Resource Allocation and Pricing in Energy Harvesting Serverless Computing Internet of Things Networks
Abstract
:1. Introduction
- We consider a pricing problem between multiple servers and MUs. We model the interaction between servers and MUs as a Stackelberg game where MUs are followers. These MUs determine their own demand strategy, which represents the number of resources required by the MUs for each server. Servers are leaders that set their price according to the response of the MUs in order to maximize their profit.
- We decompose the resource allocation and pricing problem between multiple servers and MUs into a group of subproblems, in which leaders can determine the price of their resources, and followers can choose appropriate demand strategies according to the leader’s price. We have proved the existence of game equilibrium. In addition, we have developed an iterative algorithm to find the equilibrium price of the server. The equilibrium solution of all the above subproblems constitutes the equilibrium solution of the original problem.
- We evaluate the Stackelberg equilibrium price under various energy consumption costs and study the impact of SEC prices on MU’s demand strategy.
2. Related Works
3. System Model
3.1. Energy Harvesting
3.2. Energy Consumption
4. Problem Formulation
4.1. Follower Strategy
4.1.1. Two Servers
4.1.2. Servers
4.2. Leader Strategy
4.3. The Existence of Stackelberg Equilibrium
5. Iterative Price Update Algorithm
Algorithm 1 Iterative price update algorithm |
|
6. Simulations
6.1. Stackelberg Game
6.2. Impact of Energy Harvesting on Price
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Voorsluys, W.; Broberg, J.; Buyya, R. Introduction to cloud computing. In Cloud Computing: Principles and Paradigms; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011; pp. 1–41. [Google Scholar]
- Naha, R.K.; Garg, S.; Georgakopoulos, D.; Jayaraman, P.P.; Gao, L.; Xiang, Y.; Ranjan, R. Fog computing: Survey of trends, architectures, requirements, and research directions. IEEE Access 2018, 6, 47980–48009. [Google Scholar] [CrossRef]
- Moghaddam, F.F.; Ahmadi, M.; Sarvari, S.; Eslami, M.; Golkar, A. Cloud computing challenges and opportunities: A survey. In Proceedings of the 2015 1st International Conference on Telematics and Future Generation Networks (TAFGEN), Kuala Lumpur, Malaysia, 26–28 May 2015; IEEE: New York, NY, USA, 2015; pp. 34–38. [Google Scholar]
- Corcoran, P.; Datta, S.K. Mobile-Edge Computing and the Internet of Things for Consumers: Extending cloud computing and services to the edge of the network. IEEE Consum. Electron. Mag. 2016, 5, 73–74. [Google Scholar] [CrossRef]
- Liu, Y.; Han, Y.; Zhang, A.; Xia, X.; Chen, F.; Zhang, M.; He, Q. QoE-aware Data Caching Optimization with Budget in Edge Computing. In Proceedings of the IEEE International Conference on Web Services (ICWS), Virtual, 5–10 September 2021; pp. 324–334. [Google Scholar]
- Taleb, T.; Samdanis, K.; Mada, B.; Flinck, H.; Dutta, S.; Sabella, D. On Multi-Access Edge Computing: A Survey of the Emerging 5G Network Edge Cloud Architecture and Orchestration. IEEE Commun. Surv. Tutor. 2017, 19, 1657–1681. [Google Scholar] [CrossRef]
- Gambín, Á.F.; Rossi, M. A sharing framework for energy and computing resources in multi-operator mobile networks. IEEE Trans. Netw. Serv. Manag. 2019, 17, 1140–1152. [Google Scholar] [CrossRef]
- Belkhir, L.; Elmeligi, A. Assessing ICT global emissions footprint: Trends to 2040 and recommendations. J. Clean. Prod. 2018, 177, 448–463. [Google Scholar] [CrossRef]
- Clemm, A.; Westphal, C. Challenges and Opportunities in Green Networking. In Proceedings of the IEEE 8th International Conference on Network Softwarization (NetSoft), Milan, Italy, 27 June–1 July 2022; pp. 43–48. [Google Scholar]
- Hu, S.; Chen, X.; Ni, W.; Wang, X.; Hossain, E. Modeling and Analysis of Energy Harvesting and Smart Grid-Powered Wireless Communication Networks: A Contemporary Survey. IEEE Trans. Green Commun. Netw. 2020, 4, 461–496. [Google Scholar] [CrossRef]
- Jiang, C.; Fan, T.; Gao, H.; Shi, W.; Liu, L.; Cerin, C.; Wan, J. Energy Aware Edge Computing: A Survey. Comput. Commun. 2020, 151, 556–580. [Google Scholar] [CrossRef]
- Xu, J.; Chen, L.; Ren, S. Online Learning for Offloading and Autoscaling in Energy Harvesting Mobile Edge Computing. IEEE Trans. Cog. Commun. Netw. 2017, 3, 361–373. [Google Scholar] [CrossRef]
- Cecchinato, D.; Berno, M.; Esposito, F.; Rossi, M. Allocation of Computing Tasks In Distributed MEC Servers Co-Powered By Renewable Sources And The Power Grid. In Proceedings of the IEEE ICASSP, Barcelona, Spain, 4–8 May 2020; pp. 8971–8975. [Google Scholar]
- Baresi, L.; Mendonça, D.F. Towards a serverless platform for edge computing. In Proceedings of the IEEE International Conference on Fog Computing (ICFC), Prague, Czech Republic, 24–26 June 2019; pp. 1–10. [Google Scholar]
- McGrath, G.; Brenner, P.R. Serverless computing: Design, implementation, and performance. In Proceedings of the IEEE 37th International Conference on Distributed Computing Systems Workshops (ICDCSW), Atlanta, GA, USA, 5–8 June 2017; pp. 405–410. [Google Scholar]
- Kjorveziroski, V.; Filiposka, S.; Trajkovik, V. Iot serverless computing at the edge: A systematic mapping review. Computers 2021, 10, 130. [Google Scholar] [CrossRef]
- Liu, S.; Liu, L.; Tang, J.; Yu, B.; Wang, Y.; Shi, W. Edge Computing for Autonomous Driving: Opportunities and Challenges. Proc. IEEE 2019, 107, 1697–1716. [Google Scholar] [CrossRef]
- Ahmed, E.; Rehmani, M.H. Mobile edge computing: Opportunities, solutions, and challenges. Future Gener. Comput. Syst. 2017, 70, 59–63. [Google Scholar] [CrossRef]
- Li, Y.; Liu, J.; Jiang, B.; Yang, C.; Wang, Q. Cost Minimization in Serverless Computing with Energy Harvesting SECs. In Proceedings of the 2023 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), Beijing, China, 14–16 June 2023; pp. 1–7. [Google Scholar] [CrossRef]
- Patros, P.; Spillner, J.; Papadopoulos, A.V.; Varghese, B.; Rana, O.; Dustdar, S. Toward Sustainable Serverless Computing. IEEE Internet Comput. 2021, 25, 42–50. [Google Scholar] [CrossRef]
- Gu, L.; Cai, J.; Zeng, D.; Zhang, Y.; Jin, H.; Dai, W. Energy efficient task allocation and energy scheduling in green energy powered edge computing. Future Gener. Comput. Syst. 2019, 95, 89–99. [Google Scholar] [CrossRef]
- Li, W.; Yang, T.; Delicato, F.C.; Pires, P.F.; Tari, Z.; Khan, S.U.; Zomaya, A.Y. On Enabling Sustainable Edge Computing with Renewable Energy Resources. IEEE Commun. Mag. 2018, 56, 94–101. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, B.; Liu, J.; Han, Z. A Joint Offloading and Energy Cooperation Scheme for Edge Computing Networks. In Proceedings of the IEEE ICC, Seoul, Republic of Korea, 16–20 May 2022; pp. 5537–5542. [Google Scholar]
- Perin, G.; Berno, M.; Erseghe, T.; Rossi, M. Towards Sustainable Edge Computing Through Renewable Energy Resources and Online, Distributed and Predictive Scheduling. IEEE Trans. Netw. Serv. Manag. 2022, 19, 306–321. [Google Scholar] [CrossRef]
- Karimiafshar, A.; Hashemi, M.R.; Toosi, A.N. A request dispatching method for efficient use of renewable energy in fog computing environments. Future Gener. Comput. Syst. 2021, 114, 631–646. [Google Scholar] [CrossRef]
- Aslanpour, M.S.; Toosi, A.N.; Cheema, M.A.; Gaire, R. Energy-aware resource scheduling for serverless edge computing. In Proceedings of the 22nd IEEE International Symposium on Cluster, Cloud and Internet Computing (CCGrid), Taormina, Italy, 16–19 May 2022; pp. 190–199. [Google Scholar]
- Cicconetti, C.; Conti, M.; Passarella, A. Uncoordinated access to serverless computing in MEC systems for IoT. Comput. Netw. 2020, 172, 107184–107190. [Google Scholar] [CrossRef]
- Cicconetti, C.; Conti, M.; Passarella, A. A Decentralized Framework for Serverless Edge Computing in the Internet of Things. IEEE Trans. Netw. Serv. Manag. 2021, 18, 2166–2180. [Google Scholar] [CrossRef]
- Sethunath, M.; Peng, Y. A joint function warm-up and request routing scheme for performing confident serverless computing. High Confid. Comput. 2022, 2, 100071. [Google Scholar] [CrossRef]
- Bermbach, D.; Bader, J.; Hasenburg, J.B.; Pfandzelter, T.; Thamsen, L. AuctionWhisk: Using an auction-inspired approach for function placement in serverless fog platforms. Wiley J. Softw. Pract. Exp. 2022, 52, 1143–1169. [Google Scholar] [CrossRef]
- Deng, S.; Zhao, H.; Xiang, Z.; Zhang, C.; Jiang, R.; Li, Y.; Yin, J.; Dustdar, S.; Zomaya, A.Y. Dependent Function Embedding for Distributed Serverless Edge Computing. IEEE Trans. Parallel Distrib. Syst. 2022, 33, 2346–2357. [Google Scholar] [CrossRef]
- Xie, R.; Gu, D.; Tang, Q.; Huang, T.; Yu, F.R. Workflow Scheduling in Serverless Edge Computing for the Industrial Internet of Things: A Learning Approach. IEEE Trans. Ind. Inform. 2022, 19, 8242–8252. [Google Scholar] [CrossRef]
- Benedetti, P.; Femminella, M.; Reali, G.; Steenhaut, K. Reinforcement Learning Applicability for Resource-Based Auto-scaling in Serverless Edge Applications. In Proceedings of the IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops), Pisa, Italy, 21–25 March 2022; pp. 674–679. [Google Scholar]
- Tang, Q.; Xie, R.; Yu, F.R.; Chen, T.; Zhang, R.; Huang, T.; Liu, Y. Distributed Task Scheduling in Serverless Edge Computing Networks for the Internet of Things: A Learning Approach. IEEE Internet Things J. 2022, 9, 19634–19648. [Google Scholar] [CrossRef]
- Ko, H.; Pack, S. Function-Aware Resource Management Framework for Serverless Edge Computing. IEEE Internet Things J. 2023, 10, 1310–1319. [Google Scholar] [CrossRef]
- Gupta, V.; Phade, S.; Courtade, T.; Ramchandran, K. Utility-based resource allocation and pricing for serverless computing. arXiv 2020, arXiv:2008.07793. [Google Scholar]
- Xie, R.; Tang, Q.; Qiao, S.; Zhu, H.; Yu, F.R.; Huang, T. When serverless computing meets edge computing: Architecture, challenges, and open issues. IEEE Wirel. Commun. 2021, 28, 126–133. [Google Scholar] [CrossRef]
- He, Z.; Sun, Y.; Feng, Z. Research on Resource Allocation of Autonomous Swarm Robots Based on Game Theory. Electronics 2023, 12, 4370. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Z.; Yang, B.; Nai, K.; Li, K. A Stackelberg game approach to multiple resources allocation and pricing in mobile edge computing. Future Gener. Comput. Syst. 2020, 108, 273–287. [Google Scholar] [CrossRef]
- Xiong, Z.; Feng, S.; Niyato, D.; Wang, P.; Han, Z. Optimal Pricing-Based Edge Computing Resource Management in Mobile Blockchain. In Proceedings of the IEEE ICC, Kansas City, MO, USA, 20–24 May 2018. [Google Scholar]
- Basar, T.; Olsder, G.J. Dynamic noncooperative game theory, ser. In Classics in Applied Mathematics; SIAM: Philadelphia, PA, USA, 1999. [Google Scholar]
- Basar, T.; Srikant, R. Revenue-maximizing pricing and capacity expansion in a many-users regime. In Proceedings of the IEEE INFOCOM, New York, NY, USA, 23–27 June 2002; Volume 1, pp. 294–301. [Google Scholar]
- Tütüncüoğlu, F.; Dán, G. Joint Resource Management and Pricing for Task Offloading in Serverless Edge Computing. IEEE Trans. Mob. Comput. 2023, 1–15. [Google Scholar]
- Li, K. A game theoretic approach to computation offloading strategy optimization for non-cooperative users in mobile edge computing. IEEE Trans. Sustain. Comput. 2018. [Google Scholar] [CrossRef]
- Liu, C.; Li, K.; Liang, J.; Li, K. COOPER-MATCH: Job offloading with a cooperative game for guaranteeing strict deadlines in MEC. IEEE Trans. Mob. Comput. 2019. [Google Scholar] [CrossRef]
- Yuan, X.; Xie, Z.; Tan, X. Computation offloading in uav-enabled edge computing: A stackelberg game approach. Sensors 2022, 22, 3854. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zheng, J.; Zhang, M.; Li, Y.; Wang, R.; He, Y. A Game-Based Computing Resource Allocation Scheme of Edge Server in Vehicular Edge Computing Networks Considering Diverse Task Offloading Modes. Sensors 2023, 24, 69. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Xu, H.; Zhou, X. Resource allocation in wireless-powered mobile edge computing systems for internet of things applications. Electronics 2019, 8, 206. [Google Scholar] [CrossRef]
- Measurement and Instrumentation Data Center (MIDC). Available online: https://midcdmz.nrel.gov/ (accessed on 4 April 2024).
1. | Set |
---|---|
The set of users | |
The set of servers | |
The set of all functions | |
The set of functions maintained on server k | |
The set of functions needed by MU i | |
T | The set of time slot |
W | Area of server’s solar panels |
2. | Variables |
CPU frequency of server k | |
The budget of MU i | |
The unit price of one function on server k | |
The unit price of one function on cloud | |
Electricity price at time slot t | |
Energy consumed by server k to execute MU i demands | |
Transmission rate from server k to MU i | |
Transmission power of server k | |
Energy for transmitting results from server k to MU i | |
The size of output of the task from MU i |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Yang, C. Resource Allocation and Pricing in Energy Harvesting Serverless Computing Internet of Things Networks. Information 2024, 15, 250. https://doi.org/10.3390/info15050250
Li Y, Yang C. Resource Allocation and Pricing in Energy Harvesting Serverless Computing Internet of Things Networks. Information. 2024; 15(5):250. https://doi.org/10.3390/info15050250
Chicago/Turabian StyleLi, Yunqi, and Changlin Yang. 2024. "Resource Allocation and Pricing in Energy Harvesting Serverless Computing Internet of Things Networks" Information 15, no. 5: 250. https://doi.org/10.3390/info15050250
APA StyleLi, Y., & Yang, C. (2024). Resource Allocation and Pricing in Energy Harvesting Serverless Computing Internet of Things Networks. Information, 15(5), 250. https://doi.org/10.3390/info15050250