work, Section 3 introduces preliminaries, Section 4 presents the method-
ology and the various algorithms generated for the creation of our structural semantic
summaries, and, in Section 5, we experimentally evaluate our solution. Finally, Section 6
concludes this paper and reports directions for the future.

2. Related Work

Embeddings in KGs. In graph-based knowledge representation, embeddings have
already been widely used. For example, they have been used for predicting entity types [11],
for entity classification [12], for question answering on top of KGs [13], and for selecting
consistent subsets out of inconsistent ontologies [14]. In the summarization field, embed-
dings have also been used for generating summaries for specific entities in a KG [15], as well
as for generating quotient summaries that are exploited for lossy query answering through
similarity-embedding-based similarity searches [16]. However, all those approaches differ
in both the objectives and approach to our work. To the best of our knowledge, we are the
first to exploit embeddings for generating structural, non-quotient semantic summaries
that extract a subgraph with the most important nodes and edges out of the whole KG.

Structural, non-quotient semantic summaries. In our work, we focus on non-quotient
structural-semantic summaries, where we extract subgraphs from the original graph to
highlight its most important elements (nodes and properties), making it more suitable
for exploration and understanding. Quotient summaries [17], on the other hand, involve
grouping nodes in the original graph based on an equivalence relation and then constructing
a new graph where each node represents an equivalence class. The edges in the quotient
graph connect these equivalence classes based on the relationships between the original
nodes. In the domain of structural, non-quotient semantic summarization, there are already
multiple approaches available.

Early approaches in the domain include Peroni et al. [3] and Wu et al. [7], who only
focused on selecting the top-k nodes. Subsequently, Zhang et al. [8] utilized various
centrality measures, like eigenvectors, betweenness, and degrees, attempting to capture
the most vital sentences in a KG. Then, Queiroz-Sousa et al. [18], in order to assess the
node significance, exploited user preferences along with closeness and degree centrality

Information 2024, 15, 238 4 of 16

measures. Following this, for the construction of the final graph, an algorithm is employed
that contains the dominant nodes in order to link them. However, the developed algorithm
chooses to give precedence to direct neighbors, disregarding the fact that other nodes which
are not direct neighbors might be more important and could produce a summary with an
overall greater importance.

WBSum [19] and iSummary [20] attempt to detect the more frequent nodes through
user queries exploiting the query workloads. Afterward, the Steiner Tree approximation is
exploited to link these nodes. The GLIMPSE [21] approach concentrates on the personalized
summary generation of a KG that includes only the facts more related to individuals’
interests. However, for the summary construction, the user needs to supply a related set of
queries with corresponding information that they would like to be included. Furthermore,
WBSum, iSummar, and GLIMPSE rely on an existing workload to produce a summary,
which restrains their applicability.

The most recent works in the domain include RDFDigest+ [2,6] and SumMER [4,5],
outperforming previous approaches in the domain. RDFDigest+ exploits the betweenness
centrality combined with the number of instances for the selection of schema nodes and
then links them with an approximation of the Steiner Tree. SumMER, on the other hand,
employs several centrality measures (i.e., betweenness, degree, radiality, etc.) and combines
them, exploiting machine learning techniques to improve the quality of the selected nodes.
As computing centralities measures is costly, both RDFDigest+ and SumMER provide
schema summaries focusing only on the schema/ontology part of the KG. Furthermore,
both these approaches ignore the importance of the edges to be used for linking the selected
nodes and adopt Steiner Tree approximations focusing on introducing as few as possible
additional nodes for linking the selected top-k nodes. In this paper, we argue that embeddings
have the potential to better-characterize KG nodes and provide a more efficient alternative than
centralities with better quality as well. Further, we also consider the importance of the edges that
are being selected for linking the top-k nodes, whereas we carefully select the optimal Steiner Tree
approximation that makes our solution applicable to large KGs with billions of triples.

3. Preliminaries

In our work, we emphasize RDF KGs, as RDF is considered as one of the most prevalent
standards for publishing and representing data on the Web, being endorsed by the W3C
for semantic web applications. An RDF KG includes triples in the form (s, p, o). Each triple
asserts a relationship where a subject s connects with a property p, with the value of that
property represented by the object o. We exclusively examine triples that adhere to the
specifications outlined in the RDF standard by the W3C. Let U represent a set of Uniform
Resource Identifiers (URIs), L denote a set of typed/untyped literals (constants), and B
signify a set of blank nodes (unknown URIs/literals) (U, B, and L are mutually disjointed).
Blank nodes comprise vital elements in RDF, facilitating the support of unknown URI or
literal tokens. Furthermore, let T denote the set of RDF terms, defined as T = U ∪ B ∪ L. An
RDF triple (s, p, o) belongs to (U ∪ B) × U × T. In addition, an RDF KG can be alternatively
seen as a graph G = (V, E), where V are the nodes of the graph (including s and o) and E is
the edges (including p).

Unfortunately, given the large size and complexity of a KG, users face considerable
difficulties in understanding the contents of the KG and exploring it. A condensed view of
the KG presenting the most important nodes and edges of the whole graph would be rather
useful for the end users, and, as already explained in the related work section, several
works have already focused on this important problem.

Example. Consider now an RDF KG like the Wikidata (dump 2018), which is presented
in Figure 1. Comprehending the graph’s contents is a challenge given the abundance of
nodes and edges within the Wikidata knowledge graph. Nevertheless, having a mechanism
that assists us in concentrating on the most crucial subgraph, which includes a specific
percentage of important nodes (indicatively we list the percentages of 20%, 25%, and 30%),
would enable us to obtain a quick overview of the contents of the KG.

Information 2024, 15, 238 5 of 16

4. Semantic Summaries

As shown in the example of Figure 1, to generate a summary with the most important
nodes, we need a method to be able to assess the nodes’ and edges’ importance in order to
select the top-k nodes and then to link them, selecting the edges with the maximum weight.
As such, without loss of generality, we can assume a weighting function w that returns
a non-negative weight assignment to the nodes and edges of a KG G. Then, a structural
non-quotient semantic summary of size k (referred to as a semantic summary from here on)
can be defined as follows:

Definition 1. (Semantic Summary of size k). Given an input KG G = (V, E) and a positive
weight applied to all nodes and edges, a semantic summary of size k, i.e., SGk, is the smallest
maximum-weight tree SGk = (SV, SE), including the k nodes with the maximum weight.

Note that our definition differs from previous approaches by considering weighted
edges as well. A semantic summary of size k is not necessarily unique, as there can exist
multiple maximum-weight trees of minimal size. Further, it is easy to demonstrate that the
aforementioned problem is NP-complete.

Theorem 1. The construction of a semantic summary is NP-complete.

Proof. The Steiner Tree problem [22] involves connecting specific nodes within a weighted
graph while minimizing the overall cost. In our work, we transform weight application to
a range from 0 to 1 and subtract them from 1. Thus, instead of seeking a maximum-weight
tree, our objective becomes identifying a minimum-weight tree. Consequently, our problem
mirrors the NP-completeness of the Steiner Tree problem. □

A positive characteristic of the semantic summaries is that their quality shows a
consistently increasing pattern as κ, the summary size, increases. In other words, as the
size of the summary increases, so does the total weight of the summary.

Lemma 1. Let SGk and SGk+1 be two semantic summaries of size k and k + 1, respectively. Then,
W(SGk+1) ≥ W(SGk), where W(SG) is the sum of all node and edge weights in SG.

Proof. As SGk represents a maximum-weight tree of size k, the introduction of a new node
to the summary, as well as the subsequent search for the maximum-weight tree along with
this node, ensures that the total weight of SGk+1 will be either equal to or greater than the
total weight of SGk. □

Next, we focus on presenting how we approach node selection and linking. An
overview is shown in Figure 2. In the first step, we extract numeric vectors (embed-dings)
for all nodes and edges of the graph. We input these embeddings as features in ML models
for regression, and the ML models can predict the weights of the edges and the nodes in
the graph. In the second step, we select the top-k nodes with the highest weights. The third
step focuses on linking the selected nodes using an appropriate approximation algorithm
for resolving the Steiner Tree problem. In the sequel, we describe each one of these steps
in detail.

Information 2024, 15, 238 6 of 16
Information 2024, 15, x FOR PEER REVIEW 6 of 16

Figure 2. Procedure for constructing embeddings-based summaries.

4.1. Weight Assignment and Node Selection
Past approaches for selecting the most important nodes of a KG exploit a single cen-

trality measure (e.g., RDFDigest+ [2,6]) or a combination of several of them (e.g., SumMER
[4,5]) in order to rank the graph nodes and to select the most important ones. However, as
we shall show, in the experimental section, that even if approximations algorithms are
used, computing centrality measures do not scale and more efficient approaches are re-
quired.

While traditional centrality measures, such as betweenness centrality, are commonly
used for node weight assignment in graphs, our proposed approach adopts a regression
task based on embeddings, offering an alternative perspective on identifying node im-
portance. The rationale behind selecting this method is its capability to capture both the
structural and semantic information of nodes. By training machine learning models on
these embeddings, we can effectively predict and rank nodes and edges based on their
scores (weights) within the graph. Unlike centrality measures, which focus solely on struc-
tural positioning, our approach enables us to identify nodes that hold key semantic rela-
tionships and have pivotal roles within the graph structure.

In our approach, we choose the RDF2vec [9,10], an unsupervised technique for fea-
ture extraction (embeddings), for nodes as well for edges, that has been proposed in sev-
eral domains (e.g., Semantic Web, Bioinformatics, Social Net-works) and for various pur-
poses (e.g., Semantic Similarity, Link Prediction, Recommendation Systems, Entity Clas-
sification) for RDF graphs. Embeddings aim to encode the semantic information mainly
for entities; however, in our case, RDF2Vec is applied for properties too. Based on
RDF2Vec, our main assumption is that resources with similar embeddings are semanti-
cally correlated as well. Therefore, we assume that resources of a “similar importance” are
placed close to each other in the numerical space. RDF2Vec imitates the Word2Vec model,
but instead of word sequences, it trains the neural network with entities. In this paper, the
skip-gram model is selected, which aims to predict the context words based on a single
target word. In a sequence of words, w1, w2, ..., wT, this objective can be defined as the
average log probability: 1𝑇 𝑙𝑜𝑔𝑃(𝑤௧ା|𝑤௧)ିஸஸ,ஷ

்
௧ୀଵ (1)

where c is the size of a training context window and P(wt + j|wt) is computed by the softmax
formula: 𝑙𝑜𝑔𝑃(𝑤ை|𝑤ூ) = exp (𝑣′௪ை𝑇𝑣௪ூ)∑ 𝑒𝑥𝑝 (𝑣′௪ை𝑇𝑣௪ூ)ௐ௪ୀଵ (2)

where 𝑣 is the word target vector, 𝑣′ is the word context vector, and W is the size of the
vocabulary.

Figure 2. Procedure for constructing embeddings-based summaries.

4.1. Weight Assignment and Node Selection

Past approaches for selecting the most important nodes of a KG exploit a single central-
ity measure (e.g., RDFDigest+ [2,6]) or a combination of several of them (e.g., SumMER [4,5])
in order to rank the graph nodes and to select the most important ones. However, as we
shall show, in the experimental section, that even if approximations algorithms are used,
computing centrality measures do not scale and more efficient approaches are required.

While traditional centrality measures, such as betweenness centrality, are commonly
used for node weight assignment in graphs, our proposed approach adopts a regression task
based on embeddings, offering an alternative perspective on identifying node importance.
The rationale behind selecting this method is its capability to capture both the structural and
semantic information of nodes. By training machine learning models on these embeddings,
we can effectively predict and rank nodes and edges based on their scores (weights) within
the graph. Unlike centrality measures, which focus solely on structural positioning, our
approach enables us to identify nodes that hold key semantic relationships and have pivotal
roles within the graph structure.

In our approach, we choose the RDF2vec [9,10], an unsupervised technique for feature
extraction (embeddings), for nodes as well for edges, that has been proposed in several
domains (e.g., Semantic Web, Bioinformatics, Social Net-works) and for various purposes
(e.g., Semantic Similarity, Link Prediction, Recommendation Systems, Entity Classification)
for RDF graphs. Embeddings aim to encode the semantic information mainly for entities;
however, in our case, RDF2Vec is applied for properties too. Based on RDF2Vec, our
main assumption is that resources with similar embeddings are semantically correlated
as well. Therefore, we assume that resources of a “similar importance” are placed close
to each other in the numerical space. RDF2Vec imitates the Word2Vec model, but instead
of word sequences, it trains the neural network with entities. In this paper, the skip-gram
model is selected, which aims to predict the context words based on a single target word.
In a sequence of words, w1, w2, ..., wT, this objective can be defined as the average log
probability:

1
T

T

∑
t=1

∑
−c≤j≤c,j ̸=0

logP
(
wt+j

∣∣wt
)

(1)

where c is the size of a training context window and P(wt+j|wt) is computed by the softmax
formula:

logP(wO|wI) =
exp(v′wOTvwI)

∑W
w=1 exp(v′wOTvwI)

(2)

where v is the word target vector, v′ is the word context vector, and W is the size of
the vocabulary.

In order to extract the sequences (of nodes/properties) for a neural network, and to
generate our embeddings, we tested different walking strategies, such as the Random,
Hierarchical Walking, Walklet, N-Grams, and Anonymous Walk [10]. The complexities of
all aforementioned walking strategies are shown in Table 1.

Information 2024, 15, 238 7 of 16

Table 1. The complexity of the various walking strategies, where W(n) is the number of walks
per node, WL is the length of each walk, E is the total number of edges, MaxL(HO) represents the
maximum length of higher-order transitions, and C is the number of different context sizes.

Walking Strategies Complexities

Random O(W(n) · WL · E)
Anonymous O(W(n) · WL · MaxL(HO) · E)

Walklet O(W(n) · WL · C · E)
HALK O(W(n) · WL · C · E)

N-Grams O(W(n) · WL · E)

Having an embedding for all nodes and edges of the KG, we model next the problem
of identifying their weights as a regression problem. The features of each node/edge is
a numerical vector of various values that contain semantic information, such as the rela-
tionships between entities, neighborhood information, dimensionality, etc. In the domain,
neural networks for graphs with embeddings as features, such as Graph Neural Networks
(GNNs), have been extensively utilized to compute edge, vertex, or triple scores. However,
we employ various regressors to compute nodes and edge scores. The rationale behind
this choice lies in that regressors, like Decision Trees, which were identified as the best
performers for nodes score in our approach offer transparent decision-making processes,
enabling a clear understanding of the factors influencing the ranking of entities and proper-
ties. Furthermore, the current approach produces simplicity, notable computational efficacy,
and minimum requirement of hyperparameter tuning compared to neural networks on
graphs. We examine the following five ML regression algorithms for this purpose: Ad-
aboost (AB), Gradient Boosting (GB), Support Vector Regressor (SVR), Random Forests
(RF), and Decision Trees (DT). All algorithms demonstrate high efficiency during testing.
The complexities of these algorithms are outlined in Table 2. It’s important to note that
these complexities vary based on several factors, including the number of features, samples,
number of trees, and tree depth, e.g., for Random Forest), the number of support vectors
(SVR), etc.

Table 2. The complexity of algorithms (n the number of samples, p the number of features, ntrees the
number of trees).

Algorithm Training Prediction

Decision Tree (DT) O
(
n2 p) O(p)

Random Forest (RF) O
(
n2 pntrees) O(pntrees)

Gradient Boosting (GB) O(npntrees) O(pntrees)
Adaptive Boosting (AB) O(npntrees) O(pntrees)

Support Vector Regressor (SVR) O
(
n2 p + n3) O(nsv p)

4.2. Linking Selected Nodes

As we have shown in Theorem 1, linking the top-k nodes with the highest weight is
equivalent to resolving the Steiner Tree problem, which is NP-complete. Hakimi [22] and
Levin [23] proposed optimal algorithm; however, they have an exponential running time.
As such, various approximations have been proposed, with the most known ones being
MST, SDISTG, and CHINS [24], which we re-implemented from scratch for this work.

The first method identifies a minimum spanning tree (MST) within the graph. It links
the selected nodes using paths derived from the MST and subsequently removes leaf nodes
that are not in use. Well-known algorithms for identifying the MST include Kruskal and
Prim, which we explore in this paper. The MST effectively identifies the tree within the
entire graph that contains the minimum weights, incorporating the top-k nodes. This
approach aims to minimize the total weight of the subgraph by including the essential
nodes and edges.

Information 2024, 15, 238 8 of 16

The next method (SDIST) begins implementing MST, identifying the minimum span-
ning tree (applying Prim or Kruskal) for linking the top-k nodes considering the weighted
edges. Subsequently, each edge of the MST is replaced by its shortest path (using Dijkstra),
to have an as-much-as-minimum-weight weighted tree.

The last method (CHINS) is an incremental method that starts with a single node in
the solution and gradually adds the nearest nodes in the top-k. An overview of the three
algorithms is shown in the following:

MST (Improvement procedure over the minimum spanning tree)

1. Let T = (Vt, Et) be a feasible solution for the GSTP. The subgraph of G, induced by Vt,
will be defined as Gt.

2. Construct a minimum spanning tree T = (Vt
′, Et

′) of Gt.
3. While there exists a leaf of T′ being a terminal, do delete that leaf and its incident edge.

SDIST (Shortest distance graph)

1. Construct a complete graph G′ for the top-k node set, with each edge having the
weight of a shortest path between the corresponding nodes in G.

2. Construct a minimum spanning tree T′ of G′.
3. Replace each edge of the tree T′ with its corresponding shortest path in G.

CHINS (Cheapest insertion)

1. Start with a partial solution T = (w, 0) consisting of a single node w in top-k.
2. While T does not contain all, terminal nodes do.
3. Find the nearest nodes u∗ ∈ Vt and p∗ being a terminal node not in Vt.

Complexities. Table 3 presents the worst-case complexities of those algorithms for
weighted graphs. Note that, although the table shows the worst-case complexities for the
various approximations, when looking at the average-case complexities, we can identify
that it is O(κ 2 · (E + V) logV) for CHINS and O(ElogV) for MST and SDIGST, which in
essence tells us that the latter two approximations are faster on average.

Table 3. Worst-case complexities for linking the most important nodes in a graph.

Algorithm Worst-Case Complexities

MST O(E · logV)
SDISTG O(E · logV)
CHINS O(k · |V logV|)

5. Evaluation

Our approach has been implemented in Python and is available online (https://
anonymous.4open.science/r/embedding_based_summaries-2743 (accessed on 26 March
2024)). Next, we present, in detail, the methodology for our experimental evaluation and
the datasets used.

Datasets. For our experiments, we use two versions of two real-world KGs, DBpedia
and Wikidata. We use the first version of each dataset for training and we evaluate summary
generation on the second version of each dataset.

DBpedia v3.8 contains 3.77 million entities with 400 million facts, and DBpedia v3.9,
contains 4 million entities with 470 million facts. The dataset requires 103 GB of storage for
v3.8 and 114 GB for v3.9. The v3.9 of DBpedia lacks samples from v3.8 because it underwent
a major update, resulting in various modifications, such as the deletion of existing triples
or updates, as well as the addition of new ones.

Wikidata is a free and open knowledge base that can be read and edited by both
humans and machines. Wikidata dump 2017 contains 35 million items and 2.6 billion
statements. The dataset occupies 139 GB. Wikidata dump 2018 contains 47 million items
and 4 billion statements. The dataset occupies 313 GB.

https://anonymous.4open.science/r/embedding_based_summaries-2743
https://anonymous.4open.science/r/embedding_based_summaries-2743

Information 2024, 15, 238 9 of 16

Despite the aforementioned DBpedia and Wikidata not being the latest versions, they
have demonstrated their efficacy in numerous benchmarks and experiments (e.g., [25]).
This provides us with a valuable dataset for experimentation, particularly considering those
specific versions and the thousands of queries that we can exploit for training our models
and evaluating the quality of the generated summaries. More specifically, we had available
a query log with 50 K user queries for v3.8 and 110 K user queries for v3.9, as provided by
the DBpedia SPARQL end-point. For Wikidata, we utilized a query log including 268 K
user queries for Wikidata Dump 2017 and 313 K user queries for Wikidata 2018, provided
online [26]. The detailed characteristics of the various versions are shown in Table 4.

Table 4. Characteristics of the KGs used for experimental evaluation.

Entities Triples User Queries Storage

DBpedia 3.8 3.77 M 400 M 50 K 103 GB
DBpedia 3.9 4 M 470 M 110 K 114 GB

Wikidata (dump 2017) 35 M 2.6 B 268 K 139 GB
Wikidata (dump 2018) 47 M 4.0 B 872 K 313GB

Ground Truth. To produce the “golden standard weights” utilized for training and
evaluating the generated summaries, we leverage the associated query logs. Through
utilizing the available query logs, we compute the normalized frequencies of both the
nodes and edges within user queries that we use as their objective weight for each KG
version. Using these frequencies, we posit that the most frequently resources queried are
inherently more significant. This assertion is grounded, as the nodes/edges involved in
numerous user queries inherently possess greater importance.

Competitors. We contrast our findings against the state-of-the-art systems for struc-
tural semantic summaries, i.e., SumMER and RDFDigest+. As already mentioned, SumMER
employs a combination of various centralities, while RDFDigest+ uses an adaptation of
the betweenness centrality measure. Further, they both use the CHINS approximation
algorithm in order to link the most important nodes. Each scenario demonstrates the
average time across 10 iterations. All experiments ran on an 11th Gen Intel(R) CPU running
2.80GHz, with 8 GB RAM, on Windows 11 Pro.

5.1. Machine Learning for Node/Edge Selection

First, we emphasize evaluating the embeddings using various walking strategies
for selecting nodes. To assess the performance of our machine learning algorithms, we
employed Mean Absolute Error (MAE), a widely known metric for regression problems.
Nevertheless, since we are solely interested in the top-k nodes, we apply these metrics
solely on the specified k nodes. Further, in assessing the node selection process across
different machine learning algorithms, we aim to predict the top 20%, 25%, and 30% of
significant nodes within the dataset’s total nodes. For all the experiments, we use the
DBpedia v3.8 and Wikidata (dump 2017) as the training datasets and the DBpedia v3.9 and
Wikidata (dump 2018) as the test datasets.

DBpedia (Nodes): The performance of DBpedia v3.9 is presented in Figure 3. Further-
more, Table 5 displays a section of the confusion matrix of the different Walking Strategies
for the selection of the 20%, 25%, and 30% top nodes—omitting the Anonymous walking
strategy from all confusion matrices, as it was consistently the worst.

As shown, Random Walk and Walklet walking strategies have better performances in
comparison with the other walkers, while, by combining their performance with TP scores
(Table 5), we identify that, by using a Random Walk strategy with a DT regressor, we have
a very good performance in most of the cases. DT consistently has a high number of correct
predictions (Table 5) in all cases (20%, 25%, 30%), in almost all walkers. The RF regressor
also achieves a remarkable achievement on the TPs selection in all cases (20%, 25%, 30%)
using the HALK walking strategy; however, it is not the best performer overall, as seen in
Figure 3.

Information 2024, 15, 238 10 of 16Information 2024, 15, x FOR PEER REVIEW 10 of 16

Figure 3. MAE evaluation measure for each algorithm per walking strategy for DBpedia v3.9.

Table 5. TP per walking strategy for test results of DBpedia v3.9 (Predicted/Actual nodes).

 Random HALK N-Gram Walklet
 20% 25% 30% 20% 25% 30% 20% 25% 30% 20% 25% 30%

SVR 121/309 189/389 266/464 137/309 207/389 290/464 125/309 192/389 256/464 147/309 202/389 278/464
GB 120/309 185/389 264/464 128/309 186/389 269/464 113/309 190/389 271/464 135/309 199/389 269/464
RF 198/309 296/389 389/464 277/309 354/389 425/464 113/309 227/389 330/464 130/309 199/389 280/464
AB 116/309 210/389 281/464 121/309 209/389 309/464 203/309 254/389 305/464 148/309 212/389 278/464
DT 282/309 356/389 426/464 252/309 338/389 419/464 232/309 325/389 412/464 210/309 210/389 310/464

As shown, Random Walk and Walklet walking strategies have better performances
in comparison with the other walkers, while, by combining their performance with TP
scores (Table 5), we identify that, by using a Random Walk strategy with a DT regressor,
we have a very good performance in most of the cases. DT consistently has a high number
of correct predictions (Table 5) in all cases (20%, 25%, 30%), in almost all walkers. The RF
regressor also achieves a remarkable achievement on the TPs selection in all cases (20%,
25%, 30%) using the HALK walking strategy; however, it is not the best performer overall,
as seen in Figure 3.

Wikidata (Nodes): The outcomes of Wikidata dump 2018 are illustrated in Figure 4,
while Table 6 consists of a confusion matrix part for the algorithms utilized in selecting
the top 20%, 25%, and 30% nodes. In this experiment, all walking strategies have a good
performance in terms of MAE, whereas, looking at Table 6, we can identify that the DT
regressor performs best in detecting the TPs in the Random Walk and Walklet walking
strategies.

Figure 4. MAE for each algorithm per walking strategy for Wikidata dump 2018.

0

0.1

0.2

0.3

0.4

20% 25% 30% 20% 25% 30% 20% 25% 30% 20% 25% 30% 20% 25% 30%

Random Walk HALK Anonymous Ngram Walklet
M

AE

SVR GB RF AB DT

0

0.01

0.02

0.03

0.04

20% 25% 30% 20% 25% 30% 20% 25% 30% 20% 25% 30% 20% 25% 30%

Random HALK Anonymous Ngram Walklet

M
AE

SVR GB RF AB DT

Figure 3. MAE evaluation measure for each algorithm per walking strategy for DBpedia v3.9.

Table 5. TP per walking strategy for test results of DBpedia v3.9 (Predicted/Actual nodes).

Random HALK N-Gram Walklet

20% 25% 30% 20% 25% 30% 20% 25% 30% 20% 25% 30%

SVR 121/309 189/389 266/464 137/309 207/389 290/464 125/309 192/389 256/464 147/309 202/389 278/464
GB 120/309 185/389 264/464 128/309 186/389 269/464 113/309 190/389 271/464 135/309 199/389 269/464
RF 198/309 296/389 389/464 277/309 354/389 425/464 113/309 227/389 330/464 130/309 199/389 280/464
AB 116/309 210/389 281/464 121/309 209/389 309/464 203/309 254/389 305/464 148/309 212/389 278/464
DT 282/309 356/389 426/464 252/309 338/389 419/464 232/309 325/389 412/464 210/309 210/389 310/464

Wikidata (Nodes): The outcomes of Wikidata dump 2018 are illustrated in Figure 4,
while Table 6 consists of a confusion matrix part for the algorithms utilized in selecting
the top 20%, 25%, and 30% nodes. In this experiment, all walking strategies have a
good performance in terms of MAE, whereas, looking at Table 6, we can identify that
the DT regressor performs best in detecting the TPs in the Random Walk and Walklet
walking strategies.

Information 2024, 15, x FOR PEER REVIEW 10 of 16

Figure 3. MAE evaluation measure for each algorithm per walking strategy for DBpedia v3.9.

Table 5. TP per walking strategy for test results of DBpedia v3.9 (Predicted/Actual nodes).

 Random HALK N-Gram Walklet
 20% 25% 30% 20% 25% 30% 20% 25% 30% 20% 25% 30%

SVR 121/309 189/389 266/464 137/309 207/389 290/464 125/309 192/389 256/464 147/309 202/389 278/464
GB 120/309 185/389 264/464 128/309 186/389 269/464 113/309 190/389 271/464 135/309 199/389 269/464
RF 198/309 296/389 389/464 277/309 354/389 425/464 113/309 227/389 330/464 130/309 199/389 280/464
AB 116/309 210/389 281/464 121/309 209/389 309/464 203/309 254/389 305/464 148/309 212/389 278/464
DT 282/309 356/389 426/464 252/309 338/389 419/464 232/309 325/389 412/464 210/309 210/389 310/464

As shown, Random Walk and Walklet walking strategies have better performances
in comparison with the other walkers, while, by combining their performance with TP
scores (Table 5), we identify that, by using a Random Walk strategy with a DT regressor,
we have a very good performance in most of the cases. DT consistently has a high number
of correct predictions (Table 5) in all cases (20%, 25%, 30%), in almost all walkers. The RF
regressor also achieves a remarkable achievement on the TPs selection in all cases (20%,
25%, 30%) using the HALK walking strategy; however, it is not the best performer overall,
as seen in Figure 3.

Wikidata (Nodes): The outcomes of Wikidata dump 2018 are illustrated in Figure 4,
while Table 6 consists of a confusion matrix part for the algorithms utilized in selecting
the top 20%, 25%, and 30% nodes. In this experiment, all walking strategies have a good
performance in terms of MAE, whereas, looking at Table 6, we can identify that the DT
regressor performs best in detecting the TPs in the Random Walk and Walklet walking
strategies.

Figure 4. MAE for each algorithm per walking strategy for Wikidata dump 2018.

0

0.1

0.2

0.3

0.4

20% 25% 30% 20% 25% 30% 20% 25% 30% 20% 25% 30% 20% 25% 30%

Random Walk HALK Anonymous Ngram Walklet

M
AE

SVR GB RF AB DT

0

0.01

0.02

0.03

0.04

20% 25% 30% 20% 25% 30% 20% 25% 30% 20% 25% 30% 20% 25% 30%

Random HALK Anonymous Ngram Walklet

M
AE

SVR GB RF AB DT

Figure 4. MAE for each algorithm per walking strategy for Wikidata dump 2018.

DBpedia (Edges): In Figure 5 the results of the edge prediction task are reported for
DBpedia v3.9. Table 7 presents the confusion matrix part of the various algorithms for the
selection of the 20%, 25%, and 30% top edges. As shown, all walking strategies have good
performances, while, by combining this performance with the TP scores (Table 7), we can
identify that, by using SVR, we have a very good performance in all cases.

Information 2024, 15, 238 11 of 16

Table 6. TP per walking strategy for test outcomes of Wikidata dump 2018 (Predicted/Actual nodes).

Random HALK N-Gram Walklet

20% 25% 30% 20% 25% 30% 20% 25% 30% 20% 25% 30%

SVR 5/55 25/69 13/82 14/55 22/69 24/82 9/55 13/69 22/82 14/55 23/69 31/82
GB 19/55 25/69 31/82 14/55 23/69 31/82 13/55 22/69 29/82 10/55 17/69 29/82
RF 20/55 29/69 37/82 13/55 22/69 31/82 13/55 21/69 27/82 40/55 54/69 68/82
AB 14/55 22/69 41/82 13/55 20/69 33/82 14/55 18/69 27/82 43/55 55/69 66/82
DT 52/55 65/69 75/82 27/55 43/69 50/82 10/55 17/69 33/82 53/55 67/69 80/82

Information 2024, 15, x FOR PEER REVIEW 11 of 16

Table 6. TP per walking strategy for test outcomes of Wikidata dump 2018 (Predicted/Actual nodes).

 Random HALK N-Gram Walklet
 20% 25% 30% 20% 25% 30% 20% 25% 30% 20% 25% 30%

SVR 5/55 25/69 13/82 14/55 22/69 24/82 9/55 13/69 22/82 14/55 23/69 31/82
GB 19/55 25/69 31/82 14/55 23/69 31/82 13/55 22/69 29/82 10/55 17/69 29/82
RF 20/55 29/69 37/82 13/55 22/69 31/82 13/55 21/69 27/82 40/55 54/69 68/82
AB 14/55 22/69 41/82 13/55 20/69 33/82 14/55 18/69 27/82 43/55 55/69 66/82
DT 52/55 65/69 75/82 27/55 43/69 50/82 10/55 17/69 33/82 53/55 67/69 80/82

DBpedia (Edges): In Figure 5 the results of the edge prediction task are reported for
DBpedia v3.9. Table 7 presents the confusion matrix part of the various algorithms for the
selection of the 20%, 25%, and 30% top edges. As shown, all walking strategies have good
performances, while, by combining this performance with the TP scores (Table 7), we can
identify that, by using SVR, we have a very good performance in all cases.

Figure 5. MAE for each algorithm per walking strategy for DBpedia v3.9 (edges).

Table 7. TP per walking strategy for test outcomes of DBpedia v3.9 (Predicted/Actual edges).

 Random HALK N-Gram Walklet
 20% 25% 30% 20% 25% 30% 20% 25% 30% 20% 25% 30%

SVR 55/90 78/113 101/136 55/90 78/113 101/136 55/90 78/113 101/136 55/90 78/113 101/136
GB 15/90 23/113 33/136 14/90 23/113 37/136 12/90 24/113 35/136 14/90 25/113 34/136
RF 15/90 22/113 33/136 19/90 25/113 39/136 16/90 25/113 37/136 16/90 25/113 37/136
AB 15/90 29/113 40/136 17/90 25/113 39/136 15/90 25/113 41/136 17/90 29/113 37/136
DT 17/90 39/113 66/136 30/90 58/113 70/136 31/90 59/113 70/136 24/90 52/113 70/136

Based on the confusion matrix, the SVR is the best performer, as it possesses the best
performance in all cases (20%, 25%, 30%), in all walkers.

Wikidata (Edges): Observing the performance of Wikidata dump 2018, based on Fig-
ure 6, it seems that all regressors trained well in all walking strategies. However, in Table
8, between various walking strategies and different regressors, SVR is optimal in regard
to the embeddings returned from the Random Walk strategy, predicting the properties
better, while the DT regression follows.

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14

20% 25% 30% 20% 25% 30% 20% 25% 30% 20% 25% 30% 20% 25% 30%

Random HALK Anonymous NGram Walklet

Μ
ΑΕ

SVR GB RF AB DT

Figure 5. MAE for each algorithm per walking strategy for DBpedia v3.9 (edges).

Table 7. TP per walking strategy for test outcomes of DBpedia v3.9 (Predicted/Actual edges).

Random HALK N-Gram Walklet

20% 25% 30% 20% 25% 30% 20% 25% 30% 20% 25% 30%

SVR 55/90 78/113 101/136 55/90 78/113 101/136 55/90 78/113 101/136 55/90 78/113 101/136
GB 15/90 23/113 33/136 14/90 23/113 37/136 12/90 24/113 35/136 14/90 25/113 34/136
RF 15/90 22/113 33/136 19/90 25/113 39/136 16/90 25/113 37/136 16/90 25/113 37/136
AB 15/90 29/113 40/136 17/90 25/113 39/136 15/90 25/113 41/136 17/90 29/113 37/136
DT 17/90 39/113 66/136 30/90 58/113 70/136 31/90 59/113 70/136 24/90 52/113 70/136

Based on the confusion matrix, the SVR is the best performer, as it possesses the best
performance in all cases (20%, 25%, 30%), in all walkers.

Wikidata (Edges): Observing the performance of Wikidata dump 2018, based on
Figure 6, it seems that all regressors trained well in all walking strategies. However,
in Table 8, between various walking strategies and different regressors, SVR is optimal
in regard to the embeddings returned from the Random Walk strategy, predicting the
properties better, while the DT regression follows.

Overall, Random Walk seems to be the best walking strategy for both nodes and edges.
Concerning entities, the DT regressor appears as the best predictor in both the DBpedia
and Wikidata nodes for predicting a ranking of the nodes related to user queries. On the
other hand, for property prediction, SVR stands out as the top-performing ML algorithm
in both DBpedia and Wikidata. As such for the rest of the paper, we will keep random
walks for the walking strategy and DT and SVR for selecting nodes and edges, respectively.

Information 2024, 15, 238 12 of 16Information 2024, 15, x FOR PEER REVIEW 12 of 16

Figure 6. MAE for each algorithm per walking strategy for Wikidata dump 2018 (properties).

Table 8. TP per walking strategy for Wikidata dump 2018 (Predicted/Actual Properties).

 Random HALK N-Gram Walklet
 20% 25% 30% 20% 25% 30% 20% 25% 30% 20% 25% 30%

SVR 67/108 101/135 120/162 9/108 40/135 67/162 9/108 40/135 67/162 9/108 40/135 67/162
GB 33/108 44/135 60/162 11/108 20/135 26/162 11/108 20/135 26/162 11/108 20/135 26/162
RF 26/108 37/135 60/162 16/108 28/135 36/162 16/108 28/135 36/162 16/108 28/135 36/162
AB 41/108 45/135 60/162 26/108 32/135 36/162 26/108 32/135 36/162 26/108 32/135 36/162
DT 36/108 54/135 50/162 63/108 81/135 95/162 63/108 81/135 95/162 63/108 81/135 95/162

Overall, Random Walk seems to be the best walking strategy for both nodes and
edges. Concerning entities, the DT regressor appears as the best predictor in both the
DBpedia and Wikidata nodes for predicting a ranking of the nodes related to user queries.
On the other hand, for property prediction, SVR stands out as the top-performing ML
algorithm in both DBpedia and Wikidata. As such for the rest of the paper, we will keep
random walks for the walking strategy and DT and SVR for selecting nodes and edges,
respectively.

5.2. Evaluating Summary Quality
Furthermore, evaluating the assigned weights of the nodes and the edges separately,

we next generate the summaries and use coverage to evaluate its overall quality. Coverage
is specified as follows:

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒(𝐺) = 12 ቈ1 − ∑ 𝑊(𝑒)∈ீௗேௗ௦ − ∑ 𝑊(𝑒)∈ௌ௨௬ேௗ௦ + ∑ 𝑊(𝑒)∈ா௫௧ேௗ௦ ∑ 𝑊(𝑒)∈ீௗேௗ௦
+ 12 ቈ1 − ∑ 𝑊(𝑒)∈ீௗாௗ௦ − ∑ 𝑊(𝑒)∈ௌ௨௬ாௗ௦ + ∑ 𝑊(𝑒)∈ா௫௧ாௗ௦ ∑ 𝑊(𝑒)∈ீௗாௗ௦

Coverage takes into account both the nodes and the edges of the generated summary
graph, trying to identify how much is in the total weight of the constructed summary from
a summary that would be constructed if we knew beforehand the correct (golden) weights
for the node and the edges of the graph (i.e., GoldenNodes and GoldenEdges). For calcu-
lating coverage, we take into consideration both the weights of the nodes and the weights
of the edges of the generated summary (i.e., SummaryNodes, SummaryEdges), whereas
we penalize the resulting coverage by the weight of the extra nodes/edges that are added
in the summary by the node linking algorithm (i.e., ExtraNodes, ExtraEdges).

In this experiment, we also calculate the coverage of the summaries generated by our
competitors, SumMER and RDFDigest+. Both the aforementioned approaches work only
on the ontology part of the KGs, and, when applied to the entire KGs, they face scalability
problems and the algorithms do not terminate. As such, to be able to compare our ap-
proach with those competitors, we sampled 1548 nodes from the DBpedia 3.9 and 276

0

0.02

0.04

0.06

0.08

20% 25% 30% 20% 25% 30% 20% 25% 30% 20% 25% 30% 20% 25% 30%

Random HALK Anonymous NGram Walklet
Μ
ΑΕ

SVR GB RF AB DT

Figure 6. MAE for each algorithm per walking strategy for Wikidata dump 2018 (properties).

Table 8. TP per walking strategy for Wikidata dump 2018 (Predicted/Actual Properties).

Random HALK N-Gram Walklet

20% 25% 30% 20% 25% 30% 20% 25% 30% 20% 25% 30%

SVR 67/108 101/135 120/162 9/108 40/135 67/162 9/108 40/135 67/162 9/108 40/135 67/162
GB 33/108 44/135 60/162 11/108 20/135 26/162 11/108 20/135 26/162 11/108 20/135 26/162
RF 26/108 37/135 60/162 16/108 28/135 36/162 16/108 28/135 36/162 16/108 28/135 36/162
AB 41/108 45/135 60/162 26/108 32/135 36/162 26/108 32/135 36/162 26/108 32/135 36/162
DT 36/108 54/135 50/162 63/108 81/135 95/162 63/108 81/135 95/162 63/108 81/135 95/162

5.2. Evaluating Summary Quality

Furthermore, evaluating the assigned weights of the nodes and the edges separately,
we next generate the summaries and use coverage to evaluate its overall quality. Coverage
is specified as follows:

Coverage(G) =
1
2

[
1 −

∑e∈GoldenNodes W(e)− ∑e∈SummaryNodes W(e) + ∑e∈ExtraNodes W(e)

∑e∈GoldenNodes W(e)

]

+
1
2

[
1 −

∑e∈GoldenEdges W(e)− ∑e∈SummaryEdges W(e) + ∑e∈ExtraEdges W(e)

∑e∈GoldenEdges W(e)

]
Coverage takes into account both the nodes and the edges of the generated summary

graph, trying to identify how much is in the total weight of the constructed summary
from a summary that would be constructed if we knew beforehand the correct (golden)
weights for the node and the edges of the graph (i.e., GoldenNodes and GoldenEdges).
For calculating coverage, we take into consideration both the weights of the nodes and the
weights of the edges of the generated summary (i.e., SummaryNodes, SummaryEdges),
whereas we penalize the resulting coverage by the weight of the extra nodes/edges that
are added in the summary by the node linking algorithm (i.e., ExtraNodes, ExtraEdges).

In this experiment, we also calculate the coverage of the summaries generated by
our competitors, SumMER and RDFDigest+. Both the aforementioned approaches work
only on the ontology part of the KGs, and, when applied to the entire KGs, they face
scalability problems and the algorithms do not terminate. As such, to be able to compare
our approach with those competitors, we sampled 1548 nodes from the DBpedia 3.9 and
276 nodes from Wikidata (dump 2018) to use for our comparisons. We selected a smaller
number of nodes from Wikidata, as Wikidata is significantly larger than DBpedia, requiring
more calculations for considering the entire graph in the linking phase.

The results are shown in Figures 7 and 8 for the different linking methods and competitors.

Information 2024, 15, 238 13 of 16

Information 2024, 15, x FOR PEER REVIEW 13 of 16

nodes from Wikidata (dump 2018) to use for our comparisons. We selected a smaller num-
ber of nodes from Wikidata, as Wikidata is significantly larger than DBpedia, requiring
more calculations for considering the entire graph in the linking phase.

The results are shown in Figures 7 and 8 for the different linking methods and com-
petitors.

Figure 7. Coverage per linking method for DBpedia v3.9 summaries.

Figure 8. Coverage per linking method for Wikidata dump 2018 summaries.

As shown, in both datasets, our approach, with all linking algorithms, achieves a
higher coverage than SumMER and RDFDigest+, leading us to adopt the SDIST(Kruskal)
for generating our summaries. Examining the TP confusion matrix party shown in Table
9, it should be noted that approaches based on embeddings consistently yield the best
predictions of the nodes across all sizes of summary, outperforming both competitors in
all cases

Table 9. TP values for our embeddings-based approach for constructing a summary, SumMER and
RDFDigest+ for DBpedia v3.9 and Wikidata dump 2018.

Method Dataset 20% 25% 30%
Embeddings DBpedia

v3.9

282/309 358/389 426/464
SumMER 110/309 142/389 168/464
RDFDigest+ 98/309 138/389 187/464
Embeddings

Wikidata dump
2018

52/55 65/69 79/82
SumMER 50/55 62/69 73/82
RDFDigest+ 24/55 33/69 44/82

Note that, although CHINS is used by both SumMER and RDFDigest+, our approach
not only selects the best nodes but also predicts the weights of the edges to be used and
uses them for node linking, further boosting the quality of the summary.

0

0.2

0.4

0.6

0.8

1

20% 25% 30%
Co

ve
ra

ge

Graph Summarization Approaches

MST(Kruskal)

MST(Prim)

CHINS

SDIST(Kruskal)

SDIST(Prim)

SumMER

RDFDigest+

0

0.2

0.4

0.6

0.8

1

20% 25% 30%

Co
ve

ra
ge

Graph Summarization Approaches

MST(Kruskal)

MST(Prim)

CHINS

SDIST(Kruskal)

SDIST(Prim)

SumMER

RDFDigest+

Figure 7. Coverage per linking method for DBpedia v3.9 summaries.

Information 2024, 15, x FOR PEER REVIEW 13 of 16

nodes from Wikidata (dump 2018) to use for our comparisons. We selected a smaller num-
ber of nodes from Wikidata, as Wikidata is significantly larger than DBpedia, requiring
more calculations for considering the entire graph in the linking phase.

The results are shown in Figures 7 and 8 for the different linking methods and com-
petitors.

Figure 7. Coverage per linking method for DBpedia v3.9 summaries.

Figure 8. Coverage per linking method for Wikidata dump 2018 summaries.

As shown, in both datasets, our approach, with all linking algorithms, achieves a
higher coverage than SumMER and RDFDigest+, leading us to adopt the SDIST(Kruskal)
for generating our summaries. Examining the TP confusion matrix party shown in Table
9, it should be noted that approaches based on embeddings consistently yield the best
predictions of the nodes across all sizes of summary, outperforming both competitors in
all cases

Table 9. TP values for our embeddings-based approach for constructing a summary, SumMER and
RDFDigest+ for DBpedia v3.9 and Wikidata dump 2018.

Method Dataset 20% 25% 30%
Embeddings DBpedia

v3.9

282/309 358/389 426/464
SumMER 110/309 142/389 168/464
RDFDigest+ 98/309 138/389 187/464
Embeddings

Wikidata dump
2018

52/55 65/69 79/82
SumMER 50/55 62/69 73/82
RDFDigest+ 24/55 33/69 44/82

Note that, although CHINS is used by both SumMER and RDFDigest+, our approach
not only selects the best nodes but also predicts the weights of the edges to be used and
uses them for node linking, further boosting the quality of the summary.

0

0.2

0.4

0.6

0.8

1

20% 25% 30%
Co

ve
ra

ge

Graph Summarization Approaches

MST(Kruskal)

MST(Prim)

CHINS

SDIST(Kruskal)

SDIST(Prim)

SumMER

RDFDigest+

0

0.2

0.4

0.6

0.8

1

20% 25% 30%

Co
ve

ra
ge

Graph Summarization Approaches

MST(Kruskal)

MST(Prim)

CHINS

SDIST(Kruskal)

SDIST(Prim)

SumMER

RDFDigest+

Figure 8. Coverage per linking method for Wikidata dump 2018 summaries.

As shown, in both datasets, our approach, with all linking algorithms, achieves a
higher coverage than SumMER and RDFDigest+, leading us to adopt the SDIST(Kruskal)
for generating our summaries. Examining the TP confusion matrix party shown in Table 9,
it should be noted that approaches based on embeddings consistently yield the best pre-
dictions of the nodes across all sizes of summary, outperforming both competitors in
all cases.

Table 9. TP values for our embeddings-based approach for constructing a summary, SumMER and
RDFDigest+ for DBpedia v3.9 and Wikidata dump 2018.

Method Dataset 20% 25% 30%

Embeddings
DBpedia

v3.9

282/309 358/389 426/464
SumMER 110/309 142/389 168/464
RDFDigest+ 98/309 138/389 187/464

Embeddings
Wikidata dump

2018

52/55 65/69 79/82
SumMER 50/55 62/69 73/82
RDFDigest+ 24/55 33/69 44/82

Note that, although CHINS is used by both SumMER and RDFDigest+, our approach
not only selects the best nodes but also predicts the weights of the edges to be used and
uses them for node linking, further boosting the quality of the summary.

5.3. Execution Time

Subsequently, we assess the effectiveness of the different components within our system.
Computational complexities of walking strategies (see Table 1) and centrality mea-

sures [5] differ and are influenced by specific factors. Walking strategies, in principle, have
lower complexities due to their parameter-dependent nature, whereas traditional graph

Information 2024, 15, 238 14 of 16

metrics’ complexities are primarily determined by the size of the graph. As in our case, we
utilize the whole KG, and computing the centrality measures is computationally expensive;
as such, walking strategies dominate in terms of execution time.

Node selection. The average processing time for identifying the most significant
nodes in the two datasets is shown in Table 10. RDFDigest+ and SumMER rely on centrality
measures and, as such, although they also use approximation algorithms, they are one order
of magnitude slower than our method. In the table, we also added the time to identify the
weights of the properties additionally spent in our case, which is minimal—both SumMER
and RDFDigest+ are assumed to have the same weight for all edges.

Table 10. Execution Time for selecting top-k nodes (sec).

DBpedia v3.9 Wikidata (Dump2018)

Approach Nodes (1548) Edges Nodes (276) Edges

Embeddings 12,385 214 299 474
RDFDigest+ 176,031 - 1694 -

SumMER 177,335 - 1754 -

Node Linking. Beyond node selection, linking the top-k nodes is faster in our method.
The results are shown in Figure 9 (log scale) only for DBpedia 3.9 due to lack of space,
but they are similar for Wikidata as well. Both SumMER and RDFDigest+ rely on CHINS;
however, although the worst-case complexities of CHINS are the same with MST and
SDIST, the average complexities as already explained are better for MST and SDIST, and, as
such, in practice they are two orders of magnitude faster in our experiments.

Information 2024, 15, x FOR PEER REVIEW 14 of 16

5.3. Execution Time
Subsequently, we assess the effectiveness of the different components within our sys-

tem.
Computational complexities of walking strategies (see Table 1) and centrality

measures [5] differ and are influenced by specific factors. Walking strategies, in principle,
have lower complexities due to their parameter-dependent nature, whereas traditional
graph metrics’ complexities are primarily determined by the size of the graph. As in our
case, we utilize the whole KG, and computing the centrality measures is computationally
expensive; as such, walking strategies dominate in terms of execution time.

Node selection. The average processing time for identifying the most significant
nodes in the two datasets is shown in Table 10. RDFDigest+ and SumMER rely on central-
ity measures and, as such, although they also use approximation algorithms, they are one
order of magnitude slower than our method. In the table, we also added the time to iden-
tify the weights of the properties additionally spent in our case, which is minimal—both
SumMER and RDFDigest+ are assumed to have the same weight for all edges.

Table 10. Execution Time for selecting top-k nodes (sec).

 DBpedia v3.9 Wikidata (Dump2018)
Approach Nodes (1548) Edges Nodes (276) Edges

Embeddings 12,385 214 299 474
RDFDigest+ 176,031 - 1694 -

SumMER 177,335 - 1754 -

Node Linking. Beyond node selection, linking the top-k nodes is faster in our
method. The results are shown in Figure 9 (log scale) only for DBpedia 3.9 due to lack of
space, but they are similar for Wikidata as well. Both SumMER and RDFDigest+ rely on
CHINS; however, although the worst-case complexities of CHINS are the same with MST
and SDIST, the average complexities as already explained are better for MST and SDIST,
and, as such, in practice they are two orders of magnitude faster in our experiments.

Figure 9. Execution times (secs) of the linking nodes algorithms in DBpedia 3.9.

This verifies that, in node linking, the devil is in the details, and our approach not
only provides summaries of better quality but also of more efficiency, being now able to
work on big KGs using a commodity computer.

Limitations. Undoubtedly, with a plethora of user queries accessible for all
knowledge graphs, ideal summaries could be generated for each that would be straight-
forward, focusing precisely on the nodes/edges most commonly queried. However, these
query logs are only accessible for a restricted number of scenarios, necessitating method-
ologies such as the one advocated in this paper to construct high-quality summaries, even
in the absence of such logs. However, in order to train our algorithm, we still require at

1.00

10.00

100.00

1,000.00

10,000.00

100,000.00

20% 25% 30%

se
cs

MST(Kruskal) MST(Prim) SDIST(Kruskal) SDIST(Prim) CHINS

Figure 9. Execution times (secs) of the linking nodes algorithms in DBpedia 3.9.

This verifies that, in node linking, the devil is in the details, and our approach not only
provides summaries of better quality but also of more efficiency, being now able to work
on big KGs using a commodity computer.

Limitations. Undoubtedly, with a plethora of user queries accessible for all knowledge
graphs, ideal summaries could be generated for each that would be straightforward,
focusing precisely on the nodes/edges most commonly queried. However, these query
logs are only accessible for a restricted number of scenarios, necessitating methodologies
such as the one advocated in this paper to construct high-quality summaries, even in the
absence of such logs. However, in order to train our algorithm, we still require at least one
version of the knowledge graph with enough queries in order to train our models, which
might not be available.

6. Conclusions

In this paper, we present our embeddings-based approach for generating high-quality
structural non-quotient semantic summaries, answering the following two key questions:
(a) what methods can be utilized to identify the most significant nodes, and (b) how could

Information 2024, 15, 238 15 of 16

these nodes be linked to generate a subgraph of the original graph? To answer the first
question, we exploit embeddings and, specifically, explore various walking strategies select-
ing Random Walks. Then, we use machine learning algorithms for capturing importance,
converting the selection of the k most important nodes into a regression problem and se-
lecting the DT regressor. Being one order of magnitude faster in regard to computing node
importance, we are also able to compute the importance of the edges (using SVR), taking
their weight into consideration when linking the top-k nodes. Further, we carefully select
the optimal Steiner Tree approximation for our problem, the SDISTG, with it being two
orders of magnitude faster than competitors. Our approach achieved coverage scores of 0.8,
0.81, and 0.81 for 20%, 25%, and 30% summaries, respectively, on DBpedia v3.9. Similarly,
with Wikidata dump 2018, our method achieved coverage scores of 0.94 across all summary
sizes. However, our approach faces the problem of the availability of golden-standard
data, such as query logs, that produce the frequencies of entities and properties, and are
therefore the criterion for the most important elements. Therefore, future efforts should
focus on identifying such data collection methods to enhance the robustness and reliability
of our summarization technique. For future work, our methodology will be expanded to
include the evaluation of RDF2Vec alongside other embedders like TransE, TransR, RotatE,
etc. [11,27]. Furthermore, we aim to investigate additional ML methodologies, such as
techniques for learning to rank [28] and deep neural networks.

Author Contributions: Methodology, G.E.T.; Software, G.E.T.; Validation, H.K.; Writing—review &
editing, N.P. and H.K.; Visualization, G.E.T.; Supervision, N.P. and H.K. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Čebirić, Š.; Goasdoué, F.; Kondylakis, H.; Kotzinos, D.; Manolescu, I.; Troullinou, G.; Zneika, M. Summarizing semantic graphs: A

survey. VLDB J. 2019, 28, 295–327. [CrossRef]
2. Pappas, A.; Troullinou, G.; Roussakis, G.; Kondylakis, H.; Plexousakis, D. Exploring importance measures for summarizing RDF/S

KBs. In Proceedings of the 14th International Conference, ESWC 2017, Portorož, Slovenia, 28 May–1 June 2017; pp. 387–403.
3. Peroni, S.; Motta, E.; d’Aquin, M. Identifying key concepts in an ontology, through the integration of cognitive principles with

statistical and topological measures. In Proceedings of the 3rd Asian Semantic Web Conference, ASWC 2008, Bangkok, Thailand,
8–11 December 2008; Springer: Berlin/Heidelberg, Germany, 2008; pp. 242–256.

4. Trouli, G.E.; Troullinou, G.; Koumakis, L.; Papadakis, N.; Kondylakis, H. SumMER: Summarizing RDF/S KBs using machine
learning. In Proceedings of the ISWC 2021: Posters, Demos and Industry Tracks, Virtual Conference, 24–28 October 2021.

5. Trouli, G.E.; Pappas, A.; Troullinou, G.; Koumakis, L.; Papadakis, N.; Kondylakis, H. SumMER: Structural summarization for
RDF/S KGs. Algorithms 2023, 16, 18. [CrossRef]

6. Troullinou, G.; Kondylakis, H.; Stefanidis, K.; Plexousakis, D. Exploring RDFS KBs Using Summaries. In Proceedings of the 17th
International Semantic Web Conference, Monterey, CA, USA, 8–12 October 2018; pp. 268–284.

7. Wu, G.; Li, J.; Feng, L.; Wang, K. Identifying potentially important concepts and relations in an ontology. In Proceedings of the
7th International Semantic Web Conference, ISWC 2008, Karlsruhe, Germany, 26–30 October 2008; Springer: Berlin/Heidelberg,
Germany, 2008; pp. 33–49.

8. Zhang, X.; Cheng, G.; Qu, Y. Ontology summarization based on rdf sentence graph. In Proceedings of the 16th International
Conference on World Wide Web, Banff, AB, Canada, 8–12 May 2007; pp. 707–716.

9. Ristoski, P.; Rosati, J.; Di Noia, T.; De Leone, R.; Paulheim, H. RDF2Vec: RDF Graph Embeddings and Their Applications. Semant.
Web 2018, 10, 721–752. [CrossRef]

10. Steenwinckel, B.; Vandewiele, G.; Bonte, P.; Weyns, M.; Paulheim, H.; Ristoski, P.; De Turck, F.; Ongenae, F. Walk Extraction
Strategies for Node Embeddings with RDF2Vec in Knowledge Graphs. In Proceedings of the Database and Expert Systems
Applications-DEXA 2021 Workshops: BIOKDD, IWCFS, MLKgraphs, AI-CARES, ProTime, AISys 2021, Virtual Event, 27–30
September 2021.

https://doi.org/10.1007/s00778-018-0528-3
https://doi.org/10.3390/a16010018
https://doi.org/10.3233/SW-180317

Information 2024, 15, 238 16 of 16

11. Biswas, R. Embedding-Based Link Prediction for Knowledge Graph Completion. In Proceedings of the 29th ACM International
Conference on Information & Knowledge Management, Virtual Event, 19–23 October 2020. [CrossRef]

12. Ababio, I.B.; Chen, J.; Chen, Y.; Xiao, L. Link Prediction Based on Heuristics and Graph Attention. In Proceedings of the IEEE
International Conference on Big Data (Big Data), Atlanta, GA, USA, 10–13 December 2020; pp. 5428–5434. [CrossRef]

13. Setty, V. Extreme Classification for Answer Type Prediction in Question Answering. arXiv 2023, arXiv:2304.12395.
14. Wang, K.; Li, S.; Li, J.; Qi, G.; Ji, Q. An Embedding-based Approach to Inconsistency-tolerant Reasoning with Inconsistent

Ontologies. arXiv 2023, arXiv:2304.01664.
15. Gunaratna, K.; Yazdavar, A.H.; Thirunarayan, K.; Sheth, A.; Cheng, G. Relatedness-Based Multi-Entity Summarization. In

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17), Melbourne, Australia, 19–25
August 2017. [CrossRef] [PubMed] [PubMed Central]

16. Niazmand, E.; Sejdiu, G.; Graux, D.; Vidal, M.E. Efficient Semantic Summary Graphs for Querying Large Knowledge Graphs. Int.
J. Inf. Manag. Data Insights 2022, 2, 100082. [CrossRef]

17. Scherp, A.; Richerby, D.; Blume, T.; Cochez, M.; Rau, J. Structural summarization of semantic graphs using quotients. Trans. Graph
Data Knowl. 2023, 1, 12.

18. Queiroz-Sousa, P.O.; Salgado, A.; Pires, C. A method for building personalized ontology summaries. J. Inf. Data Manag. 2013,
4, 236.

19. Vassiliou, G.; Troullinou, G.; Papadakis, N.; Kondylakis, H. WBSum: Workload-based summaries for RDF/S KBs. In Proceedings
of the 33rd International Conference on Scientific and Statistical Database Management (SSDBM), Tampa, FL, USA, 6–7 July 2021;
pp. 248–252.

20. Vassiliou, G.; Alevizakis, F.; Papadakis, N.; Kondylakis, H. iSummary: Workload-Based, Personalized Summaries for Knowledge
Graphs. In Proceedings of the 20th International Conference, ESWC 2023, Hersonissos, Greece, 28 May–1 June 2023. [CrossRef]

21. Safavi, T.; Belth, C.; Faber, L.; Mottin, D.; Müller, E.; Koutra, D. Personalized Knowledge Graph Summarization: From the Cloud
to Your Pocket. In Proceedings of the 2019 IEEE International Conference on Data Mining (ICDM), Beijing, China, 8–11 November
2019; pp. 528–537.

22. Hakimi, S.L. Steiner’s problem in graphs and its implications. Networks 1971, 1, 113–133. [CrossRef]
23. Levin, Y. Algorithm for the Shortest Connection of a Group of Graph Vertices. Sov. Math. Dokl. 1971, 12, 1477–1481.
24. Voß, S. Steiner’s problem in graphs: Heuristic methods. Discret. Appl. Math. 1992, 40, 45–72. [CrossRef]
25. Akhter, A.; Ngomo, A.N.; Saleem, M. An Empirical Evaluation of RDF Graph Partitioning Techniques. In Proceedings of the

European Knowledge Acquisition Workshop, Nancy, France, 12–16 November 2018; Springer: Cham, Switzerland, 2018; pp. 3–18.
26. Wikidata SPARQL Log. Available online: https://iccl.inf.tu-dresden.de/web/Wikidata_SPARQL_Logs (accessed on 12 Decem-

ber 2023).
27. Shi, Y.; Cheng, G.; Tran, T.K.; Kharlamov, E.; Shen, Y. Efficient Computation of Semantically Cohesive Subgraphs for Keyword-

Based Knowledge Graph Exploration. In Proceedings of the Web Conference (WWW), Ljubljana, Slovenia, 19–23 April 2021;
pp. 1410–1421. [CrossRef]

28. Ibrahim, O.A.S.; Younis, E.M.G. Combining variable neighborhood with gradient ascent for learning to rank problem. Neural
Comput. Appl. 2023, 35, 12599–12610. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1145/3340531.3418512
https://doi.org/10.1109/BigData50022.2020.9378428
https://doi.org/10.24963/ijcai.2017/147
https://www.ncbi.nlm.nih.gov/pubmed/29051696
https://www.ncbi.nlm.nih.gov/pmc/PMC5644492
https://doi.org/10.1016/j.jjimei.2022.100082
https://doi.org/10.1007/978-3-031-33455-9_12
https://doi.org/10.1002/net.3230010203
https://doi.org/10.1016/0166-218X(92)90021-2
https://iccl.inf.tu-dresden.de/web/Wikidata_SPARQL_Logs
https://doi.org/10.1145/3442381.3449900
https://doi.org/10.1007/s00521-023-08412-4

	Introduction
	Related Work
	Preliminaries
	Semantic Summaries
	Weight Assignment and Node Selection
	Linking Selected Nodes

	Evaluation
	Machine Learning for Node/Edge Selection
	Evaluating Summary Quality
	Execution Time

	Conclusions
	References

